Next Issue
Volume 11, November
Previous Issue
Volume 11, September

Table of Contents

Pharmaceutics, Volume 11, Issue 10 (October 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Nanoparticle (NP)-mediated drug delivery (NMDD) has much to offer in overcoming the limitations of [...] Read more.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Preparation, Characterisation, and Topical Delivery of Terbinafine
Pharmaceutics 2019, 11(10), 548; https://doi.org/10.3390/pharmaceutics11100548 - 22 Oct 2019
Abstract
Terbinafine (TBF) is commonly used in the management of fungal infections of the skin because of its broad spectrum of activity. Currently, formulations containing the free base and salt form are available. However, there is only limited information in the literature about the [...] Read more.
Terbinafine (TBF) is commonly used in the management of fungal infections of the skin because of its broad spectrum of activity. Currently, formulations containing the free base and salt form are available. However, there is only limited information in the literature about the physicochemical properties of this drug and its uptake by the skin. In this work, we conducted a comprehensive characterisation of TBF, and we also examined its percutaneous absorption in vitro in porcine skin. TBF-free base was synthesised from the hydrochloride salt by a simple proton displacement reaction. Both the free base and salt form were further analysed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Delivery of TBF-free base in excised porcine skin was investigated from the following solvents: Isopropyl myristate (IPM), propylene glycol monolaurate (PGML), Transcutol® (TC), propylene glycol (PG), polyethylene glycol 200 (PEG 200), oleic acid (OL), ethanol (EtOH), and isopropyl alcohol (IPA). Permeation and mass balance studies confirmed that PG and TC were the most efficacious vehicles, delivering higher amounts of TBF-free base to the skin compared with a commercial gel (p < 0.05). These preliminary results are promising and will inform the development of more complex formulations in future work. Full article
Show Figures

Graphical abstract

Open AccessReview
Strategies for Delivery of siRNAs to Ovarian Cancer Cells
Pharmaceutics 2019, 11(10), 547; https://doi.org/10.3390/pharmaceutics11100547 - 22 Oct 2019
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility [...] Read more.
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery. Full article
(This article belongs to the Special Issue Drug Delivery of siRNA Therapeutics)
Show Figures

Figure 1

Open AccessArticle
Structure and Dynamics of a Site-Specific Labeled Fc Fragment with Altered Effector Functions
Pharmaceutics 2019, 11(10), 546; https://doi.org/10.3390/pharmaceutics11100546 - 21 Oct 2019
Viewed by 103
Abstract
Antibody-drug conjugates (ADCs) are a class of biotherapeutic drugs designed as targeted therapies for the treatment of cancer. Among the challenges in generating an effective ADC is the choice of an effective conjugation site on the IgG. One common method to prepare site-specific [...] Read more.
Antibody-drug conjugates (ADCs) are a class of biotherapeutic drugs designed as targeted therapies for the treatment of cancer. Among the challenges in generating an effective ADC is the choice of an effective conjugation site on the IgG. One common method to prepare site-specific ADCs is to engineer solvent-accessible cysteine residues into antibodies. Here, we used X-ray diffraction and hydrogen-deuterium exchange mass spectroscopy to analyze the structure and dynamics of such a construct where a cysteine has been inserted after Ser 239 (Fc-239i) in the antibody heavy chain sequence. The crystal structure of this Fc-C239i variant at 0.23 nm resolution shows that the inserted cysteine structurally replaces Ser 239 and that this causes a domino-like backward shift of the local polypeptide, pushing Pro 238 out into the hinge. Proline is unable to substitute conformationally for the wild-type glycine at this position, providing a structural reason for the previously observed abolition of both FcγR binding and antibody-dependent cellular cytotoxicity. Energy estimates for the both the FcγR interface (7 kcal/mol) and for the differential conformation of proline (20 kcal/mol) are consistent with the observed disruption of FcγR binding, providing a quantifiable case where strain at a single residue appears to disrupt a key biological function. Conversely, the structure of Fc-C239i is relatively unchanged at the intersection of the CH2 and CH3 domains; the site known to be involved in binding of the neonatal Fc receptor (FcRn), and an alignment of the Fc-C239i structure with an Fc structure in a ternary Fc:FcRn:HSA (human serum albumin) complex implies that these favorable contacts would be maintained. Hydrogen deuterium exchange mass spectroscopy (HDX-MS) data further suggest a significant increase in conformational mobility for the Fc-C239i protein relative to Fc that is evident even far from the insertion site but still largely confined to the CH2 domain. Together, the findings provide a detailed structural and dynamic basis for previously observed changes in ADC functional binding to FcγR, which may guide further development of ADC designs. Full article
(This article belongs to the Special Issue Recombinant Therapeutic Proteins for Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges
Pharmaceutics 2019, 11(10), 545; https://doi.org/10.3390/pharmaceutics11100545 - 20 Oct 2019
Cited by 1 | Viewed by 161
Abstract
Resveratrol and oxyresveratrol are natural polyphenolic stilbenes with several important pharmacological activities. However, low solubility and aqueous instability are the major limitations in their drug delivery applications. In the present work, we demonstrated the encapsulation of resveratrol and oxyresveratrol with nanosponge to improve [...] Read more.
Resveratrol and oxyresveratrol are natural polyphenolic stilbenes with several important pharmacological activities. However, low solubility and aqueous instability are the major limitations in their drug delivery applications. In the present work, we demonstrated the encapsulation of resveratrol and oxyresveratrol with nanosponge to improve solubility and stability. Several characterization techniques were used to confirm the encapsulation of both drug molecules within the nanosponges. The high encapsulation efficiency of resveratrol (77.73%) and oxyresveratrol (80.33%) was achieved within the nanosponges. Transmission electron microscopy suggested uniform spherical size particles of resveratrol and oxyresveratrol loaded nanosponges. Compared to free drugs, better protection against UV degradation was observed for resveratrol-loaded nanosponge (2-fold) and oxyresveratrol-loaded nanosponge (3-fold). Moreover, a higher solubilization of resveratrol- and oxyresveratrol-loaded nanosponges lead to a better antioxidant activity compared to drug molecules alone. Cytotoxicity studies against DU-145 prostate cancer cell lines further suggested improved activity of both resveratrol and oxyresveratrol-loaded nanosponges without any significant toxicity of blank nanosponges. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Drug Delivery System)
Show Figures

Graphical abstract

Open AccessArticle
Optimization and Prediction of Ibuprofen Release from 3D DLP Printlets Using Artificial Neural Networks
Pharmaceutics 2019, 11(10), 544; https://doi.org/10.3390/pharmaceutics11100544 - 18 Oct 2019
Viewed by 166
Abstract
The aim of this work was to investigate effects of the formulation factors on tablet printability as well as to optimize and predict extended drug release from cross-linked polymeric ibuprofen printlets using an artificial neural network (ANN). Printlets were printed using digital light [...] Read more.
The aim of this work was to investigate effects of the formulation factors on tablet printability as well as to optimize and predict extended drug release from cross-linked polymeric ibuprofen printlets using an artificial neural network (ANN). Printlets were printed using digital light processing (DLP) technology from formulations containing polyethylene glycol diacrylate, polyethylene glycol, and water in concentrations according to D-optimal mixture design and 0.1% w/w riboflavin and 5% w/w ibuprofen. It was observed that with higher water content longer exposure time was required for successful printing. For understanding the effects of excipients and printing parameters on drug dissolution rate in DLP printlets two different neural networks were developed with using two commercially available softwares. After comparison of experimental and predicted values of in vitro dissolution at the corresponding time points for optimized formulation, the R2 experimental vs. predicted value was 0.9811 (neural network 1) and 0.9960 (neural network 2). According to difference f1 and similarity factor f2 (f1 = 14.30 and f2 = 52.15) neural network 1 with supervised multilayer perceptron, backpropagation algorithm, and linear activation function gave a similar dissolution profile to obtained experimental results, indicating that adequate ANN is able to set out an input–output relationship in DLP printing of pharmaceutics. Full article
(This article belongs to the Special Issue 3D Printing of Pharmaceuticals and Drug Delivery Devices)
Show Figures

Graphical abstract

Open AccessReview
Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery
Pharmaceutics 2019, 11(10), 543; https://doi.org/10.3390/pharmaceutics11100543 - 18 Oct 2019
Viewed by 133
Abstract
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. [...] Read more.
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer’s disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future. Full article
(This article belongs to the Special Issue Advanced Formulation Approaches for Targeted Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Utilizing a Kidney-Targeting Peptide to Improve Renal Deposition of a Pro-Angiogenic Protein Biopolymer
Pharmaceutics 2019, 11(10), 542; https://doi.org/10.3390/pharmaceutics11100542 - 18 Oct 2019
Viewed by 89
Abstract
Elastin-like polypeptides (ELP) are versatile protein biopolymers used in drug delivery due to their modular nature, allowing fusion of therapeutics and targeting agents. We previously developed an ELP fusion with vascular endothelial growth factor (VEGF) and demonstrated its therapeutic efficacy in translational swine [...] Read more.
Elastin-like polypeptides (ELP) are versatile protein biopolymers used in drug delivery due to their modular nature, allowing fusion of therapeutics and targeting agents. We previously developed an ELP fusion with vascular endothelial growth factor (VEGF) and demonstrated its therapeutic efficacy in translational swine models of renovascular disease and chronic kidney disease. The goal of the current work was to refine renal targeting and reduce off-target tissue deposition of ELP–VEGF. The ELP–VEGF fusion protein was modified by adding a kidney-targeting peptide (KTP) to the N-terminus. All control proteins (ELP, KTP–ELP, ELP–VEGF, and KTP–ELP–VEGF) were also produced to thoroughly assess the effects of each domain on in vitro cell binding and activity and in vivo pharmacokinetics and biodistribution. KTP–ELP–VEGF was equipotent to ELP–VEGF and free VEGF in vitro in the stimulation of primary glomerular microvascular endothelial cell proliferation, tube formation, and extracellular matrix invasion. The contribution of each region of the KTP–ELP–VEGF protein to the cell binding specificity was assayed in primary human renal endothelial cells, tubular epithelial cells, and podocytes, demonstrating that the VEGF domain induced binding to endothelial cells and the KTP domain increased binding to all renal cell types. The pharmacokinetics and biodistribution of KTP–ELP–VEGF and all control proteins were determined in SKH-1 Elite hairless mice. The addition of KTP to ELP slowed its in vivo clearance and increased its renal deposition. Furthermore, addition of KTP redirected ELP–VEGF, which was found at high levels in the liver, to the kidney. Intrarenal histology showed similar distribution of all proteins, with high levels in blood vessels and tubules. The VEGF-containing proteins also accumulated in punctate foci in the glomeruli. These studies provide a thorough characterization of the effects of a kidney-targeting peptide and an active cytokine on the biodistribution of these novel biologics. Furthermore, they demonstrate that renal specificity of a proven therapeutic can be improved using a targeting peptide. Full article
Show Figures

Graphical abstract

Open AccessEditorial
Drug Delivery Technology Development in Canada
Pharmaceutics 2019, 11(10), 541; https://doi.org/10.3390/pharmaceutics11100541 - 17 Oct 2019
Viewed by 176
Abstract
Canada has a long and rich history of ground-breaking research in drug delivery within academic institutions, pharmaceutical industry and the biotechnology community. Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely [...] Read more.
Canada has a long and rich history of ground-breaking research in drug delivery within academic institutions, pharmaceutical industry and the biotechnology community. Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effect. It may involve rational site-targeting, or facilitating systemic pharmacokinetics; in any case, it is typically concerned with both quantity and duration of the presence of the drug in the body. Drug delivery is often approached through a drug’s chemical formulation, medical devices or drug-device combination products. Drug delivery is a concept heavily integrated with dosage form development and selection of route of administration; the latter sometimes even being considered part of the definition. Drug delivery technologies modify drug release profile, absorption, distribution and elimination for the benefit of improving product efficacy and safety, as well as patient convenience and adherence. Over the past 30 years, numerous Canadian-based biotechnology companies have been formed stemming from the inventions conceived and developed within academic institutions. Many have led to the development of important drug delivery products that have enhanced the landscape of drug therapy in the treatment of cancer to infectious diseases. This Special Issue serves to highlight the progress of drug delivery within Canada. We invited articles on all aspects of drug delivery sciences from pre-clinical formulation development to human clinical trials that bring to light the world-class research currently undertaken in Canada for this Special Issue. Full article
(This article belongs to the Special Issue Drug Delivery Technology Development in Canada)
Open AccessReview
Liposomal Formulations for Nose-to-Brain Delivery: Recent Advances and Future Perspectives
Pharmaceutics 2019, 11(10), 540; https://doi.org/10.3390/pharmaceutics11100540 - 17 Oct 2019
Viewed by 173
Abstract
Restricted drug entry to the brain that is closely associated with the existence of the blood brain barrier (BBB) has limited the accessibility of most potential active therapeutic compounds to the brain from the systemic circulation. Recently, evidences for the presence of direct [...] Read more.
Restricted drug entry to the brain that is closely associated with the existence of the blood brain barrier (BBB) has limited the accessibility of most potential active therapeutic compounds to the brain from the systemic circulation. Recently, evidences for the presence of direct nose-to-brain drug transport pathways have been accumulated by several studies and an intranasal drug administration route has gained attention as a promising way for providing direct access to the brain without the needs to cross to the BBB. Studies aiming for developing nanoparticles as an intranasal drug carrier have shown considerable promise in overcoming the challenges of intranasal drug delivery route. This review gives a comprehensive overview of works having investigated liposomes as a potential vehicle to deliver drugs to the brain through nose-to-brain route while considering the excellent biocompatibility and high potential of liposomes for clinical development. Herein, studies are reviewed with special emphasis on the impact of formulation factors, such as liposome composition and surface modification of liposomes with targeting moieties, in addition to intranasal environmental factors that may affect the extent/site of absorption of intranasally administered, liposome-encapsulated drugs. Full article
(This article belongs to the Special Issue Advanced Formulation Approaches for Targeted Drug Delivery)
Show Figures

Figure 1

Open AccessArticle
Stabilization of Deformable Nanovesicles Based on Insulin-Phospholipid Complex by Freeze-Drying
Pharmaceutics 2019, 11(10), 539; https://doi.org/10.3390/pharmaceutics11100539 - 16 Oct 2019
Viewed by 169
Abstract
Deformable nanovesicles have been extensively investigated due to their excellent ability to penetrate biological barriers. However, suffering from serious physical and chemical instabilities, the wide use of deformable nanovesicles in medical applications is still limited. Moreover, far less work has been done to [...] Read more.
Deformable nanovesicles have been extensively investigated due to their excellent ability to penetrate biological barriers. However, suffering from serious physical and chemical instabilities, the wide use of deformable nanovesicles in medical applications is still limited. Moreover, far less work has been done to pursue the lyophilization of deformable nanovesicles. Here, we aimed to obtain stable deformable nanovesicles via freeze-drying technology and to uncover the underlying protection mechanisms. Firstly, the density of nanovesicles before freeze-drying, the effect of different kinds of cryoprotectants, and the types of different reconstituted solvents after lyophilization were investigated in detail to obtain stable deformable nanovesicles based on insulin-phospholipid complex (IPC-DNVs). To further investigate the underlying protection mechanisms, we performed a variety of analyses. We found that deformable nanovesicles at a low density containing 8% lactose and trehalose in a ratio of 1:4 (8%-L-T) have a spherical shape, smooth surface morphology in the lyophilized state, a whorl-like structure, high entrapment efficiency, and deformability after reconstitution. Importantly, the integrity of IPC, as well as the secondary structure of insulin, were well protected. Accelerated stability studies demonstrated that 8%-L-T remained highly stable during storage for 6 months at 25 °C. Based on in vivo results, lyophilized IPC-DNVs retained their bioactivity and had good efficacy. Given the convenience of preparation and long term stability, the use of combined cryoprotectants in a proper ratio to protect stable nanovesicles indicates strong potential for industrial production. Full article
(This article belongs to the Special Issue Pharmaceutical Freeze Drying and Spray Drying)
Show Figures

Graphical abstract

Open AccessReview
In Vitro Methods for Evaluating Drug Release of Vaginal Ring Formulations—A Critical Review
Pharmaceutics 2019, 11(10), 538; https://doi.org/10.3390/pharmaceutics11100538 - 16 Oct 2019
Viewed by 202
Abstract
The vagina is a promising site for both local and systemic drug delivery and represents an interesting administration route for compounds with poor oral bioavailability. Whereas most of the currently marketed dosage forms were designed as immediate release formulations, intravaginal rings (IVRs) offer [...] Read more.
The vagina is a promising site for both local and systemic drug delivery and represents an interesting administration route for compounds with poor oral bioavailability. Whereas most of the currently marketed dosage forms were designed as immediate release formulations, intravaginal rings (IVRs) offer the possibility of a controlled vaginal drug delivery over several weeks or months. For a long time, the development of IVRs was limited to steroid-releasing formulations. Recently, IVRs have witnessed a surge of new interest as promising delivery systems for microbicides. Therefore, various novel IVR designs have been introduced. To ensure that only safe and effective IVRs will be administered to patients, it is important to properly distinguish between IVRs with desired and undesired release performance. In vitro methods for evaluating drug release of IVRs that present with sufficient predictive capacity for in vivo drug release, and discriminatory power with regard to IVRs quality, are an essential tool for this purpose. The objective of the present review article is to present the current status of in vitro drug release testing of IVRs and to critically discuss current compendial and non-official in vitro drug release methods with regard to their discriminatory power and in vivo predictivity. Full article
(This article belongs to the Special Issue Vaginal Drug Delivery for Local and Systemic Applications)
Show Figures

Graphical abstract

Open AccessReview
Natural Diatom Biosilica as Microshuttles in Drug Delivery Systems
Pharmaceutics 2019, 11(10), 537; https://doi.org/10.3390/pharmaceutics11100537 - 15 Oct 2019
Viewed by 171
Abstract
Unicellular diatom microalgae are a promising natural resource of porous biosilica. These microorganisms produce around their membrane a highly porous and extremely structured silica shell called frustule. Once harvested from living algae or from fossil sediments of diatomaceous earth, this biocompatible and non-toxic [...] Read more.
Unicellular diatom microalgae are a promising natural resource of porous biosilica. These microorganisms produce around their membrane a highly porous and extremely structured silica shell called frustule. Once harvested from living algae or from fossil sediments of diatomaceous earth, this biocompatible and non-toxic material offers an exceptional potential in the field of micro/nano-devices, drug delivery, theranostics, and other medical applications. The present review focused on the use of diatoms in the field of drug delivery systems, with the aim of presenting the different strategies implemented to improve the biophysical properties of this biosilica in terms of drug loading and release efficiency, targeted delivery, or site-specific binding capacity by surface functionalization. The development of composite materials involving diatoms for drug delivery applications is also described. Full article
Show Figures

Figure 1

Open AccessArticle
The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity
Pharmaceutics 2019, 11(10), 536; https://doi.org/10.3390/pharmaceutics11100536 - 15 Oct 2019
Viewed by 184
Abstract
Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of [...] Read more.
Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics. Full article
Show Figures

Figure 1

Open AccessArticle
Development of Chitosan/Silver Sulfadiazine/Zeolite Composite Films for Wound Dressing
Pharmaceutics 2019, 11(10), 535; https://doi.org/10.3390/pharmaceutics11100535 - 14 Oct 2019
Cited by 1 | Viewed by 177
Abstract
Biopolymeric films with silver sulfadiazine (AgSD) are proposed as an alternative to the occlusive AgSD-containing creams and gauzes, which are commonly used in the treatment of conventional burns. While the recognized cytotoxicity of AgSD has been reported to compromise its use as an [...] Read more.
Biopolymeric films with silver sulfadiazine (AgSD) are proposed as an alternative to the occlusive AgSD-containing creams and gauzes, which are commonly used in the treatment of conventional burns. While the recognized cytotoxicity of AgSD has been reported to compromise its use as an antimicrobial drug in pharmaceuticals, this limitation can be overcome by developing sustained-release formulations. Microporous materials as zeolites can be used as drug delivery systems for sustained release of AgSD. The purpose of this work was the development and characterization of chitosan/zeolite composite films to be used as wound dressings. Zeolite was impregnated with AgSD before the production of the composite films. The physicochemical properties of zeolites and the films were evaluated, as well as the antimicrobial activity of the polymeric films and the cytotoxicity of the films in fibroblasts Balb 3T3/c. Impregnated zeolite exhibited changes in FTIR spectra and XRD diffraction patterns, in comparison to non-impregnated composites, which corroborate the results obtained with EDX-SEM. The pure chitosan film was compact and without noticeable defects and macropores, while the film with zeolite was opaquer, more rigid, and efficient against Candida albicans and some gram-negative bacteria. The safety evaluation showed that although the AgSD films present cytotoxicity, they could be used in a concentration-dependent fashion. Full article
Show Figures

Figure 1

Open AccessReview
Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials
Pharmaceutics 2019, 11(10), 534; https://doi.org/10.3390/pharmaceutics11100534 - 14 Oct 2019
Viewed by 204
Abstract
The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable [...] Read more.
The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable vaccine candidates need to be designed to elicit appropriate immune responses. Nanotechnology has been found to play a unique role in the design of vaccines, providing them with enhanced specificity and potency. Nano-scaled materials, such as virus-like particles, liposomes, polymeric nanoparticles (NPs), and protein NPs, have received considerable attention over the past decade as potential carriers for the delivery of vaccine antigens and adjuvants, due to their beneficial advantages, like improved antigen stability, targeted delivery, and long-time release, for which antigens/adjuvants are either encapsulated within, or decorated on, the NP surface. Flexibility in the design of nanomedicine allows for the programming of immune responses, thereby addressing the many challenges encountered in vaccine development. Biomimetic NPs have emerged as innovative natural mimicking biosystems that can be used for a wide range of biomedical applications. In this review, we discuss the recent advances in biomimetic nanovaccines, and their use in anti-bacterial therapy, anti-HIV therapy, anti-malarial therapy, anti-melittin therapy, and anti-tumor immunity. Full article
(This article belongs to the Special Issue Nanoparticles to Improve the Efficacy of Vaccines)
Show Figures

Graphical abstract

Open AccessArticle
Ground Calcium Carbonate as a Low Cost and Biosafety Excipient for Solubility and Dissolution Improvement of Praziquantel
Pharmaceutics 2019, 11(10), 533; https://doi.org/10.3390/pharmaceutics11100533 - 14 Oct 2019
Viewed by 173
Abstract
Calcium carbonate is an abundant mineral with several advantages to be a successful carrier to improve oral bioavailability of poorly water-soluble drugs, such as praziquantel. Praziquantel is an antiparasitic drug classified in group II of the Biopharmaceutical Classification System hence characterized by high-permeability [...] Read more.
Calcium carbonate is an abundant mineral with several advantages to be a successful carrier to improve oral bioavailability of poorly water-soluble drugs, such as praziquantel. Praziquantel is an antiparasitic drug classified in group II of the Biopharmaceutical Classification System hence characterized by high-permeability and low-solubility. Therefore, the dissolution rate is the limiting factor for the gastrointestinal absorption that contributes to the low bioavailability. Consequently, the therapeutic dose of the praziquantel must be high and big tablets and capsules are required, which are difficult to swallow, especially for pediatric and elderly patients. Mixtures of praziquantel and calcium carbonate using solid-solid physical mixtures and solid dispersions were prepared and characterized using several techniques (X-ray diffraction differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, laser diffraction, Fourier transform infrared and Raman spectroscopies). Solubility of these formulations evidenced that the solubility of praziquantel-calcium carbonate interaction product increased in physiological media. In vitro dissolution tests showed that the interaction product increased the dissolution rate of the drug in acidic medium. Theoretical models were studied to understand this experimental behavior. Cytotoxicity and cell cycle studies were performed, showing that praziquantel-calcium carbonate physical mixture and interaction product were biocompatible with the HTC116 cells, because it did not produce a decrease in cell viability or alterations in the cell cycle. Full article
(This article belongs to the Special Issue Antifungal and Antiparasitic Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Intracellular Delivery of Natural Antioxidants via Hyaluronan Nanohydrogels
Pharmaceutics 2019, 11(10), 532; https://doi.org/10.3390/pharmaceutics11100532 - 14 Oct 2019
Viewed by 167
Abstract
Natural antioxidants, such as astaxanthin (AX), resveratrol (RV) and curcumin (CU), are bioactive molecules that show a number of therapeutic effects. However, their applications are remarkably limited by their poor water solubility, physico-chemical instability and low bioavailability. In the present work, it is [...] Read more.
Natural antioxidants, such as astaxanthin (AX), resveratrol (RV) and curcumin (CU), are bioactive molecules that show a number of therapeutic effects. However, their applications are remarkably limited by their poor water solubility, physico-chemical instability and low bioavailability. In the present work, it is shown that self-assembled hyaluronan (HA)-based nanohydrogels (NHs) are taken up by endothelial cells (Human Umbilical Vein Endothelial Cells, HUVECs), preferentially accumulating in the perinuclear area of oxidatively stressed HUVECs, as evidenced by flow cytometry and confocal microscopy analyses. Furthermore, NHs are able to physically entrap and to significantly enhance the apparent water solubility of AX, RV and CU in aqueous media. AX/NHs, RV/NHs and CU/NHs systems showed good hydrodynamic diameters (287, 214 and 267 nm, respectively), suitable ζ-potential values (−45, −43 and −37 mV, respectively) and the capability to neutralise reactive oxygen species (ROS) in tube. AX/NHs system was also able to neutralise ROS in vitro and did not show any toxicity against HUVECs. This research suggests that HA-based NHs can represent a kind of nano-carrier suitable for the intracellular delivery of antioxidant agents, for the treatment of oxidative stress in endothelial cells. Full article
(This article belongs to the Special Issue Self-Organizing Nanovectors for Drug Delivery)
Show Figures

Figure 1

Open AccessArticle
Population Pharmacokinetics of Cis-, Trans-, and Total Cefprozil in Healthy Male Koreans
Pharmaceutics 2019, 11(10), 531; https://doi.org/10.3390/pharmaceutics11100531 - 14 Oct 2019
Viewed by 152
Abstract
Cefprozil, one of cephalosporin antibiotics, has been used extensively in clinics. However, pharmacokinetic (PK) information on cefprozil is still very limited. There have been no reports of population pharmacokinetics (PPKs). A PPK model for cefprozil will be a great advantage for clinical use. [...] Read more.
Cefprozil, one of cephalosporin antibiotics, has been used extensively in clinics. However, pharmacokinetic (PK) information on cefprozil is still very limited. There have been no reports of population pharmacokinetics (PPKs). A PPK model for cefprozil will be a great advantage for clinical use. Thus, the aim of this study was to develop a PPK model for cefprozil for healthy male Koreans. Clinical PK and demographic data of healthy Korean males receiving cefprozil at a dose of 1000 mg were analyzed using Phoenix® NLME™. A one-compartment model with first-order absorption with lag-time was constructed as a base model. The model was extended to include covariates that influenced between-subject variability. Creatinine clearance significantly influenced systemic clearance of cefprozil. The final PPK model for cis-, trans-, and total cefprozil was established and validated. PPK parameter values of cis- and total cefprozil were similar to each other, but different from those of trans-isomer. Herein, we describe the establishment of accurate PPK models of cis-, trans-, and total cefprozil for healthy male Koreans for the first time. It may be useful as a dosing algorithm for the general population. These results might also contribute to the development of stereoisomeric cefprozil. Full article
Show Figures

Graphical abstract

Open AccessArticle
Gelatin-Alginate Complexes for EGF Encapsulation: Effects of H-Bonding and Electrostatic Interactions
Pharmaceutics 2019, 11(10), 530; https://doi.org/10.3390/pharmaceutics11100530 - 14 Oct 2019
Cited by 1 | Viewed by 186
Abstract
Gelatin Type A (GA) and sodium alginate (SA) complexes were explored to encapsulate epidermal growth factor (EGF), and thereby to circumvent its proteolytic degradation upon topical application to chronic wounds. Phase diagrams were constructed based on turbidity as a function of GA to [...] Read more.
Gelatin Type A (GA) and sodium alginate (SA) complexes were explored to encapsulate epidermal growth factor (EGF), and thereby to circumvent its proteolytic degradation upon topical application to chronic wounds. Phase diagrams were constructed based on turbidity as a function of GA to SA ratio and pH. Various GA-SA mixtures were compared for polydispersity index, zeta potential, Z-average, and ATR-FTIR spectra. Trypsin digestion and human dermal fibroblast scratch wound assay were done to evaluate the effects of EGF encapsulation. The onset pH values for coacervation and precipitation were closer together in high molecular weight GA (HWGA)-SA reaction mixtures than in low molecular weight GA (LWGA)-SA, which was attributed to strong H-bonding interactions between HWGA and SA probed by ATR-FTIR. EGF incorporation in both HWGA-SA precipitates and LWGA-SA coacervates below the isoelectric point of EGF, but not above it, suggests the contribution of electrostatic interactions between EGF and SA. EGF encapsulated in LWGA-SA coacervates was effectively protected from trypsin digestion and showed better in vitro scratch wound activity compared to free EGF. LWGA-SA coacervates are suggested as a novel delivery system for topical application of EGF to chronic wounds. Full article
Show Figures

Graphical abstract

Open AccessArticle
Myth or Truth: The Glass Forming Ability Class III Drugs Will Always Form Single-Phase Homogenous Amorphous Solid Dispersion Formulations
Pharmaceutics 2019, 11(10), 529; https://doi.org/10.3390/pharmaceutics11100529 - 14 Oct 2019
Viewed by 186
Abstract
The physical stability of amorphous solid dispersions (ASD) of active pharmaceutical ingredients (APIs) of high glass forming ability (GFA class III) is generally expected to be high among the scientific community. In this study, the ASD of ten-selected class III APIs with the [...] Read more.
The physical stability of amorphous solid dispersions (ASD) of active pharmaceutical ingredients (APIs) of high glass forming ability (GFA class III) is generally expected to be high among the scientific community. In this study, the ASD of ten-selected class III APIs with the two polymers, PVPVA 64 and HPMC-E5, have been prepared by spray-drying, film-casting, and their amorphicity at T0 was investigated by modulated differential scanning calorimetry and powder X-ray diffraction. It was witnessed that only five out of ten APIs form good quality amorphous solid dispersions with no phase separation and zero crystalline content, immediately after the preparation and drying process. Hence, it was further established that the classification of an API as GFA class III does not guarantee the formulation of single phase amorphous solid dispersions. Full article
(This article belongs to the Special Issue Advances in Amorphous Drug Formulations)
Show Figures

Figure 1

Open AccessArticle
Poly(ε-caprolactone) (PCL) Hollow Nanoparticles with Surface Sealability and On-Demand Pore Generability for Easy Loading and NIR Light-Triggered Release of Drug
Pharmaceutics 2019, 11(10), 528; https://doi.org/10.3390/pharmaceutics11100528 - 13 Oct 2019
Viewed by 257
Abstract
A new system for the easy loading and NIR light-triggered release of drugs is introduced. It consists of poly(ε-caprolactone) (PCL) hollow nanoparticles with surface openings containing a biodegradable fatty acid with phase-change ability and a biocompatible photothermal agent. These openings, which can enhance [...] Read more.
A new system for the easy loading and NIR light-triggered release of drugs is introduced. It consists of poly(ε-caprolactone) (PCL) hollow nanoparticles with surface openings containing a biodegradable fatty acid with phase-change ability and a biocompatible photothermal agent. These openings, which can enhance the connectivity between the interior and the exterior, enable the easy loading of drug molecules into the interior voids, and their successive sealing ensures a stable encapsulation of the drug. Upon exposure to an external NIR light irradiation, the photothermal agent generates heat that raises the local temperature of the hollow particles above the melting point of the fatty acid, leading to the formation of nanopores on their shells, and consequently, the instant release of the encapsulated drug molecules through the pores. The synergistic activity of the hyperthermia effect from the photothermal agent and the NIR-triggered release of the drug molecules results in noticeable anticancer efficacy. Full article
(This article belongs to the Special Issue Porous Micro and Nanoparticles for Drug Delivery)
Show Figures

Figure 1

Open AccessArticle
Evaluation of Drug Delivery and Efficacy of Ciprofloxacin-Loaded Povidone Foils and Nanofiber Mats in a Wound-Infection Model Based on Ex Vivo Human Skin
Pharmaceutics 2019, 11(10), 527; https://doi.org/10.3390/pharmaceutics11100527 - 12 Oct 2019
Viewed by 256
Abstract
Topical treatment of wound infections is often a challenge due to limited drug availability at the site of infection. Topical drug delivery is an attractive option for reducing systemic side effects, provided that a more selective and sustained local drug delivery is achieved. [...] Read more.
Topical treatment of wound infections is often a challenge due to limited drug availability at the site of infection. Topical drug delivery is an attractive option for reducing systemic side effects, provided that a more selective and sustained local drug delivery is achieved. In this study, a poorly water-soluble antibiotic, ciprofloxacin, was loaded on polyvinylpyrrolidone (PVP)-based foils and nanofiber mats using acetic acid as a solubilizer. Drug delivery kinetics, local toxicity, and antimicrobial activity were tested on an ex vivo wound model based on full-thickness human skin. Wounds of 5 mm in diameter were created on 1.5 × 1.5 cm skin blocks and treated with the investigated materials. While nanofiber mats reached the highest amount of delivered drug after 6 h, foils rapidly achieved a maximum drug concentration and maintained it over 24 h. The treatment had no effect on the overall skin metabolic activity but influenced the wound healing process, as observed using histological analysis. Both delivery systems were efficient in preventing the growth of Pseudomonas aeruginosa biofilms in ex vivo human skin. Interestingly, foils loaded with 500 µg of ciprofloxacin accomplished the complete eradication of biofilm infections with 1 × 109 bacteria/wound. We conclude that antimicrobial-loaded resorbable PVP foils and nanofiber mats are promising delivery systems for the prevention or topical treatment of infected wounds. Full article
Show Figures

Graphical abstract

Open AccessArticle
A Combinatorial Cell and Drug Delivery Strategy for Huntington’s Disease Using Pharmacologically Active Microcarriers and RNAi Neuronally-Committed Mesenchymal Stromal Cells
Pharmaceutics 2019, 11(10), 526; https://doi.org/10.3390/pharmaceutics11100526 - 12 Oct 2019
Viewed by 185
Abstract
For Huntington’s disease (HD) cell-based therapy, the transplanted cells are required to be committed to a neuronal cell lineage, survive and maintain this phenotype to ensure their safe transplantation in the brain. We first investigated the role of RE-1 silencing transcription factor (REST) [...] Read more.
For Huntington’s disease (HD) cell-based therapy, the transplanted cells are required to be committed to a neuronal cell lineage, survive and maintain this phenotype to ensure their safe transplantation in the brain. We first investigated the role of RE-1 silencing transcription factor (REST) inhibition using siRNA in the GABAergic differentiation of marrow-isolated adult multilineage inducible (MIAMI) cells, a subpopulation of MSCs. We further combined these cells to laminin-coated poly(lactic-co-glycolic acid) PLGA pharmacologically active microcarriers (PAMs) delivering BDNF in a controlled fashion to stimulate the survival and maintain the differentiation of the cells. The PAMs/cells complexes were then transplanted in an ex vivo model of HD. Using Sonic Hedgehog (SHH) and siREST, we obtained GABAergic progenitors/neuronal-like cells, which were able to secrete HGF, SDF1 VEGFa and BDNF, of importance for HD. GABA-like progenitors adhered to PAMs increased their mRNA expression of NGF/VEGFa as well as their secretion of PIGF-1, which can enhance reparative angiogenesis. In our ex vivo model of HD, they were successfully transplanted while attached to PAMs and were able to survive and maintain this GABAergic neuronal phenotype. Together, our results may pave the way for future research that could improve the success of cell-based therapy for HDs. Full article
(This article belongs to the Special Issue PLGA Based Drug Carrier and Pharmaceutical Applications)
Show Figures

Graphical abstract

Open AccessArticle
Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol
Pharmaceutics 2019, 11(10), 525; https://doi.org/10.3390/pharmaceutics11100525 - 12 Oct 2019
Viewed by 200
Abstract
Alcoholic liver disease (ALD) has become a critical global public health issue worldwide. Tartary buckwheat extracts exhibit potential therapeutic effects against ALD due to its antioxidant and anti-inflammatory activities. However, in vivo pharmacokinetics and metabolite identification of tartary buckwheat extracts have not been [...] Read more.
Alcoholic liver disease (ALD) has become a critical global public health issue worldwide. Tartary buckwheat extracts exhibit potential therapeutic effects against ALD due to its antioxidant and anti-inflammatory activities. However, in vivo pharmacokinetics and metabolite identification of tartary buckwheat extracts have not been clearly elucidated. Accordingly, the current manuscript aimed to investigate pharmacokinetics and to identify novel metabolites in beagle dogs following oral co-administration of tartary buckwheat extracts and ethanol. To support pharmacokinetic study, a simple LC-MS/MS method was developed and validated for simultaneous determination of quercetin and kaempferol in beagle dog plasma. The conjugated forms of both analytes were hydrolyzed by β-glucuronidase and sulfatase followed by liquid-liquid extraction using methyl tert-butyl ether. In addition, another effective approach was established using advanced ultrafast liquid chromatography coupled with a Q-Exactive hybrid quadrupole orbitrap high resolution mass spectrometer to identify the metabolites in beagle dog biological samples including urine, feces, and plasma. The pharmacokinetic study demonstrated that the absolute oral bioavailability for quercetin and kaempferol was determined to be 4.6% and 1.6%, respectively. Oral bioavailability of quercetin and kaempferol was limited in dogs probably due to poor absorption, significant first pass effect, and biliary elimination, etc. Using high resolution mass spectrometric analysis, a total of nine novel metabolites were identified for the first time and metabolic pathways included methylation, glucuronidation, and sulfation. In vivo pharmacokinetics and metabolite identification results provided preclinical support of co-administration of tartary buckwheat extracts and ethanol in humans. Full article
(This article belongs to the Special Issue Pharmacokinetic Drug-Drug Interactions and Herb-Drug Interactions)
Show Figures

Graphical abstract

Open AccessArticle
Enhanced Treatment Effects of Tilmicosin Against Staphylococcus aureus Cow Mastitis by Self-Assembly Sodium Alginate-Chitosan Nanogel
Pharmaceutics 2019, 11(10), 524; https://doi.org/10.3390/pharmaceutics11100524 - 12 Oct 2019
Viewed by 152
Abstract
The Staphylococcus aureus (S. aureus) cow mastitis causes great losses to the cow industry. In order to improve the treatment effect of tilmicosin against cow mastitis, the combination of solid lipid nanoparticle (SLN) technology with in situ hydrogel technology was used [...] Read more.
The Staphylococcus aureus (S. aureus) cow mastitis causes great losses to the cow industry. In order to improve the treatment effect of tilmicosin against cow mastitis, the combination of solid lipid nanoparticle (SLN) technology with in situ hydrogel technology was used to prepare the self-assembly tilmicosin nanogel (TIL-nanogel). The physicochemical characteristics, in vitro release, antibacterial activity and in vivo treatment efficacy of TIL-SLNs and TIL-nanogel were studied, respectively. The results showed the loading capacity (LC), encapsulation efficiency (EE), size, zeta potential and poly dispersion index (PDI) of TIL-nanogel were 23.33 ± 0.77%, 67.89 ± 3.01%, 431.57 ± 12.87 nm, 8.3 ± 0.06 mv and, 0.424 ± 0.032, respectively. The TIL-nanogel showed stronger sustained release in vitro than TIL-SLNs and commercial injection. The cure rate of half dosage and normal dosage of TIL-nanogel was 58.3% and 75.0%, which was higher than that of commercial injection (50.0%) at normal dosage. The results suggest that the treatment dosage of tilmicosin for cow mastitis could be reduced by TIL-nanogel. The novel TIL-nanogel will be beneficial by decreasing the usage of tilmicosin and the treatment costs of cow mastitis. Full article
(This article belongs to the Special Issue Gels and in Situ Gelling Formulations for Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Spray Drying of a Subcritical Extract Using Marrubium vulgare as a Method of Choice for Obtaining High Quality Powder
Pharmaceutics 2019, 11(10), 523; https://doi.org/10.3390/pharmaceutics11100523 - 11 Oct 2019
Viewed by 154
Abstract
White horehound (Marrubium vulgare L.), is a grey-leaved perennial herb, belonging to Lamiaceae family, distributed in Eurasia and northern Africa. Despite the fact that M. vulgare has been used since ancient times in treating diverse diseases, it is only in the last [...] Read more.
White horehound (Marrubium vulgare L.), is a grey-leaved perennial herb, belonging to Lamiaceae family, distributed in Eurasia and northern Africa. Despite the fact that M. vulgare has been used since ancient times in treating diverse diseases, it is only in the last decade or so that scientists have been able to lay the foundation for its potential pharmacological actions from the results observed through the prism of ethnopharmacological use of this species. The novelty of this study was that subcritical water extraction, acknowledged as a powerful extraction technology to recover phenolic compounds, was coupled with spray drying. The subcritical horehound extract, obtained using optimal process parameters, was used as a liquid feed in spray drying. Maltodextrin was used as a carrier in a concentration of 10%. Thus, two M. vulgare powders, carrier-free and 10% MD, were produced. Comprehensive powders characterization was conducted in order to evaluate their quality. Results confirmed that spray drying can be used as a method of choice for obtaining high quality horehound powders which kept the amorphous structure constant after 6 months. Full article
(This article belongs to the Special Issue Pharmaceutical Freeze Drying and Spray Drying)
Show Figures

Graphical abstract

Open AccessArticle
Enzyme-Loaded Gel Core Nanostructured Lipid Carriers to Improve Treatment of Lysosomal Storage Diseases: Formulation and In Vitro Cellular Studies of Elosulfase Alfa-Loaded Systems
Pharmaceutics 2019, 11(10), 522; https://doi.org/10.3390/pharmaceutics11100522 - 11 Oct 2019
Viewed by 216
Abstract
Mucopolysaccharidosis IVA (Morquio A) is a rare inherited metabolic disease caused by deficiency of the lysosomal enzyme N-acetylgalatosamine-6-sulfate-sulfatase (GALNS). Until now, treatments employed included hematopoietic stem cell transplantation and enzyme replacement therapy (ERT); the latter being the most commonly used to treat mucopolysaccharidoses, [...] Read more.
Mucopolysaccharidosis IVA (Morquio A) is a rare inherited metabolic disease caused by deficiency of the lysosomal enzyme N-acetylgalatosamine-6-sulfate-sulfatase (GALNS). Until now, treatments employed included hematopoietic stem cell transplantation and enzyme replacement therapy (ERT); the latter being the most commonly used to treat mucopolysaccharidoses, but with serious disadvantages due to rapid degradation and clearance. The purpose of this study was to develop and evaluate the potential of nanostructured lipid carriers (NLCs) by encapsulating elosulfase alfa and preserving its enzyme activity, leading to enhancement of its biological effect in chondrocyte cells. A pegylated elosulfase alfa-loaded NLC was characterized in terms of size, ζ potential, structural lipid composition (DSC and XRD), morphology (TEM microscopy), and stability in human plasma. The final formulation was freeze-dried by selecting the appropriate cryoprotective agent. Viability assays confirmed that NLCs were non-cytotoxic to human fibroblasts. Imaging techniques (confocal and TEM) were used to assess the cellular uptake of NLCs loaded with elosulfase alfa. This study provides evidence that the encapsulated drug exhibits enzyme activity inside the cells. Overall, this study provides a new approach regarding NLCs as a promising delivery system for the encapsulation of elosulfase alfa or other enzymes and the preservation of its activity and stability to be used in enzymatic replacement therapy (ERT). Full article
(This article belongs to the Special Issue Nanotechnology-Based Approaches for Chronic Diseases)
Show Figures

Graphical abstract

Open AccessArticle
Pharmaceutical Benefits of Fluticasone Propionate Association to Delivery Systems: In Vitro and In Vivo Evaluation
Pharmaceutics 2019, 11(10), 521; https://doi.org/10.3390/pharmaceutics11100521 - 10 Oct 2019
Viewed by 199
Abstract
The objective of the present work was to characterize the ability of liposomes and cyclodextrin (CyD) complexes to modulate the in vivo profile of fluticasone (FTZ). In vitro cell compatibility tests were performed, exposing A549 cells to FTZ in the free form and [...] Read more.
The objective of the present work was to characterize the ability of liposomes and cyclodextrin (CyD) complexes to modulate the in vivo profile of fluticasone (FTZ). In vitro cell compatibility tests were performed, exposing A549 cells to FTZ in the free form and FTZ associated to liposomes and complexed with CyD. The in vivo fate of a selected FTZ liposomal formulation and of several FTZ CyD complexes was achieved following intranasal instillation or pulmonary administration in BALB/c mice, respectively. For pulmonary administration, an inhalation chamber was constructed to enable the simultaneously pulmonary administration to six mice. Thirty minutes and 3 h after administration, mice were sacrificed, their blood, lungs, livers, and spleens were removed, and FTZ level was determined by HPLC using an extraction procedure. The in vitro tests revealed no toxic effects of FTZ formulations, as cellular viability was always superior to 90% for FTZ concentrations ranging from 5 to 60 µM 72 h after incubation. The in vivo biodistribution results showed that FTZ incorporated in liposomes resulted in 20 and 30 times higher accumulation in the lungs in comparison with free FTZ, at 0.5 and 3 h after i.n. administration, respectively. FTZ associated to Hydroxypropyl-γ-cyclodextrin (HP-CyD) was the complex that permitted the higher accumulation of FTZ in the lungs in comparison with the respective free form. The results also suggest that the inhalation chamber apparatus can effectively facilitate the evaluation of in vivo inhalation. The establishment of an animal model of asthma allows us to further study the therapeutic efficacy of the developed FTZ formulations. Full article
(This article belongs to the Special Issue Advances in Pulmonary Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Polymer Permeability and Solvent Removal Rate on In Situ Forming Implants: Drug Burst Release and Microstructure
Pharmaceutics 2019, 11(10), 520; https://doi.org/10.3390/pharmaceutics11100520 - 10 Oct 2019
Viewed by 156
Abstract
To explore the mechanism of drug release and depot formation of in situ forming implants (ISFIs), osthole-loaded ISFIs were prepared by dissolving polylactide, poly(lactide-co-glycolide), polycaprolactone, or poly(trimethylene carbonate) in different organic solvents, including N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), and triacetin [...] Read more.
To explore the mechanism of drug release and depot formation of in situ forming implants (ISFIs), osthole-loaded ISFIs were prepared by dissolving polylactide, poly(lactide-co-glycolide), polycaprolactone, or poly(trimethylene carbonate) in different organic solvents, including N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), and triacetin (TA). Drug release, polymer degradation, solvent removal rate and depot microstructure were examined. The burst release effect could be reduced by using solvents exhibit slow forming phase inversion and less permeable polymers. Both the drug burst release and polymer depot microstructure were closely related to the removal rate of organic solvent. Polymers with higher permeability often displayed faster drug and solvent diffusion rates. Due to high polymer-solvent affinity, some of the organic solvent remained in the depot even after the implant was completely formed. The residual of organic solvent could be predicted by solubility parameters. The ISFI showed a lower initial release in vivo than that in vitro. In summary, the effects of different polymers and solvents on drug release and depot formation in ISFI systems were extensively investigated and discussed in this article. The two main factors, polymer permeability and solvent removal rate, were involved in different stages of drug release and depot formation in ISFI systems. Full article
Show Figures

Graphical abstract

Open AccessArticle
Improved Understanding of the High Shear Wet Granulation Process under the Paradigm of Quality by Design Using Salvia miltiorrhiza Granules
Pharmaceutics 2019, 11(10), 519; https://doi.org/10.3390/pharmaceutics11100519 - 09 Oct 2019
Viewed by 205
Abstract
Background: High shear wet granulation (HSWG) is a shaping process for granulation that has been enhanced for application in the pharmaceutical industry. However, study of HSWG is complex and challenging due to the relatively poor understanding of HSWG, especially for sticky powder-like herbal [...] Read more.
Background: High shear wet granulation (HSWG) is a shaping process for granulation that has been enhanced for application in the pharmaceutical industry. However, study of HSWG is complex and challenging due to the relatively poor understanding of HSWG, especially for sticky powder-like herbal extracts. Aim: In this study, we used Salvia miltiorrhiza granules to investigate the HSWG process across different scales using quality by design (QbD) approaches. Methods: A Plackett–Burman experimental design was used to screen nine granulation factors in the HSWG process. Moreover, a quadratic polynomial regression model was established based on a Box–Behnken experimental design to optimize the granulation factors. In addition, the scale-up of HSWG was implemented based on a nucleation regime map approach. Results: According to the Plackett–Burman experimental design, it was found that three granulation factors, including salvia ratio, binder amount, and chopper speed, significantly affected the granule size (D50) of S. miltiorrhiza in HSWG. Furthermore, the results of the Box–Behnken experimental design and validation experiment showed that the model successfully captured the quadratic polynomial relationship between granule size and the two granulation factors of salvia ratio and binder amount. At the same experiment points, granules at all scales had similar size distribution, surface morphology, and flow properties. Conclusions: These results demonstrated that rational design, screening, optimization, and scale-up of HSWG are feasible using QbD approaches. This study provides a better understanding of HSWG process under the paradigm of QbD using S. miltiorrhiza granules. Full article
(This article belongs to the Special Issue Powder Processing in Pharmaceutical Applications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop