Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Multiomics Identification of Potential Targets for Alzheimer Disease and Antrocin as a Therapeutic Candidate
Pharmaceutics 2021, 13(10), 1555; https://doi.org/10.3390/pharmaceutics13101555 - 24 Sep 2021
Cited by 7 | Viewed by 1386
Abstract
Alzheimer’s disease (AD) is the most frequent cause of neurodegenerative dementia and affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of the [...] Read more.
Alzheimer’s disease (AD) is the most frequent cause of neurodegenerative dementia and affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of the development and progression of dementia remain poorly understood. Therefore, identifying essential genes and molecular pathways that are associated with this disease’s pathogenesis will help uncover potential treatments. In an attempt to achieve a more comprehensive understanding of the molecular pathogenesis of AD, we integrated the differentially expressed genes (DEGs) from six microarray datasets of AD patients and controls. We identified ATPase H+ transporting V1 subunit A (ATP6V1A), BCL2 interacting protein 3 (BNIP3), calmodulin-dependent protein kinase IV (CAMK4), TOR signaling pathway regulator-like (TIPRL), and the translocase of outer mitochondrial membrane 70 (TOMM70) as upregulated DEGs common to the five datasets. Our analyses revealed that these genes exhibited brain-specific gene co-expression clustering with OPA1, ITFG1, OXCT1, ATP2A2, MAPK1, CDK14, MAP2K4, YWHAB, PARK2, CMAS, HSPA12A, and RGS17. Taking the mean relative expression levels of this geneset in different brain regions into account, we found that the frontal cortex (BA9) exhibited significantly (p < 0.05) higher expression levels of these DEGs, while the hippocampus exhibited the lowest levels. These DEGs are associated with mitochondrial dysfunction, inflammation processes, and various pathways involved in the pathogenesis of AD. Finally, our blood–brain barrier (BBB) predictions using the support vector machine (SVM) and LiCABEDS algorithm and molecular docking analysis suggested that antrocin is permeable to the BBB and exhibits robust ligand–receptor interactions with high binding affinities to CAMK4, TOMM70, and T1PRL. Our results also revealed good predictions for ADMET properties, drug-likeness, adherence to Lipinskís rules, and no alerts for pan-assay interference compounds (PAINS) Conclusions: These results suggest a new molecular signature for AD parthenogenesis and antrocin as a potential therapeutic agent. Further investigation is warranted. Full article
(This article belongs to the Special Issue In Silico Pharmacology for Evidence-Based and Precision Medicine)
Show Figures

Figure 1

Article
Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections
Pharmaceutics 2021, 13(7), 1090; https://doi.org/10.3390/pharmaceutics13071090 - 16 Jul 2021
Cited by 7 | Viewed by 1200
Abstract
Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In [...] Read more.
Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ. This represents an ideal solution for the eradication or prevention of infection, while simultaneously repairing bone defects. Vancomycin hydrochloride and gentamicin sulfate, here considered for testing, were loaded into a previously developed and largely investigated hybrid bone-mimetic scaffold made of collagen fibers biomineralized with magnesium doped-hydroxyapatite (MgHA/Coll), which in the last ten years has widely demonstrated its effective potential in bone tissue regeneration. Here, we have explored whether it can be used as a controlled local delivery system for antibiotic drugs. An easy loading method was selected in order to be reproducible, quickly, in the operating room. The maintenance of the antibacterial efficiency of the released drugs and the biosafety of medicated scaffolds were assessed with microbiological and in vitro tests, which demonstrated that the MgHA/Coll scaffolds were safe and effective as a local delivery system for an extended duration therapy—promising results for the prevention of bone defect-related infections in orthopedic surgeries. Full article
(This article belongs to the Special Issue Additive Manufacturing Approaches to Produce Drug Delivery Systems)
Show Figures

Graphical abstract

Article
Dexamethasone-Loaded Nanostructured Lipid Carriers for the Treatment of Dry Eye Disease
Pharmaceutics 2021, 13(6), 905; https://doi.org/10.3390/pharmaceutics13060905 - 18 Jun 2021
Cited by 8 | Viewed by 2026
Abstract
Dry eye disease (DED) or keratoconjunctivitis sicca is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction. Symptoms include dryness, irritation, discomfort and visual disturbance, and standard treatment includes the use of lubricants and topical steroids. Secondary inflammation plays [...] Read more.
Dry eye disease (DED) or keratoconjunctivitis sicca is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction. Symptoms include dryness, irritation, discomfort and visual disturbance, and standard treatment includes the use of lubricants and topical steroids. Secondary inflammation plays a prominent role in the development and propagation of this debilitating condition. To address this we have investigated the pilot scale development of an innovative drug delivery system using a dexamethasone-encapsulated cholesterol-Labrafac™ lipophile nanostructured lipid carrier (NLC)-based ophthalmic formulation, which could be developed as an eye drop to treat DED and any associated acute exacerbations. After rapid screening of a range of laboratory scale pre-formulations, the chosen formulation was prepared at pilot scale with a particle size of 19.51 ± 0.5 nm, an encapsulation efficiency of 99.6 ± 0.5%, a PDI of 0.08, and an extended stability of 6 months at 4 °C. This potential ophthalmic formulation was observed to have high tolerability and internalization capacity for human corneal epithelial cells, with similar behavior demonstrated on ex vivo porcine cornea studies, suggesting suitable distribution on the ocular surface. Further, ELISA was used to study the impact of the pilot scale formulation on a range of inflammatory biomarkers. The most successful dexamethasone-loaded NLC showed a 5-fold reduction of TNF-α production over dexamethasone solution alone, with comparable results for MMP-9 and IL-6. The ease of formulation, scalability, performance and biomarker assays suggest that this NLC formulation could be a viable option for the topical treatment of DED. Full article
(This article belongs to the Special Issue Recent Advances in Ophthalmic Drug Delivery)
Show Figures

Figure 1

Article
Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery
Pharmaceutics 2021, 13(5), 613; https://doi.org/10.3390/pharmaceutics13050613 - 23 Apr 2021
Cited by 8 | Viewed by 1551
Abstract
This study investigates the usage of electrohydrodynamic (EHD)-3D printing for the fabrication of bacterial cellulose (BC)/polycaprolactone (PCL) patches loaded with different antibiotics (amoxicillin (AMX), ampicillin (AMP), and kanamycin (KAN)) for transdermal delivery. The composite patches demonstrated facilitated drug loading and encapsulation efficiency of [...] Read more.
This study investigates the usage of electrohydrodynamic (EHD)-3D printing for the fabrication of bacterial cellulose (BC)/polycaprolactone (PCL) patches loaded with different antibiotics (amoxicillin (AMX), ampicillin (AMP), and kanamycin (KAN)) for transdermal delivery. The composite patches demonstrated facilitated drug loading and encapsulation efficiency of drugs along with extended drug release profiles. Release curves were also subjected to model fitting, and it was found that drug release was optimally adapted to the Higuchi square root model for each drug. They performed a time-dependent and diffusion-controlled release from the patches and followed Fick’s diffusion law by the Korsmeyer–Peppas energy law equation. Moreover, produced patches demonstrated excellent antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains, so they could be helpful in the treatment of chronic infectious lesions during wound closures. As different tests have confirmed, various types of antibiotics could be loaded and successfully released regardless of their types from produced BC/PCL patches. This study could breathe life into the production of antibiotic patches for local transdermal applications in wound dressing studies and improve the quality of life of patients. Full article
(This article belongs to the Special Issue Pharmaceutical Formulations with Antimicrobial Properties)
Show Figures

Graphical abstract

Article
Atorvastatin-Eluting Contact Lenses: Effects of Molecular Imprinting and Sterilization on Drug Loading and Release
Pharmaceutics 2021, 13(5), 606; https://doi.org/10.3390/pharmaceutics13050606 - 22 Apr 2021
Cited by 9 | Viewed by 1825
Abstract
Statins are receiving increasing attention in the ophthalmic field. Their activity as 3-hydroxy-3-methylglutaryl–CoA (HMG–CoA) reductase inhibitors is clinically used to regulate cholesterol levels and leads to pleiotropic effects, which may help in the management of diabetes-related ocular pathologies. This work aims to design [...] Read more.
Statins are receiving increasing attention in the ophthalmic field. Their activity as 3-hydroxy-3-methylglutaryl–CoA (HMG–CoA) reductase inhibitors is clinically used to regulate cholesterol levels and leads to pleiotropic effects, which may help in the management of diabetes-related ocular pathologies. This work aims to design bioinspired contact lenses (CLs) with an affinity for atorvastatin by mimicking the active site of HMG–CoA reductase. Sets of imprinted and nonimprinted 2-hydroxyethyl methacrylate (HEMA) hydrogels were synthesized, varying the contents in functional monomers that bear chemical groups that resemble those present in HMG–CoA reductase, namely, ethylene glycol phenyl ether methacrylate (EGPEM), 2-aminoethyl methacrylate hydrochloride (AEMA), and N-(3-aminopropyl) methacrylamide hydrochloride (APMA). The hydrogels were characterized in terms of suitability as CLs (solvent uptake, light transmission, mechanical properties, and biocompatibility) and capability to load and release atorvastatin. Three sterilization protocols (steam heat, gamma radiation, and high hydrostatic pressure) were implemented and their effects on hydrogel properties were evaluated. Copolymerization of AEMA and, particularly, APMA endowed the hydrogels with a high affinity for atorvastatin (up to 11 mg/g; KN/W > 200). Only high hydrostatic pressure sterilization preserved atorvastatin stability and hydrogel performance. Permeability studies through the porcine cornea and sclera tissues revealed that the amount of atorvastatin accumulated in the cornea and sclera could be effective to treat ocular surface diseases. Full article
(This article belongs to the Special Issue Innovative Technologies to Treat Diseases of the Back of the Eye)
Show Figures

Graphical abstract

Article
Hybrid 3D Printing of Advanced Hydrogel-Based Wound Dressings with Tailorable Properties
Pharmaceutics 2021, 13(4), 564; https://doi.org/10.3390/pharmaceutics13040564 - 16 Apr 2021
Cited by 13 | Viewed by 1695
Abstract
Despite the extensive utilization of polysaccharide hydrogels in regenerative medicine, current fabrication methods fail to produce mechanically stable scaffolds using only hydrogels. The recently developed hybrid extrusion-based bioprinting process promises to resolve these current issues by facilitating the simultaneous printing of stiff thermoplastic [...] Read more.
Despite the extensive utilization of polysaccharide hydrogels in regenerative medicine, current fabrication methods fail to produce mechanically stable scaffolds using only hydrogels. The recently developed hybrid extrusion-based bioprinting process promises to resolve these current issues by facilitating the simultaneous printing of stiff thermoplastic polymers and softer hydrogels at different temperatures. Using layer-by-layer deposition, mechanically advantageous scaffolds can be produced by integrating the softer hydrogel matrix into a stiffer synthetic framework. This work demonstrates the fabrication of hybrid hydrogel-thermoplastic polymer scaffolds with tunable structural and chemical properties for applications in tissue engineering and regenerative medicine. Through an alternating deposition of polycaprolactone and alginate/carboxymethylcellulose gel strands, scaffolds with the desired architecture (e.g., filament thickness, pore size, macro-/microporosity), and rheological characteristics (e.g., swelling capacity, degradation rate, and wettability) were prepared. The hybrid fabrication approach allows the fine-tuning of wettability (approx. 50–75°), swelling (approx. 0–20× increased mass), degradability (approx. 2–30+ days), and mechanical strength (approx. 0.2–11 MPa) in the range between pure hydrogels and pure thermoplastic polymers, while providing a gradient of surface properties and good biocompatibility. The controlled degradability and permeability of the hydrogel component may also enable controlled drug delivery. Our work shows that the novel hybrid hydrogel-thermoplastic scaffolds with adjustable characteristics have immense potential for tissue engineering and can serve as templates for developing novel wound dressings. Full article
Show Figures

Graphical abstract

Article
Nasal Powder Formulations: In-Vitro Characterisation of the Impact of Powders on Nasal Residence Time and Sensory Effects
Pharmaceutics 2021, 13(3), 385; https://doi.org/10.3390/pharmaceutics13030385 - 13 Mar 2021
Cited by 13 | Viewed by 1185
Abstract
Nasal drug delivery is still primarily associated with locally-effective drugs, but next-generation products utilising the benefits of nasal administration—such as easy access to a relatively permeable mucosa, the presence of immunocompetent cells, and a direct route to the brain—are under investigation. Nasal powders [...] Read more.
Nasal drug delivery is still primarily associated with locally-effective drugs, but next-generation products utilising the benefits of nasal administration—such as easy access to a relatively permeable mucosa, the presence of immunocompetent cells, and a direct route to the brain—are under investigation. Nasal powders offer the potential to improve the drugs’ effects by providing higher resistance against the mucociliary clearance, and thus prolonging the contact time of the drug with its target site. However, suitable and easy-to-use in-vitro setups tailored to the characterisation of this effect are missing. In this study, a selection of excipients for powder formulations were used to evaluate the applicability of different methods which investigate the influence on the contact time. The combination of the assessment of rheological properties, dynamic vapour sorption, and adhesiveness on agar–mucin plates was found to be a valuable predictive tool. For the additional assessment of the sensations associated with the close contact of powders and the mucosa, a slug mucosal irritation assay was conducted and adapted to powders. These methods are regarded as being especially useful for comparative screenings in early formulation development. Full article
Show Figures

Graphical abstract

Article
Cyclosporine Lipid Nanocapsules as Thermoresponsive Gel for Dry Eye Management: Promising Corneal Mucoadhesion, Biodistribution and Preclinical Efficacy in Rabbits
Pharmaceutics 2021, 13(3), 360; https://doi.org/10.3390/pharmaceutics13030360 - 09 Mar 2021
Cited by 13 | Viewed by 1342
Abstract
An ophthalmic cyclosporine (CsA) formulation based on Lipid nanocapsules (LNC) was developed for dry eye management, aiming to provide targeting to ocular tissues with long-term drug levels and maximum tolerability. CsA-LNC were of small particle size (41.9 ± 4.0 nm), narrow size distribution [...] Read more.
An ophthalmic cyclosporine (CsA) formulation based on Lipid nanocapsules (LNC) was developed for dry eye management, aiming to provide targeting to ocular tissues with long-term drug levels and maximum tolerability. CsA-LNC were of small particle size (41.9 ± 4.0 nm), narrow size distribution (PdI ≤ 0.1), and high entrapment efficiency (above 98%). Chitosan (C) was added to impart positive charge. CsA-LNC were prepared as in-situ gels using poloxamer 407 (P). Ex vivo mucoadhesive strength was evaluated using bovine cornea, while in vivo corneal biodistribution (using fluorescent DiI), efficacy in dry eye using Schirmer tear test (STT), and ocular irritation using Draize test were studied in rabbits compared to marketed ophthalmic CsA nanoemulsion (CsA-NE) and CsA in castor oil. LNC incorporation in in-situ gels resulted in an increase in mucoadhesion, and stronger fluorescence in corneal layers seen by confocal microscopy, compared to the other tested formulations. Rate of recovery (days required to restore corneal baseline hydration level) assessed over 10 days, showed that CsA-LNC formulations produced complete recovery by day 7 comparable to CsA-NE. No Ocular irritation was observed by visual and histopathological examination. Based on data generated, CsA-LNC-CP in-situ gel proved to be a promising effective nonirritant CsA ophthalmic formulation for dry eye management. Full article
(This article belongs to the Special Issue Lipid-based Nanoparticle Systems for Drug Delivery)
Show Figures

Graphical abstract

Article
Development of Cephradine-Loaded Gelatin/Polyvinyl Alcohol Electrospun Nanofibers for Effective Diabetic Wound Healing: In-Vitro and In-Vivo Assessments
Pharmaceutics 2021, 13(3), 349; https://doi.org/10.3390/pharmaceutics13030349 - 07 Mar 2021
Cited by 18 | Viewed by 1423
Abstract
Diabetic wound infections caused by conventional antibiotic-resistant Staphylococcus aureus strains are fast emerging, leading to life-threatening situations (e.g., high costs, morbidity, and mortality) associated with delayed healing and chronic inflammation. Electrospinning is one of the most widely used techniques for the fabrication of [...] Read more.
Diabetic wound infections caused by conventional antibiotic-resistant Staphylococcus aureus strains are fast emerging, leading to life-threatening situations (e.g., high costs, morbidity, and mortality) associated with delayed healing and chronic inflammation. Electrospinning is one of the most widely used techniques for the fabrication of nanofibers (NFs), induced by a high voltage applied to a drug-loaded polymer solution. Particular attention is given to electrospun NFs for pharmaceutical applications (e.g., original drug delivery systems) and tissue regeneration (e.g., as tissue scaffolds). However, there is a paucity of reports related to their application in diabetic wound infections. Therefore, we prepared eco-friendly, biodegradable, low-immunogenic, and biocompatible gelatin (GEL)/polyvinyl alcohol (PVA) electrospun NFs (BNFs), in which we loaded the broad-spectrum antibiotic cephradine (Ceph). The resulting drug-loaded NFs (LNFs) were characterized physically using ultraviolet-visible (UV-Vis) spectrophotometry (for drug loading capacity (LC), drug encapsulation efficiency (EE), and drug release kinetics determination), thermogravimetric analysis (TGA) (for thermostability evaluation), scanning electron microscopy (SEM) (for surface morphology analysis), and Fourier-transform infrared spectroscopy (FTIR) (for functional group identification). LNFs were further characterized biologically by in-vitro assessment of their potency against S. aureus clinical strains (N = 16) using the Kirby–Bauer test and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, by ex-vivo assessment to evaluate their cytotoxicity against primary human epidermal keratinocytes using MTT assay, and by in-vivo assessment to estimate their diabetic chronic wound-healing efficiency using NcZ10 diabetic/obese mice (N = 18). Thin and uniform NFs with a smooth surface and standard size (<400 nm) were observed by SEM at the optimized 5:5 (GEL:PVA) volumetric ratio. FTIR analyses confirmed the drug loading into BNFs. Compared to free Ceph, LNFs were significantly more thermostable and exhibited sustained/controlled Ceph release. LNFs also exerted a significantly stronger antibacterial activity both in-vitro and in-vivo. LNFs were significantly safer and more efficient for bacterial clearance-induced faster chronic wound healing. LNF-based therapy could be employed as a valuable dressing material to heal S. aureus-induced chronic wounds in diabetic subjects. Full article
(This article belongs to the Special Issue Local Antibacterial and Antimicrobial Drug Delivery Systems)
Show Figures

Graphical abstract

Article
Mechanistic Insights into Side Effects of Troglitazone and Rosiglitazone Using a Novel Inverse Molecular Docking Protocol
Pharmaceutics 2021, 13(3), 315; https://doi.org/10.3390/pharmaceutics13030315 - 28 Feb 2021
Cited by 11 | Viewed by 1130
Abstract
Thiazolidinediones form drugs that treat insulin resistance in type 2 diabetes mellitus. Troglitazone represents the first drug from this family, which was removed from use by the FDA due to its hepatotoxicity. As an alternative, rosiglitazone was developed, but it was under the [...] Read more.
Thiazolidinediones form drugs that treat insulin resistance in type 2 diabetes mellitus. Troglitazone represents the first drug from this family, which was removed from use by the FDA due to its hepatotoxicity. As an alternative, rosiglitazone was developed, but it was under the careful watch of FDA for a long time due to suspicion, that it causes cardiovascular diseases, such as heart failure and stroke. We applied a novel inverse molecular docking protocol to discern the potential protein targets of both drugs. Troglitazone and rosiglitazone were docked into predicted binding sites of >67,000 protein structures from the Protein Data Bank and examined. Several new potential protein targets with successfully docked troglitazone and rosiglitazone were identified. The focus was devoted to human proteins so that existing or new potential side effects could be explained or proposed. Certain targets of troglitazone such as 3-oxo-5-beta-steroid 4-dehydrogenase, neutrophil collagenase, stromelysin-1, and VLCAD were pinpointed, which could explain its hepatoxicity, with additional ones indicating that its application could lead to the treatment/development of cancer. Results for rosiglitazone discerned its interaction with members of the matrix metalloproteinase family, which could lead to cancer and neurodegenerative disorders. The concerning cardiovascular side effects of rosiglitazone could also be explained. We firmly believe that our results deepen the mechanistic understanding of the side effects of both drugs, and potentially with further development and research maybe even help to minimize them. On the other hand, the novel inverse molecular docking protocol on the other hand carries the potential to develop into a standard tool to predict possible cross-interactions of drug candidates potentially leading to adverse side effects. Full article
(This article belongs to the Special Issue Protein–Drug Interaction)
Show Figures

Figure 1

Article
Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin
Pharmaceutics 2021, 13(3), 304; https://doi.org/10.3390/pharmaceutics13030304 - 26 Feb 2021
Cited by 10 | Viewed by 971
Abstract
Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles based on natural polymers represent valuable tools to achieve this aim. The ability to respond to environmental signals from the pathological site (e.g., altered redox potential), together with [...] Read more.
Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles based on natural polymers represent valuable tools to achieve this aim. The ability to respond to environmental signals from the pathological site (e.g., altered redox potential), together with the specific interaction with membrane receptors overexpressed on cancer cells membrane (e.g., CD44 receptors), represent the main features of actively targeted nanoparticles. In this work, redox-responsive micelle-like nanoparticles were prepared by self-assembling of a hyaluronic acid–human serum albumin conjugate containing cystamine moieties acting as a functional spacer. The conjugation procedure consisted of a reductive amination step of hyaluronic acid followed by condensation with albumin. After self-assembling, nanoparticles with a mean size of 70 nm and able to be destabilized in reducing media were obtained. Doxorubicin-loaded nanoparticles modulated drug release rate in response to different redox conditions. Finally, the viability and uptake experiments on healthy (BALB-3T3) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a drug vector in cancer therapy. Full article
(This article belongs to the Special Issue Self-Assembling Smart Nanoparticles for Drug Delivery)
Show Figures

Figure 1

Article
Mucoadhesive Gelatin Buccal Films with Propranolol Hydrochloride: Evaluation of Mechanical, Mucoadhesive, and Biopharmaceutical Properties
Pharmaceutics 2021, 13(2), 273; https://doi.org/10.3390/pharmaceutics13020273 - 18 Feb 2021
Cited by 13 | Viewed by 1857
Abstract
This study processes and characterizes propranolol hydrochloride/gelatin mucoadhesive buccal films. Two types of gelatin are used: Gelatin from porcine skin, type A (GA), and gelatin from bovine skin (GB). The influence of gelatin type on mechanical, mucoadhesive, and biopharmaceutical characteristics of buccal films [...] Read more.
This study processes and characterizes propranolol hydrochloride/gelatin mucoadhesive buccal films. Two types of gelatin are used: Gelatin from porcine skin, type A (GA), and gelatin from bovine skin (GB). The influence of gelatin type on mechanical, mucoadhesive, and biopharmaceutical characteristics of buccal films is evaluated. Fourier-Transfer infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analysis show that GA with propranolol hydrochloride (PRH) in the film (GAP) formed a physical mixture, whereas GB with PRH (GBP) form a compound-complex. Results of mechanical testing (tensile test, hardness) revealed that GAP films exhibit higher elastic modulus, tensile strength, and hardness. A mucoahesion test shows that GBP has higher adhesion strength, while GAP shows higher work of adhesion. Both in vitro release study and in silico simulation indicated that processed films can provide effective drug transport through the buccal mucosa. In silico simulation shows improved bioavailability from buccal films, in comparison to the immediate-release tablets—indicating that the therapeutic drug dose can be markedly reduced. Full article
Show Figures

Graphical abstract

Article
Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport
Pharmaceutics 2021, 13(2), 267; https://doi.org/10.3390/pharmaceutics13020267 - 16 Feb 2021
Cited by 11 | Viewed by 979
Abstract
Genistein (GEN) is a soy-derived isoflavone that exhibits several biological effects, such as neuroprotective activity and the prevention of several types of cancer and cardiovascular disease. However, due to its poor water solubility and the extensive first-pass metabolism, the oral bioavailability of GEN [...] Read more.
Genistein (GEN) is a soy-derived isoflavone that exhibits several biological effects, such as neuroprotective activity and the prevention of several types of cancer and cardiovascular disease. However, due to its poor water solubility and the extensive first-pass metabolism, the oral bioavailability of GEN is limited. In this work, solid lipid nanoparticles (SLN) were developed to preferentially reach the intestinal lymphatic vessels, avoiding the first-pass metabolism of GEN. GEN-loaded SLN were obtained by a hot homogenization process, and the formulation parameters were chosen based on already formulated studies. The nanoparticles were characterized, and the preliminary in vitro chylomicron formation was evaluated. The cell uptake of selected nanocarriers was studied on the Caco-2 cell line and intestinal mucosa. The SLN, characterized by a spherical shape, showed an average diameter (about 280 nm) suitable for an intestinal lymphatic uptake, good stability during the testing time, and high drug loading capacity. Furthermore, the intestinal mucosa and Caco-2 cells were found to uptake SLN. The approximately two-fold increase in particle size suggested a possible interaction between SLN and the lipid components of chylomicrons like phospholipid; therefore, the results may support the potential for these SLN to improve oral GEN bioavailability via intestinal lymphatic absorption. Full article
(This article belongs to the Special Issue Mucoadhesive and Mucosal Drug Delivery Systems)
Show Figures

Graphical abstract

Article
Live Vaccinia Virus-Coated Microneedle Array Patches for Smallpox Vaccination and Stockpiling
Pharmaceutics 2021, 13(2), 209; https://doi.org/10.3390/pharmaceutics13020209 - 03 Feb 2021
Cited by 11 | Viewed by 1435
Abstract
Although smallpox has been eradicated globally, the potential use of the smallpox virus in bioterrorism indicates the importance of stockpiling smallpox vaccines. Considering the advantages of microneedle-based vaccination over conventional needle injections, in this study, we examined the feasibility of microneedle-based smallpox vaccination [...] Read more.
Although smallpox has been eradicated globally, the potential use of the smallpox virus in bioterrorism indicates the importance of stockpiling smallpox vaccines. Considering the advantages of microneedle-based vaccination over conventional needle injections, in this study, we examined the feasibility of microneedle-based smallpox vaccination as an alternative approach for stockpiling smallpox vaccines. We prepared polylactic acid (PLA) microneedle array patches by micromolding and loaded a second-generation smallpox vaccine on the microneedle tips via dip coating. We evaluated the effect of excipients and drying conditions on vaccine stability in vitro and examined immune responses in female BALB/c mice by measuring neutralizing antibodies and interferon (IFN)-γ-secreting cells. Approximately 40% of the virus titer was reduced during the vaccine-coating process, with or without excipients. At −20 °C, the smallpox vaccine coated on the microneedles was stable up to 6 months. Compared to natural evaporation, vacuum drying was more efficient in improving the smallpox vaccine stability. Microneedle-based vaccination of the mice elicited neutralizing antibodies beginning 3 weeks after immunization; the levels were maintained for 12 weeks. It significantly increased IFN-γ-secreting cells 12 weeks after priming, indicating the induction of cellular immune responses. The smallpox-vaccine-coated microneedles could serve as an alternative delivery system for vaccination and stockpiling. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Article
Eugenol-Containing Essential Oils Loaded onto Chitosan/Polyvinyl Alcohol Blended Films and Their Ability to Eradicate Staphylococcus aureus or Pseudomonas aeruginosa from Infected Microenvironments
Pharmaceutics 2021, 13(2), 195; https://doi.org/10.3390/pharmaceutics13020195 - 02 Feb 2021
Cited by 17 | Viewed by 1290
Abstract
Chronic wounds (CW) create numerous entryways for pathogen invasion and prosperity, further damaging host tissue and hindering its remodeling and repair. Essential oils (EOs) exert quick and efficient antimicrobial (AM) action, unlikely to induce bacterial resistance. Cinnamon leaf and clove oils (CLO and [...] Read more.
Chronic wounds (CW) create numerous entryways for pathogen invasion and prosperity, further damaging host tissue and hindering its remodeling and repair. Essential oils (EOs) exert quick and efficient antimicrobial (AM) action, unlikely to induce bacterial resistance. Cinnamon leaf and clove oils (CLO and CO) display strong AM activity, namely against Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan (CS) is a natural and biodegradable cationic polysaccharide, also widely known for its AM features. CS and poly (vinyl alcohol) (PVA) films were prepared (ratio 30/70 w/w; 9 wt%) by the solvent casting and phase inversion method. The film’s thermal stability and chemical composition data reinforced polymer blending and EO entrapment. Films were supplemented with 1 and 10 wt% of EO in relation to total polymeric mass. The film thickness and degree of swelling (DS) tended to increase with EO content, particularly with 10 wt % CLO (* p < 0.05). UV-visible absorbance scans in the 250–320 cm−1 region confirmed the successful uptake of CLO and CO into CS/PVA films, particularly with films loaded with 10 wt% EO that contained 5.30/5.32 times more CLO/CO than films supplemented with 1 wt% EO. AM testing revealed that CS films alone were effective against both bacteria and capable of eradicating all P. aeruginosa within the hour (*** p < 0.001). Still, loaded CS/PVA films showed significantly improved AM traits in relation to unloaded films within 2 h of contact. This study is a first proof of concept that CLO and CO can be dispersed into CS/PVA films and show bactericidal effects, particularly against S. aureus, this way paving the way for efficient CW therapeutics. Full article
Show Figures

Figure 1

Article
Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study
Pharmaceutics 2021, 13(1), 97; https://doi.org/10.3390/pharmaceutics13010097 - 14 Jan 2021
Cited by 18 | Viewed by 2152
Abstract
We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation [...] Read more.
We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, Biopharmaceutics Classification System (BCS) class II, and a poor glass former with low bioavailability in vivo. Hot-melt extrusion is a high-throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP–VA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and dynamic light scattering (DLS). The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side-by-side diffusion test, these nanoparticles produced a four-fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability. Full article
(This article belongs to the Special Issue Hot-Melt Extrusion: Applications in Pharmaceutics)
Show Figures

Graphical abstract

Article
Cyclodextrin Diethyldithiocarbamate Copper II Inclusion Complexes: A Promising Chemotherapeutic Delivery System against Chemoresistant Triple Negative Breast Cancer Cell Lines
Pharmaceutics 2021, 13(1), 84; https://doi.org/10.3390/pharmaceutics13010084 - 10 Jan 2021
Cited by 9 | Viewed by 1637
Abstract
Diethyldithiocarbamate Copper II (DDC-Cu) has shown potent anticancer activity against a wide range of cancer cells, but further investigations are hindered by its practical insolubility in water. In this study, inclusion complexes of DDC-Cu with hydroxypropyl beta-cyclodextrin (HP) or sulfobutyl ether beta-cyclodextrin (SBE) [...] Read more.
Diethyldithiocarbamate Copper II (DDC-Cu) has shown potent anticancer activity against a wide range of cancer cells, but further investigations are hindered by its practical insolubility in water. In this study, inclusion complexes of DDC-Cu with hydroxypropyl beta-cyclodextrin (HP) or sulfobutyl ether beta-cyclodextrin (SBE) were prepared and investigated as an approach to enhance the apparent solubility of DDC-Cu. Formulations were prepared by simple mixing of DDC-Cu with both cyclodextrin (CDs) at room temperature. Phase solubility assessments of the resulting solutions were performed. DDC-Cu CD solutions were freeze-dried for further characterisations by DSC, thermogravimetric analysis (TGA) and FT-IR. Stability and cytotoxicity studies were also performed to investigate the maintenance of DDC-Cu anticancer activity. The phase solubility profile deviated positively from the linearity (Ap type) showing significant solubility enhancement of the DDC-Cu in both CD solutions (approximately 4 mg/mL at 20% w/w CD solutions). The DSC and TGA analysis confirmed the solid solution status of DDC-Cu in CD. The resulting solutions of DDC-Cu were stable for 28 days and conveyed the anticancer activity of DDC-Cu on chemoresistant triple negative breast cancer cell lines, with IC50 values less than 200 nM. Overall, cyclodextrin DDC-Cu complexes offer a great potential for anticancer applications, as evidenced by their very positive effects against chemoresistant triple negative breast cancer cells. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

Article
Aerosolized Niosome Formulation Containing Gemcitabine and Cisplatin for Lung Cancer Treatment: Optimization, Characterization and In Vitro Evaluation
Pharmaceutics 2021, 13(1), 59; https://doi.org/10.3390/pharmaceutics13010059 - 05 Jan 2021
Cited by 13 | Viewed by 1374
Abstract
Gemcitabine (Gem) and cisplatin (Cis) are currently being used for lung cancer treatment, but they are highly toxic in high dosages. This research aimed to develop a niosome formulation containing a low-dosage Gem and Cis (NGC), as an alternative formulation for lung cancer [...] Read more.
Gemcitabine (Gem) and cisplatin (Cis) are currently being used for lung cancer treatment, but they are highly toxic in high dosages. This research aimed to develop a niosome formulation containing a low-dosage Gem and Cis (NGC), as an alternative formulation for lung cancer treatment. NGC was prepared using a very simple heating method and was further optimized by D-optimal mixture design. The optimum NGC formulation with particle size, polydispersity index (PDI), and zeta potential of 166.45 nm, 0.16, and −15.28 mV, respectively, was obtained and remained stable at 27 °C with no phase separation for up to 90 days. The aerosol output was 96.22%, which indicates its suitability as aerosolized formulation. An in vitro drug release study using the dialysis bag diffusion technique showed controlled release for both drugs up to 24 h penetration. A cytotoxicity study against normal lung (MRC5) and lung cancer (A549) cell lines was investigated. The results showed that the optimized NGC had reduced cytotoxicity effects against both MRC5 and A549 when compared with the control (Gem + Cis alone) from very toxic (IC50 < 1.56 µg/mL) to weakly toxic (IC50 280.00 µg/mL) and moderately toxic (IC50 = 46.00 µg/mL), respectively, after 72 h of treatment. These findings revealed that the optimized NGC has excellent potential and is a promising prospect in aerosolized delivery systems to treat lung cancer that warrants further investigation. Full article
(This article belongs to the Special Issue Controlled Delivery Formulations)
Show Figures

Figure 1

Article
Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics
Pharmaceutics 2020, 12(11), 1095; https://doi.org/10.3390/pharmaceutics12111095 - 15 Nov 2020
Cited by 56 | Viewed by 6837
Abstract
In the recent of years, the use of lipid nanoparticles (LNPs) for RNA delivery has gained considerable attention, with a large number in the clinical pipeline as vaccine candidates or to treat a wide range of diseases. Microfluidics offers considerable advantages for their [...] Read more.
In the recent of years, the use of lipid nanoparticles (LNPs) for RNA delivery has gained considerable attention, with a large number in the clinical pipeline as vaccine candidates or to treat a wide range of diseases. Microfluidics offers considerable advantages for their manufacture due to its scalability, reproducibility and fast preparation. Thus, in this study, we have evaluated operating and formulation parameters to be considered when developing LNPs. Among them, the flow rate ratio (FRR) and the total flow rate (TFR) have been shown to significantly influence the physicochemical characteristics of the produced particles. In particular, increasing the TFR or increasing the FRR decreased the particle size. The amino lipid choice (cationic—DOTAP and DDAB; ionisable—MC3), buffer choice (citrate buffer pH 6 or TRIS pH 7.4) and type of nucleic acid payload (PolyA, ssDNA or mRNA) have also been shown to have an impact on the characteristics of these LNPs. LNPs were shown to have a high (>90%) loading in all cases and were below 100 nm with a low polydispersity index (≤0.25). The results within this paper could be used as a guide for the development and scalable manufacture of LNP systems using microfluidics. Full article
Show Figures

Graphical abstract

Article
Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing
Pharmaceutics 2020, 12(11), 1002; https://doi.org/10.3390/pharmaceutics12111002 - 22 Oct 2020
Cited by 43 | Viewed by 2957
Abstract
Remdesivir exhibits in vitro activity against SARS-CoV-2 and was granted approval for emergency use. To maximize delivery to the lungs, we formulated remdesivir as a dry powder for inhalation using thin film freezing (TFF). TFF produces brittle matrix nanostructured aggregates that are sheared [...] Read more.
Remdesivir exhibits in vitro activity against SARS-CoV-2 and was granted approval for emergency use. To maximize delivery to the lungs, we formulated remdesivir as a dry powder for inhalation using thin film freezing (TFF). TFF produces brittle matrix nanostructured aggregates that are sheared into respirable low-density microparticles upon aerosolization from a passive dry powder inhaler. In vitro aerodynamic testing demonstrated that drug loading and excipient type affected the aerosol performance of remdesivir. Remdesivir combined with optimal excipients exhibited desirable aerosol performance (up to 93.0% FPF< 5 µm; 0.82 µm mass median aerodynamic diameter). Remdesivir was amorphous after the TFF process, which benefitted drug dissolution in simulated lung fluid. TFF remdesivir formulations are stable after one month of storage at 25 °C/60% relative humidity. An in vivo pharmacokinetic evaluation showed that TFF remdesivir–leucine was poorly absorbed into systemic circulation while TFF remdesivir-Captisol® demonstrated increased systemic uptake compared to leucine. Remdesivir was hydrolyzed to the nucleoside analog GS-441524 in the lung, and levels of GS-441524 were greater in the lung with leucine formulation compared to Captisol®. In conclusion, TFF technology produces high-potency remdesivir dry powder formulations for inhalation that are suitable to treat patients with COVID-19 on an outpatient basis and earlier in the disease course where effective antiviral therapy can reduce related morbidity and mortality. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

Article
Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships
Pharmaceutics 2020, 12(5), 419; https://doi.org/10.3390/pharmaceutics12050419 - 02 May 2020
Cited by 40 | Viewed by 2495
Abstract
Plant-derived phenolic acids (PAs) are small molecules with antimicrobial, antioxidant, anti-inflammatory, and pro-coagulant properties. Their chemistry enables facile potential incorporation into biomaterial scaffolds to provide naturally-derived functionalities that could improve healing outcomes. While PAs have been previously characterized, their structure-property relationships in terms [...] Read more.
Plant-derived phenolic acids (PAs) are small molecules with antimicrobial, antioxidant, anti-inflammatory, and pro-coagulant properties. Their chemistry enables facile potential incorporation into biomaterial scaffolds to provide naturally-derived functionalities that could improve healing outcomes. While PAs have been previously characterized, their structure-property relationships in terms of antioxidant and antimicrobial properties are not well-understood, particularly in the context of their use in medical applications. To that end, a library of PAs with varied pendant groups was characterized here. It was found that increasing the number of radical-scavenging hydroxyl and methoxy groups on PAs increased antioxidant properties. All PAs showed some antimicrobial activity against the selected bacteria strains (Escherichia coli, Staphylococcus epidermidis (native and drug-resistant), and Staphylococcus aureus (native and drug-resistant)) at concentrations that are feasible for incorporation into polymeric biomaterials. In general, a trend of slightly decreased antimicrobial efficacy with increased number of pendant hydroxyl and methoxy groups was observed. The carboxylic acid group of a selection of PAs was modified with a polyurethane monomer analog. Modification did not greatly affect antioxidant or antimicrobial properties in comparison to unmodified controls, indicating that the carboxylic acid group of PAs can be altered without losing functionality. These results could be utilized for rational selection of phenolic moieties for use as therapeutics on their own or as part of a biomaterial scaffold with desired healing outcomes. Full article
Show Figures

Figure 1

Review

Review
Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview
Pharmaceutics 2021, 13(11), 1779; https://doi.org/10.3390/pharmaceutics13111779 - 26 Oct 2021
Cited by 13 | Viewed by 1491
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between [...] Read more.
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders. Full article
(This article belongs to the Special Issue Biological Barriers in Health and Disease)
Show Figures

Figure 1

Review
Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery
Pharmaceutics 2021, 13(10), 1686; https://doi.org/10.3390/pharmaceutics13101686 - 14 Oct 2021
Cited by 17 | Viewed by 1309
Abstract
The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the [...] Read more.
The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the various physical and chemical properties of chitosan that affect its performance in biological systems. We aim to analyze recent research studying interactions of chitosan nanoparticles (NPs) upon their cellular uptake and their journey through the various compartments of the cell. The positive charge of chitosan enables it to efficiently attach to cells, increasing the probability of cellular uptake. Chitosan NPs are taken up by cells via different pathways and escape endosomal degradation due to the proton sponge effect. Furthermore, we have reviewed the interaction of chitosan NPs upon in vivo administration. Chitosan NPs are immediately surrounded by a serum protein corona in systemic circulation upon intravenous administration, and their biodistribution is mainly to the liver and spleen indicating RES uptake. However, the evasion of RES system as well as the targeting ability and bioavailability of chitosan NPs can be improved by utilizing specific routes of administration and covalent modifications of surface properties. Ongoing clinical trials of chitosan formulations for therapeutic applications are paving the way for the introduction of chitosan into the pharmaceutical market and for their toxicological evaluation. Chitosan provides specific biophysical properties for effective and tunable cellular uptake and systemic delivery for a wide range of applications. Full article
(This article belongs to the Special Issue Chitosan Nanoparticles in Drug Delivery)
Show Figures

Figure 1

Review
Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications
Pharmaceutics 2021, 13(10), 1642; https://doi.org/10.3390/pharmaceutics13101642 - 09 Oct 2021
Cited by 15 | Viewed by 1471
Abstract
Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. Properties such as shape, size, morphology, and ionic substitution can be tailored through the use of different synthesis techniques and compounds. Regardless of [...] Read more.
Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. Properties such as shape, size, morphology, and ionic substitution can be tailored through the use of different synthesis techniques and compounds. Regardless of the ability to determine its physicochemical properties, a conclusion for the correlation with the biological response it is yet to be found. Hence, a special focus on the most desirable properties for an appropriate biological response needs to be addressed. This review provides an overview of the fundamental properties of hydroxyapatite nanoparticles and the characterization of physicochemical properties involved in their biological response and role as a drug delivery system. A summary of the main chemical properties and applications of hydroxyapatite, the advantages of using nanoparticles, and the influence of shape, size, functional group, morphology, and crystalline phase in the biological response is presented. A special emphasis was placed on the analysis of chemical and physical interactions of the nanoparticles and the cargo, which was explained through the use of spectroscopic and physical techniques such as FTIR, Raman, XRD, SEM, DLS, and BET. We discuss the properties tailored for hydroxyapatite nanoparticles for a specific biomolecule based on the compilation of studies performed on proteins, peptides, drugs, and genetic material. Full article
(This article belongs to the Special Issue Tissue Engineered Biomaterials and Drug Delivery Systems)
Show Figures

Graphical abstract

Review
Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals
Pharmaceutics 2021, 13(9), 1475; https://doi.org/10.3390/pharmaceutics13091475 - 15 Sep 2021
Cited by 13 | Viewed by 1650
Abstract
The emergence of phytosome nanotechnology has a potential impact in the field of drug delivery and could revolutionize the current state of topical bioactive phytochemicals delivery. The main challenge facing the translation of the therapeutic activity of phytochemicals to a clinical setting is [...] Read more.
The emergence of phytosome nanotechnology has a potential impact in the field of drug delivery and could revolutionize the current state of topical bioactive phytochemicals delivery. The main challenge facing the translation of the therapeutic activity of phytochemicals to a clinical setting is the extremely low absorption rate and poor penetration across biological barriers (i.e., the skin). Phytosomes as lipid-based nanocarriers play a crucial function in the enhancement of pharmacokinetic and pharmacodynamic properties of herbal-originated polyphenolic compounds, and make this nanotechnology a promising tool for the development of new topical formulations. The implementation of this nanosized delivery system could enhance the penetration of phytochemicals across biological barriers due to their unique physiochemical characteristics, improving their bioavailability. In this review, we provide an outlook on the current knowledge of the biological barriers of phytoconstituents topical applications. The great potential of the emerging nanotechnology in the delivery of bioactive phytochemicals is reviewed, with particular focus on phytosomes as an innovative lipid-based nanocarrier. Additionally, we compared phytosomes with liposomes as the gold standard of lipid-based nanocarriers for the topical delivery of phytochemicals. Finally, the advantages of phytosomes in topical applications are discussed. Full article
Show Figures

Figure 1

Review
In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery
Pharmaceutics 2021, 13(7), 1079; https://doi.org/10.3390/pharmaceutics13071079 - 14 Jul 2021
Cited by 9 | Viewed by 1937
Abstract
The nasal cavity is an attractive route for both local and systemic drug delivery and holds great potential for access to the brain via the olfactory region, an area where the blood–brain barrier (BBB) is effectively absent. However, the olfactory region is located [...] Read more.
The nasal cavity is an attractive route for both local and systemic drug delivery and holds great potential for access to the brain via the olfactory region, an area where the blood–brain barrier (BBB) is effectively absent. However, the olfactory region is located at the roof of the nasal cavity and only represents ~5–7% of the epithelial surface area, presenting significant challenges for the deposition of drug molecules for nose to brain drug delivery (NTBDD). Aerosolized particles have the potential to be directed to the olfactory region, but their specific deposition within this area is confounded by a complex combination of factors, which include the properties of the formulation, the delivery device and how it is used, and differences in inter-patient physiology. In this review, an in-depth examination of these different factors is provided in relation to both in vitro and in vivo studies and how advances in the fabrication of nasal cast models and analysis of aerosol deposition can be utilized to predict in vivo outcomes more accurately. The challenges faced in assessing the nasal deposition of aerosolized particles within the paediatric population are specifically considered, representing an unmet need for nasal and NTBDD to treat CNS disorders. Full article
(This article belongs to the Special Issue Targeted Drug Delivery to the Brain)
Show Figures

Figure 1

Review
Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection
Pharmaceutics 2021, 13(7), 1077; https://doi.org/10.3390/pharmaceutics13071077 - 14 Jul 2021
Cited by 17 | Viewed by 2897
Abstract
Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention [...] Read more.
Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention (CDC) of the United States, COVID-19 virus is primarily transmitted between people through respiratory droplets and contact routes. Since the location of initial infection and disease progression is primarily through the lungs, the inhalation delivery of drugs directly to the lungs may be the most appropriate route of administration for treating COVID-19. This review article aims to present possible inhalation therapeutics and vaccines for the treatment of COVID-19 symptoms. This review covers the comparison between SARS-CoV-2 and other coronaviruses such as SARS-CoV/MERS, inhalation therapeutics for the treatment of COVID-19 symptoms, and vaccines for preventing infection, as well as the current clinical status of inhaled therapeutics and vaccines. Full article
Show Figures

Figure 1

Review
An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine
Pharmaceutics 2021, 13(7), 1067; https://doi.org/10.3390/pharmaceutics13071067 - 12 Jul 2021
Cited by 17 | Viewed by 2455
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances [...] Read more.
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications. Full article
Show Figures

Figure 1

Review
Clinical Advances of siRNA-Based Nanotherapeutics for Cancer Treatment
Pharmaceutics 2021, 13(7), 1009; https://doi.org/10.3390/pharmaceutics13071009 - 02 Jul 2021
Cited by 17 | Viewed by 1621
Abstract
Cancer is associated with single or multiple gene defects. Recently, much research has focused on incorporating genetic materials as one of the means to treat various types of carcinomas. RNA interference (RNAi) conveys an alternative genetic approach for cancer patients, especially when conventional [...] Read more.
Cancer is associated with single or multiple gene defects. Recently, much research has focused on incorporating genetic materials as one of the means to treat various types of carcinomas. RNA interference (RNAi) conveys an alternative genetic approach for cancer patients, especially when conventional medications fail. RNAi involves the inhibition of expression of specific messenger RNA that signals for uncontrollable cell growth and proliferation, most notably with carcinoma cells. This molecular technology is promising as genetic materials allow us to overcome issues associated with chemotherapeutic agents including organ damage associated with severe drug toxicities. Nonetheless, vast challenges impede successful gene therapy application, including low tumor localization, low stability and rapid clearance from the blood circulation. Owing to the limited treatment opportunities for the management of cancer, the development of effective siRNA carrier systems involving nanotherapeutics has been extensively explored. Over the past years, several siRNA nanotherapeutics have undergone a period of clinical investigation, with some demonstrating promising antitumor activities and safety profiles. Extensive observation of siRNA-nanoparticles is necessary to ensure commercial success. Therefore, this review mainly focuses on the progress of siRNAs-loaded nanoparticles that have undergone clinical trials for cancer treatment. The status of the siRNA nanotherapeutics is discussed, allowing comprehensive understanding of their gene-mediated therapeutics. Full article
(This article belongs to the Special Issue Non-viral Gene Delivery Systems (Volume II))
Show Figures

Figure 1

Review
The Insights of Microbes’ Roles in Wound Healing: A Comprehensive Review
Pharmaceutics 2021, 13(7), 981; https://doi.org/10.3390/pharmaceutics13070981 - 29 Jun 2021
Cited by 16 | Viewed by 2000
Abstract
A diverse range of normal flora populates the human skin and numbers are relatively different between individuals and parts of the skin. Humans and normal flora have formed a symbiotic relationship over a period of time. With numerous disease processes, the interaction between [...] Read more.
A diverse range of normal flora populates the human skin and numbers are relatively different between individuals and parts of the skin. Humans and normal flora have formed a symbiotic relationship over a period of time. With numerous disease processes, the interaction between the host and normal flora can be interrupted. Unlike normal wound healing, which is complex and crucial to sustaining the skin’s physical barrier, chronic wounds, especially in diabetes, are wounds that fail to heal in a timely manner. The conditions become favorable for microbes to colonize and establish infections within the skin. These include secretions of various kinds of molecules, substances or even trigger the immune system to attack other cells required for wound healing. Additionally, the healing process can be slowed down by prolonging the inflammatory phase and delaying the wound repair process, which causes further destruction to the tissue. Antibiotics and wound dressings become the targeted therapy to treat chronic wounds. Though healing rates are improved, prolonged usage of these treatments could become ineffective or microbes may become resistant to the treatments. Considering all these factors, more studies are needed to comprehensively elucidate the role of human skin normal flora at the cellular and molecular level in a chronic injury. This article will review wound healing physiology and discuss the role of normal flora in the skin and chronic wounds. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

Review
Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends
Pharmaceutics 2021, 13(7), 943; https://doi.org/10.3390/pharmaceutics13070943 - 24 Jun 2021
Cited by 26 | Viewed by 2664
Abstract
The use of magnetism in medicine has changed dramatically since its first application by the ancient Greeks in 624 BC. Now, by leveraging magnetic nanoparticles, investigators have developed a range of modern applications that use external magnetic fields to manipulate biological systems. Drug [...] Read more.
The use of magnetism in medicine has changed dramatically since its first application by the ancient Greeks in 624 BC. Now, by leveraging magnetic nanoparticles, investigators have developed a range of modern applications that use external magnetic fields to manipulate biological systems. Drug delivery systems that incorporate these particles can target therapeutics to specific tissues without the need for biological or chemical cues. Once precisely located within an organism, magnetic nanoparticles can be heated by oscillating magnetic fields, which results in localized inductive heating that can be used for thermal ablation or more subtle cellular manipulation. Biological imaging can also be improved using magnetic nanoparticles as contrast agents; several types of iron oxide nanoparticles are US Food and Drug Administration (FDA)-approved for use in magnetic resonance imaging (MRI) as contrast agents that can improve image resolution and information content. New imaging modalities, such as magnetic particle imaging (MPI), directly detect magnetic nanoparticles within organisms, allowing for background-free imaging of magnetic particle transport and collection. “Lab-on-a-chip” technology benefits from the increased control that magnetic nanoparticles provide over separation, leading to improved cellular separation. Magnetic separation is also becoming important in next-generation immunoassays, in which particles are used to both increase sensitivity and enable multiple analyte detection. More recently, the ability to manipulate material motion with external fields has been applied in magnetically actuated soft robotics that are designed for biomedical interventions. In this review article, the origins of these various areas are introduced, followed by a discussion of current clinical applications, as well as emerging trends in the study and application of these materials. Full article
(This article belongs to the Special Issue Advanced Nanoscience of Biomaterials for Biomedical Applications)
Show Figures

Figure 1

Review
Mesoporous Silica Particles as Drug Delivery Systems—The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes
Pharmaceutics 2021, 13(7), 950; https://doi.org/10.3390/pharmaceutics13070950 - 24 Jun 2021
Cited by 13 | Viewed by 1553
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. [...] Read more.
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field. Full article
(This article belongs to the Special Issue Particle Engineering for Drug Delivery Applications)
Show Figures

Figure 1

Review
Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The “Hopeful Eight”
Pharmaceutics 2021, 13(6), 906; https://doi.org/10.3390/pharmaceutics13060906 - 18 Jun 2021
Cited by 20 | Viewed by 3006
Abstract
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, [...] Read more.
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior, allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed. Full article
(This article belongs to the Special Issue Targeted Radionuclide Therapy)
Show Figures

Figure 1

Review
Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges
Pharmaceutics 2021, 13(6), 840; https://doi.org/10.3390/pharmaceutics13060840 - 07 Jun 2021
Cited by 13 | Viewed by 1690
Abstract
Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor [...] Read more.
Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of interaction between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles in effective cancer treatment. The major obstacles that are supposed to be addressed by employing lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also highlighted in the present review along with plausible countermeasures. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume II))
Show Figures

Figure 1

Review
Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines
Pharmaceutics 2021, 13(5), 644; https://doi.org/10.3390/pharmaceutics13050644 - 01 May 2021
Cited by 8 | Viewed by 1549
Abstract
Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic [...] Read more.
Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic acid delivery systems often results in fairly complex structures that are difficult to mass-produce and characterize. In recent years, minimalist approaches have emerged to reduce the number of components used in vaccines. In these approaches, delivery materials, such as lipids and polymers, and/or pDNA/mRNA are designed to simultaneously possess several functionalities of immunostimulatory adjuvants. Such multifunctional immunoadjuvants encode antigens, encapsulate nucleic acids, and control their pharmacokinetic or cellular fate. Herein, we review a diverse class of multifunctional immunoadjuvants in nucleic acid subunit vaccines and provide a detailed description of their mechanisms of adjuvanticity and induction of specific immune responses. Full article
Show Figures

Figure 1

Review
Challenges in the Physical Characterization of Lipid Nanoparticles
Pharmaceutics 2021, 13(4), 549; https://doi.org/10.3390/pharmaceutics13040549 - 14 Apr 2021
Cited by 15 | Viewed by 1542
Abstract
Nano-sized drug transporters have become an efficient approach with considerable commercial values. Nanomedicine is not only limited to drug delivery by means of different administration routes, such as intravenous, oral, transdermal, nasal, pulmonary, and more, but also has applications in a multitude of [...] Read more.
Nano-sized drug transporters have become an efficient approach with considerable commercial values. Nanomedicine is not only limited to drug delivery by means of different administration routes, such as intravenous, oral, transdermal, nasal, pulmonary, and more, but also has applications in a multitude of areas, such as a vaccine, antibacterial, diagnostics and imaging, and gene delivery. This review will focus on lipid nanosystems with a wide range of applications, taking into consideration their composition, properties, and physical parameters. However, designing suitable protocol for the physical evaluation of nanoparticles is still conflicting. The main obstacle is concerning the sensitivity, reproducibility, and reliability of the adopted methodology. Some important techniques are compared and discussed in this report. Particularly, a comparison between different techniques involved in (a) the morphologic characterization, such as Cryo-TEM, SEM, and X-ray; (b) the size measurement, such as dynamic light scattering, sedimentation field flow fractionation, and optical microscopy; and (c) surface properties, namely zeta potential measurement, is described. In addition, an amperometric tool in order to investigate antioxidant activity and the response of nanomaterials towards the skin membrane has been presented. Full article
(This article belongs to the Special Issue Advances in Characterization Methods for Drug Delivery Systems)
Show Figures

Figure 1

Review
Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine
Pharmaceutics 2021, 13(4), 498; https://doi.org/10.3390/pharmaceutics13040498 - 06 Apr 2021
Cited by 13 | Viewed by 1727
Abstract
Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry [...] Read more.
Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Drug Delivery Systems)
Show Figures

Figure 1

Review
3DP Printing of Oral Solid Formulations: A Systematic Review
Pharmaceutics 2021, 13(3), 358; https://doi.org/10.3390/pharmaceutics13030358 - 09 Mar 2021
Cited by 18 | Viewed by 1686
Abstract
Three-dimensional (3D) printing is a recent technology, which gives the possibility to manufacture personalised dosage forms and it has a broad range of applications. One of the most developed, it is the manufacture of oral solid dosage and the four 3DP techniques which [...] Read more.
Three-dimensional (3D) printing is a recent technology, which gives the possibility to manufacture personalised dosage forms and it has a broad range of applications. One of the most developed, it is the manufacture of oral solid dosage and the four 3DP techniques which have been more used for their manufacture are FDM, inkjet 3DP, SLA and SLS. This systematic review is carried out to statistically analyze the current 3DP techniques employed in manufacturing oral solid formulations and assess the recent trends of this new technology. The work has been organised into four steps, (1) screening of the articles, definition of the inclusion and exclusion criteria and classification of the articles in the two main groups (included/excluded); (2) quantification and characterisation of the included articles; (3) evaluation of the validity of data and data extraction process; (4) data analysis, discussion, and conclusion to define which technique offers the best properties to be applied in the manufacture of oral solid formulations. It has been observed that with SLS 3DP technique, all the characterisation tests required by the BP (drug content, drug dissolution profile, hardness, friability, disintegration time and uniformity of weight) have been performed in the majority of articles, except for the friability test. However, it is not possible to define which of the four 3DP techniques is the most suitable for the manufacture of oral solid formulations, because the selection is affected by different parameters, such as the type of formulation, the physical-mechanical properties to achieve. Moreover, each technique has its specific advantages and disadvantages, such as for FDM the biggest challenge is the degradation of the drug, due to high printing temperature process or for SLA is the toxicity of the carcinogenic risk of the photopolymerising material. Full article
Show Figures

Figure 1

Review
Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering
Pharmaceutics 2021, 13(3), 319; https://doi.org/10.3390/pharmaceutics13030319 - 28 Feb 2021
Cited by 10 | Viewed by 1757
Abstract
Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor [...] Read more.
Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor that influences the physical and biochemical properties of these hydrogels is how they are crosslinked. In this paper, an overview is provided of different crosslinking techniques and crosslinking chemical additives that have been applied to hydrogels for the purposes of corneal tissue engineering, drug delivery or corneal repair. Factors that influence the success of a crosslinker are considered that include material composition, dosage, fabrication method, immunogenicity and toxicity. Different crosslinking techniques that have been used to develop injectable hydrogels for corneal regeneration are summarized. The limitations and future prospects of crosslinking strategies for use in corneal tissue engineering are discussed. It is demonstrated that the choice of crosslinking technique has a significant influence on the biocompatibility, mechanical properties and chemical structure of hydrogels that may be suitable for corneal tissue engineering and regenerative applications. Full article
Show Figures

Graphical abstract

Review
Current Insights into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration
Pharmaceutics 2021, 13(3), 308; https://doi.org/10.3390/pharmaceutics13030308 - 26 Feb 2021
Cited by 13 | Viewed by 1874
Abstract
Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials [...] Read more.
Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials in precise anatomical 3D geometries. However, and despite the great progress and possibilities generated in recent years, there are still challenges to overcome that jeopardize its clinical application in regular practice. The main goal of this review is to provide an in-depth understanding of the current status and implementation of 3D bioprinting technology in the ophthalmology field in order to manufacture relevant tissues such as cornea, retina and conjunctiva. Special attention is paid to the description of the most commonly employed bioprinting methods, and the most relevant eye tissue engineering studies performed by 3D bioprinting technology at preclinical level. In addition, other relevant issues related to use of 3D bioprinting for ocular drug delivery, as well as both ethical and regulatory aspects, are analyzed. Through this review, we aim to raise awareness among the research community and report recent advances and future directions in order to apply this advanced therapy in the eye tissue regeneration field. Full article
Show Figures

Graphical abstract

Review
Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes
Pharmaceutics 2021, 13(2), 286; https://doi.org/10.3390/pharmaceutics13020286 - 22 Feb 2021
Cited by 24 | Viewed by 1902
Abstract
Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is usually around 0.01–1 g/h, which is lower than pharmaceutical industry production requirements. Therefore, [...] Read more.
Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is usually around 0.01–1 g/h, which is lower than pharmaceutical industry production requirements. Therefore, different companies have worked to develop electrospinning equipment, technological solutions, and electrospun materials into large-scale production. Different approaches have been explored to scale-up the production mainly by increasing the nanofiber jet through multiple needles, free-surface technologies, and hybrid methods that use an additional energy source. Among them, needleless and centrifugal methods have gained the most attention and applications. Besides, the production rate reached (450 g/h in some cases) makes these methods feasible in the pharmaceutical industry. The present study overviews and compares the most recent ES approaches successfully developed for nanofibers’ large-scale production and accompanying challenges with some examples of applied approaches in drug delivery systems. Besides, various types of commercial products and devices released to the markets have been mentioned. Full article
(This article belongs to the Special Issue Recent Development of Electrospinning for Drug Delivery Volume II)
Review
Suprachoroidal Delivery of Small Molecules, Nanoparticles, Gene and Cell Therapies for Ocular Diseases
Pharmaceutics 2021, 13(2), 288; https://doi.org/10.3390/pharmaceutics13020288 - 22 Feb 2021
Cited by 10 | Viewed by 3002
Abstract
Suprachoroidal drug delivery technology has advanced rapidly and emerged as a promising administration route for a variety of therapeutic candidates, in order to target multiple ocular diseases, ranging from neovascular age-related macular degeneration to choroidal melanoma. This review summarizes the latest preclinical and [...] Read more.
Suprachoroidal drug delivery technology has advanced rapidly and emerged as a promising administration route for a variety of therapeutic candidates, in order to target multiple ocular diseases, ranging from neovascular age-related macular degeneration to choroidal melanoma. This review summarizes the latest preclinical and clinical progress in suprachoroidal delivery of therapeutic agents, including small molecule suspensions, polymeric entrapped small molecules, gene therapy (viral and nonviral nanoparticles), viral nanoparticle conjugates (VNCs), and cell therapy. Formulation customization is critical in achieving favorable pharmacokinetics, and sustained drug release profiles have been repeatedly observed for multiple small molecule suspensions and polymeric formulations. Novel therapeutic agents such as viral and nonviral gene therapy, as well as VNCs, have demonstrated promise in animal studies. Several of these suprachoroidally-administered therapies have been assessed in clinical trials, including small molecule suspensions of triamcinolone acetonide and axitinib, viral vector RGX-314 for gene therapy, and VNC AU-011. With continued drug delivery research and optimization, coupled with customized drug formulations, suprachoroidal drug delivery may address large unmet therapeutic needs in ophthalmology, targeting affected tissues with novel therapies for efficacy benefits, compartmentalizing therapies away from unaffected tissues for safety benefits, and achieving durability to relieve the treatment burden noted with current agents. Full article
(This article belongs to the Special Issue Recent Advances in Ophthalmic Drug Delivery)
Show Figures

Figure 1

Review
Therapeutic Potential of Mesenchymal Stem Cells and Their Products in Lung Diseases—Intravenous Administration versus Inhalation
Pharmaceutics 2021, 13(2), 232; https://doi.org/10.3390/pharmaceutics13020232 - 07 Feb 2021
Cited by 7 | Viewed by 1403
Abstract
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of [...] Read more.
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. There is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient. Major obstacles for comparison of results are heterogeneity of the products, differences in the treatment protocols and small study cohorts. Full article
(This article belongs to the Special Issue Drug Delivery across Physiological Barriers)
Show Figures

Graphical abstract

Review
Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines
Pharmaceutics 2021, 13(2), 206; https://doi.org/10.3390/pharmaceutics13020206 - 02 Feb 2021
Cited by 51 | Viewed by 9079
Abstract
There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines [...] Read more.
There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines promising alternatives to conventional vaccine technologies. However, efficient delivery of these vaccines requires that the mRNA be protected against extracellular degradation. Lipid nanoparticles (LNPs) have been extensively studied as non-viral vectors for the delivery of mRNA to target cells because of their relatively easy and scalable manufacturing processes. This review highlights key advances in the development of LNPs and reviews the application of mRNA-based vaccines formulated in LNPs for use against infectious diseases and cancer. Full article
(This article belongs to the Special Issue Discovery and Evaluation of Novel Adjuvants for Vaccine Formulations)
Show Figures

Figure 1

Review
Microemulsion-Based Media in Nose-to-Brain Drug Delivery
Pharmaceutics 2021, 13(2), 201; https://doi.org/10.3390/pharmaceutics13020201 - 02 Feb 2021
Cited by 13 | Viewed by 2571
Abstract
Nose-to-brain drug delivery has recently attracted enormous attention as an alternative to other delivery routes, including the most popular oral one. Due to the unique anatomical features of the nasal cavity, drugs administered intranasally can be delivered directly to the central nervous system. [...] Read more.
Nose-to-brain drug delivery has recently attracted enormous attention as an alternative to other delivery routes, including the most popular oral one. Due to the unique anatomical features of the nasal cavity, drugs administered intranasally can be delivered directly to the central nervous system. The most important advantage of this approach is the ability to avoid the blood–brain barrier surrounding the brain and blocking the entry of exogenous substances to the central nervous system. Moreover, selective brain targeting could possibly avoid peripheral side effects of pharmacotherapy. The challenges associated with nose-to-brain drug delivery are mostly due to the small volume of the nasal cavity and insufficient drug absorption from nasal mucosa. These issues could be minimized by using a properly designed drug carrier. Microemulsions as potential drug delivery systems offer good solubilizing properties and the ability to enhance drug permeation through biological membranes. The aim of this review is to summarize the current status of the research focused on microemulsion-based systems for nose-to-brain delivery with special attention to the most extensively investigated neurological and psychiatric conditions, such as neurodegenerative diseases, epilepsy, and schizophrenia. Full article
(This article belongs to the Special Issue Non-invasive Drug Delivery Systems)
Show Figures

Graphical abstract

Review
Bacteriocins in the Era of Antibiotic Resistance: Rising to the Challenge
Pharmaceutics 2021, 13(2), 196; https://doi.org/10.3390/pharmaceutics13020196 - 02 Feb 2021
Cited by 18 | Viewed by 1833
Abstract
Decades of antibiotic misuse in clinical settings, animal feed, and within the food industry have led to a concerning rise in antibiotic-resistant bacteria. Every year, antimicrobial-resistant infections cause 700,000 deaths, with 10 million casualties expected by 2050, if this trend continues. Hence, innovative [...] Read more.
Decades of antibiotic misuse in clinical settings, animal feed, and within the food industry have led to a concerning rise in antibiotic-resistant bacteria. Every year, antimicrobial-resistant infections cause 700,000 deaths, with 10 million casualties expected by 2050, if this trend continues. Hence, innovative solutions are imperative to curb antibiotic resistance. Bacteria produce a potent arsenal of drugs with remarkable diversity that are all distinct from those of current antibiotics. Bacteriocins are potent small antimicrobial peptides synthetized by certain bacteria that may be appointed as alternatives to traditional antibiotics. These molecules are strategically employed by commensals, mostly Firmicutes, to colonize and persist in the human gut. Bacteriocins form channels in the target cell membrane, leading to leakage of low-molecular-weight, causing the disruption of the proton motive force. The objective of this review was to list and discuss the potential of bacteriocins as antimicrobial therapeutics for infections produced mainly by resistant pathogens. Full article
(This article belongs to the Special Issue Drug Delivery for Anti-Infective Agents)
Show Figures

Figure 1

Review
Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research
Pharmaceutics 2020, 12(12), 1186; https://doi.org/10.3390/pharmaceutics12121186 - 06 Dec 2020
Cited by 58 | Viewed by 2433
Abstract
Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying [...] Read more.
Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies)
Show Figures

Figure 1

Review
Extracellular Vesicle-Based Therapeutics: Preclinical and Clinical Investigations
Pharmaceutics 2020, 12(12), 1171; https://doi.org/10.3390/pharmaceutics12121171 - 01 Dec 2020
Cited by 27 | Viewed by 1616
Abstract
Drug nanoformulations hold remarkable promise for the efficient delivery of therapeutics to a disease site. Unfortunately, artificial nanocarriers, mostly liposomes and polymeric nanoparticles, show limited applications due to the unfavorable pharmacokinetics and rapid clearance from the blood circulation by the reticuloendothelial system (RES). [...] Read more.
Drug nanoformulations hold remarkable promise for the efficient delivery of therapeutics to a disease site. Unfortunately, artificial nanocarriers, mostly liposomes and polymeric nanoparticles, show limited applications due to the unfavorable pharmacokinetics and rapid clearance from the blood circulation by the reticuloendothelial system (RES). Besides, many of them have high cytotoxicity, low biodegradability, and the inability to cross biological barriers, including the blood brain barrier. Extracellular vesicles (EVs) are novel candidates for drug delivery systems with high bioavailability, exceptional biocompatibility, and low immunogenicity. They provide a means for intercellular communication and the transmission of bioactive compounds to targeted tissues, cells, and organs. These features have made them increasingly attractive as a therapeutic platform in recent years. However, there are many obstacles to designing EV-based therapeutics. In this review, we will outline the main hurdles and limitations for therapeutic and clinical applications of drug loaded EV formulations and describe various attempts to solve these problems. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Graphical abstract

Review
Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations
Pharmaceutics 2020, 12(11), 1099; https://doi.org/10.3390/pharmaceutics12111099 - 16 Nov 2020
Cited by 30 | Viewed by 4154
Abstract
Cosmetic and personal care products are globally used and often applied directly on the human skin. According to a recent survey in Europe, the market value of cosmetic and personal care products in Western Europe reached about 84 billion euros in 2018 and [...] Read more.
Cosmetic and personal care products are globally used and often applied directly on the human skin. According to a recent survey in Europe, the market value of cosmetic and personal care products in Western Europe reached about 84 billion euros in 2018 and are predicted to increase by approximately 6% by the end of 2020. With these significant sums of money spent annually on cosmetic and personal care products, along with chemical surfactants being the main ingredient in a number of their formulations, of which many have been reported to have the potential to cause detrimental effects such as allergic reactions and skin irritations to the human skin; hence, the need for the replacement of chemical surfactants with other compounds that would have less or no negative effects on skin health. Biosurfactants (surfactants of biological origin) have exhibited great potential such as lower toxicity, skin compatibility, protection and surface moisturizing effects which are key components for an effective skincare routine. This review discusses the antimicrobial, skin surface moisturizing and low toxicity properties of glycolipid and lipopeptide biosurfactants which could make them suitable substitutes for chemical surfactants in current cosmetic and personal skincare pharmaceutical formulations. Finally, we discuss some challenges and possible solutions for biosurfactant applications. Full article
Show Figures

Graphical abstract

Review
Pulmonary Delivery of Biological Drugs
Pharmaceutics 2020, 12(11), 1025; https://doi.org/10.3390/pharmaceutics12111025 - 26 Oct 2020
Cited by 37 | Viewed by 3789
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral [...] Read more.
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research. Full article
(This article belongs to the Special Issue Non-invasive Drug Delivery Systems)
Show Figures

Graphical abstract

Back to TopTop