Previous Issue
Volume 16, May
 
 

Forests, Volume 16, Issue 6 (June 2025) – 150 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
33 pages, 42480 KiB  
Article
Wood Anatomy Properties and Global Climate Change Constraints of Forest Species from the Natural Forest of Mozambique
by Eugénia Joaquim-Meque, José Louzada, Francisco Tarcísio Moraes Mady, Valquíria Clara Freire de Souza, Margarida L. R. Liberato and Teresa Fidalgo Fonseca
Forests 2025, 16(6), 1018; https://doi.org/10.3390/f16061018 - 17 Jun 2025
Abstract
Mozambique’s natural forests are increasingly affected by climate change, deforestation, and unsustainable exploitation, threatening both biodiversity and rural livelihoods. This study examines the wood anatomical characteristics of five commercially important tree species—Spirostachys africana Sond., Afzelia quanzensis Welw., Millettia stuhlmannii Taub., Pterocarpus angolensis [...] Read more.
Mozambique’s natural forests are increasingly affected by climate change, deforestation, and unsustainable exploitation, threatening both biodiversity and rural livelihoods. This study examines the wood anatomical characteristics of five commercially important tree species—Spirostachys africana Sond., Afzelia quanzensis Welw., Millettia stuhlmannii Taub., Pterocarpus angolensis DC., and Colophospermum mopane (J. Kirk ex Benth.) J. Léonard—to assess their vulnerability to drought, cyclones, and floods. The aim is to enhance current knowledge regarding their wood anatomy and to clarify how these anatomical traits could help to identify species most vulnerable to climate extremes. Wood samples were collected from native forests and analyzed in laboratories in Brazil and Portugal using standardized anatomical methods according to IAWA guidelines. The results show that Afzelia quanzensis, Millettia stuhlmannii, Pterocarpus angolensis, and Colophospermum mopane have solitary vessels with vestured pits and thick-walled fibers, which improve hydraulic conductivity and drought resistance. Colophospermum mopane shows the greatest anatomical adaptation to climatic stressors. By contrast, Spirostachys africana has narrow, grouped vessels and thin walls, indicating higher susceptibility to embolism and limited resilience. Cyclone resistance is associated with higher wood density and parenchyma abundance, which enhance mechanical stability and recovery. Flood resilience, however, appears to depend more on leaf and root adaptations than on wood anatomy alone. These findings highlight the role of wood structure in climate adaptability and underline the urgency of integrating anatomical data into forest management strategies to support the conservation and sustainable use of Mozambique’s forest resources. Full article
(This article belongs to the Special Issue Responses and Adaptation of Trees to Environmental Stress)
Show Figures

Figure 1

13 pages, 2783 KiB  
Article
Optimization of Traps Used in the Management of Monochamus galloprovincialis (Coleoptera: Cerambycidae), the Insect-Vector of Pinewood Nematode, to Reduce By-Catches of Non-Target Insects
by Luís Bonifácio and Edmundo Sousa
Forests 2025, 16(6), 1017; https://doi.org/10.3390/f16061017 - 17 Jun 2025
Abstract
A possible tactic to survey and control Pine Wilt Disease is the use of semiochemical-baited traps to capture the insect-vector, the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). The most common chemical lure used is the Galloprotect Pack, which includes the aggregation pheromone [...] Read more.
A possible tactic to survey and control Pine Wilt Disease is the use of semiochemical-baited traps to capture the insect-vector, the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). The most common chemical lure used is the Galloprotect Pack, which includes the aggregation pheromone ([2-undecyloxy] ethanol), a host monoterpene (α-pinene), and bark-beetle pheromones (ipsenol and 2-methyl-3-buten-1-ol). This lure also attracts non-target species, including bark beetles (Coleoptera: Curculionidae: Scolytinae) that use ipsenol (Ips sexdentatus (Boerner)) and 2-methyl-3-buten-1-ol (Orthotomicus erosus (Wollaston)) as pheromones, but also large numbers of their natural enemies, Temnoscheila caerulea (Olivier) (Coleoptera: Trogossitidae), Aulonium ruficorne (Olivier) (Coleoptera: Colydiidae), and Thanasimus formicarius (L.) (Coleoptera: Cleridae), and other saproxylic insects (Coleoptera: Cerambycidae). These catches cause a decrease in biodiversity of the forest insect communities, and the removal of predatory insects may favour bark beetle outbreaks. Thus, our project objective was to test trap modifications to try to reduce catches of non-target insects. Modifying the multifunnel trap’s collection cup by placing a 0.5 cm mesh in the drainage hole allowed the escape of all predator beetles (Cleridae, Trogossitidae, Colydiidae, and Histeridae) in 2020, and retained only two Trogossitidae in 2021, against 249 specimens caught in the non-modified collection cup. This simple modification thus allowed the escape of almost all predators, while maintaining the traps’ efficiency at catching the target species, M. galloprovincialis. Full article
(This article belongs to the Special Issue Advance in Pine Wilt Disease)
Show Figures

Figure 1

15 pages, 2425 KiB  
Article
Patterns of Intra-Order Variation in Shoot Traits Are Order-Specific Along the Branch Basal Height Gradient of Larix principis-rupprechtii
by Yang Yu, Huayong Zhang, Zhongyu Wang and Zhao Liu
Forests 2025, 16(6), 1016; https://doi.org/10.3390/f16061016 - 17 Jun 2025
Abstract
Intra-order trait variation is a key driver of aboveground shoot performance at different branch basal heights. Although the basic light exposure and nutrient supply to shoots vary with branch basal height, most studies have focused on inter-order variation in shoot traits. However, how [...] Read more.
Intra-order trait variation is a key driver of aboveground shoot performance at different branch basal heights. Although the basic light exposure and nutrient supply to shoots vary with branch basal height, most studies have focused on inter-order variation in shoot traits. However, how and to what extent shoot traits change with branch basal height, as well as whether a general intra-order pattern exists among different shoot orders, remain largely unclear. We compared intra-order variation in shoot diameter, length, specific stem length (SSL), and stem tissue density (STD) across four branching orders of Larix principis-rupprechtii along a vertical height gradient of 5.5–6.0 m. We tested (a) the degree of intra-order versus intra-order variation in shoot traits along the gradient and (b) whether intra-order trait patterns and their relationship with branch basal height were consistent across the four branching orders. Specifically, we hypothesized that within a branching order, shoot traits would undergo adjustments: shoots at higher positions would focus on growth (by increasing diameter and length), whereas shoots at lower positions would enhance resource acquisition (by increasing SSL) and protection (by increasing STD). Branching order explained most of the overall variation in shoot traits, including shoot diameter and length, but accounted for only a small portion of the variation in SSL and STD. Branch basal height explained only a small fraction of intra-order shoot trait variation, which was larger within than between basal heights. Moreover, the relationships between traits and branch basal height rarely aligned with our hypotheses and varied considerably across different shoot orders. Along the complex branch basal height gradient, where multiple traits change simultaneously, shoots of different shoot orders exhibit distinct patterns of variation, leading to specific intra-order trait variation. The lack of support for our hypothesis may result from the multifaceted interactions between light availability, spatial constraints, nutrient heterogeneity, and dynamic branch-order interactions. Our findings suggest that to better understand the impact of environmental variation on shoot performance, future research should integrate a more comprehensive analysis of shoot responses to change and measure a broader range of shoot traits and environmental variables. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 4215 KiB  
Article
Topoclimatic Zoning in the Brazilian Amazon: Enhancing Sustainability and Resilience of Native Forests in the Face of Climate Change
by Lucietta Guerreiro Martorano, Silvio Brienza Junior, Jose Reinaldo da Silva Cabral de Moraes, Werlleson Nascimento, Leila Sheila Silva Lisboa, Denison Lima Correa, Thiago Martins Santos, Rafael Fausto de Lima, Kaio Ramon de Sousa Magalhães and Carlos Tadeu dos Santos Dias
Forests 2025, 16(6), 1015; https://doi.org/10.3390/f16061015 - 17 Jun 2025
Abstract
The Brazilian Amazon, a global biodiversity hotspot, faces escalating anthropogenic pressures and climate change, underscoring the urgent need to identify priority areas for ecological restoration and sustainable forest use. This study applied a topoclimatic zoning methodological framework in the Legal Amazon to evaluate [...] Read more.
The Brazilian Amazon, a global biodiversity hotspot, faces escalating anthropogenic pressures and climate change, underscoring the urgent need to identify priority areas for ecological restoration and sustainable forest use. This study applied a topoclimatic zoning methodological framework in the Legal Amazon to evaluate the environmental suitability of 12 native tree species across anthropogenically altered landscapes. Species occurrence data were compiled from the RADAMBRASIL Project, GBIF, Herbaria, and forest inventory literature. Climatic, topographic, and geographic variables (1961–2022) informed the zoning model. Our findings reveal that species such as Dinizia excelsa Ducke (81%) and Handroanthus albus (Cham.) Mattos (78%) exhibit exceptionally high topoclimatic suitability. Conversely, Simarouba amara Aubl. (37%) and Schizolobium parahyba (Vell.) S.F.Blake var. amazonicum (Huber ex Ducke) Barneby (46%) showed the lowest proportions in high-potential areas, suggesting their greater ecological breadth or specific niche requirements in altered zones. Principal Component Analysis (PCA) indicated strong correlations between high-potential areas and Af3, Am3, and Aw4 climatic subtypes. This study offers a replicable, evidence-based model for prioritizing species and locations, significantly supporting sustainable silviculture and enhancing the long-term resilience of Amazonian forests in the face of climate change. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

22 pages, 1793 KiB  
Article
The Impact of Green Perception on Pro-Greenspace Behavior of Urban Residents in Megacities: Shaped by “Good Citizen” Image
by Yige Ju, Tianyu Chen, Guohua Hu and Feng Mi
Forests 2025, 16(6), 1014; https://doi.org/10.3390/f16061014 - 17 Jun 2025
Abstract
Green perception underlies pro-greenspace behavior, but external stimuli and behavior are not always aligned. Understanding how residents’ perceived external green stimuli influence pro-greenspace behavior, and how the “good citizen” image (face) shapes this relationship, is essential. The study aims to deepen the understanding [...] Read more.
Green perception underlies pro-greenspace behavior, but external stimuli and behavior are not always aligned. Understanding how residents’ perceived external green stimuli influence pro-greenspace behavior, and how the “good citizen” image (face) shapes this relationship, is essential. The study aims to deepen the understanding of the complex mechanisms driving urban residents’ pro-greenspace behavior by constructing an extended Stimulus-Organism-Response theoretical framework (C-SOR) that includes contextual factors. Using data from a 2024 field survey of 959 residents from Shanghai, China, this study employs Ordinary Least Squares (OLS) regression to examine the main effect of green perception on pro-greenspace behavior. A mediation model is employed to analyze the mediating role of nature connectedness, while a moderation model tests the moderating effect of “good citizen” image (face) on the stimulus–behavior relationship. The results show that green perception significantly promotes pro-greenspace behavior, positively influencing it through nature connectedness. However, the “good citizen” image (face) exerts a motivational crowding-out effect on green perception. Further analysis reveals individual heterogeneity in the expression of these effects across different types of pro-greenspace behavior. The findings highlight the importance of green space experience and the activation of environmental wisdom in traditional culture, offering new perspectives for developing strategies to guide pro-greenspace behavior. Full article
Show Figures

Figure 1

14 pages, 2477 KiB  
Article
Comparative Assessment of Woody Species for Runoff and Soil Erosion Control on Forest Road Slopes in Harvested Sites of the Hyrcanian Forests, Northern Iran
by Pejman Dalir, Ramin Naghdi, Sanaz Jafari and Petros A. Tsioras
Forests 2025, 16(6), 1013; https://doi.org/10.3390/f16061013 - 17 Jun 2025
Abstract
Soil erosion and surface runoff on forest road slopes are major environmental concerns, especially in harvested areas, making effective mitigation strategies essential for sustainable forest management. The study compared the effectiveness of three selected woody species on forest road slopes as a possible [...] Read more.
Soil erosion and surface runoff on forest road slopes are major environmental concerns, especially in harvested areas, making effective mitigation strategies essential for sustainable forest management. The study compared the effectiveness of three selected woody species on forest road slopes as a possible mitigating action for runoff and soil erosion in harvested sites. Plots measuring 2 m × 3 m were set up with three species—alder (Alnus glutinosa (L.) Gaertn.), medlar (Mespilus germanica L.) and hawthorn (Crataegus monogyna Jacq.)—on the slopes of forest roads. Within each plot, root abundance, root density, canopy percentage, canopy height, herbaceous cover percentage, and selected soil characteristics were measured and analyzed. Root frequency and Root Area Ratio (the ratio between the area occupied by roots in a unit area of soil) measurements were conducted by excavating 50 × 50 cm soil profiles at a 10-cm distance from the base of each plant in the four cardinal directions. The highest root abundance and RAR values were found in hawthorn, followed by alder and medlar in both cases. The same order of magnitude was evidenced in runoff (255.42 mL m−2 in hawthorn followed by 176.81 mL m−2 in alder and 67.36 mL m−2 in medlar) and the reverse order in terms of soil erosion (8.23 g m−2 in hawthorn compared to 22.5 g m−2 in alder and 50.24 g m−2 in medlar). The results of the study confirm that using plant species with dense and deep roots, especially hawthorn, significantly reduces runoff and erosion, offering a nature-based solution for sustainable forest road management. These results highlight the need for further research under diverse ecological and soil conditions to optimize species selection and improve erosion mitigation strategies. Full article
(This article belongs to the Special Issue New Research Developments on Forest Road Planning and Design)
Show Figures

Figure 1

36 pages, 5834 KiB  
Article
Ecological Analysis and Ethnobotanical Evaluation of Plants in Khanthararat Public Benefit Forest, Kantarawichai District, Thailand
by Piyaporn Saensouk, Surapon Saensouk, Thawatphong Boonma, Kasan Hanchana, Sarayut Rakarcha, Charun Maknoi, Khamfa Chanthavongsa and Tammanoon Jitpromma
Forests 2025, 16(6), 1012; https://doi.org/10.3390/f16061012 - 17 Jun 2025
Abstract
Ethnobotanical knowledge and biodiversity are critical components of sustainable natural resource management, especially in regions undergoing rapid environmental and socio-economic change. In Northeast Thailand, traditional plant knowledge is deeply intertwined with local cultural identity but faces increasing threats from urbanization, agricultural expansion, and [...] Read more.
Ethnobotanical knowledge and biodiversity are critical components of sustainable natural resource management, especially in regions undergoing rapid environmental and socio-economic change. In Northeast Thailand, traditional plant knowledge is deeply intertwined with local cultural identity but faces increasing threats from urbanization, agricultural expansion, and generational shifts. This study presents a floristic and ethnobotanical survey of the Khanthararat Public Benefit Forest, a community-managed remnant forest in Maha Sarakham Province, documenting 110 plant species from 42 families. The Fabaceae family was the most diverse, consistent with other tropical ecosystems. Predominantly native species (85.45%) indicate minimal disturbance, while introduced (11.82%) and endemic species (2.73%) reflect ecological complexity. Ethnobotanical data revealed 34 wild edible species, 33 medicinal plants, and 19 ornamental species used by the local community, highlighting the forest’s vital role in supporting livelihoods and cultural practices. High Use Values (UVs) for species such as Spondias pinnata and Coccinia grandis underline their dual importance in food and medicine. Informant Consensus Factor (Fic) values demonstrate strong agreement on plant use for reproductive and musculoskeletal health, reflecting well-established traditional knowledge. The findings underscore the forest’s dual significance as an ecological hotspot and a repository of cultural heritage, providing essential ecosystem services including biodiversity conservation, climate regulation, and cultural provisioning. By integrating traditional knowledge with biodiversity assessment, this study offers valuable insights for community-based conservation strategies that sustain both ecological integrity and cultural resilience in Northeast Thailand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 18331 KiB  
Article
Vibration Control of Forestry Storage Ventilation Fans Through Structural Parameter Optimization Considering Substructure Uncertainty
by Binbin Ji, Yi Zhao, Juan Chen, Linyun Xu, Hongping Zhou and Jie Zhou
Forests 2025, 16(6), 1011; https://doi.org/10.3390/f16061011 - 16 Jun 2025
Abstract
The operational stability and vibration performance of large-scale ventilation fans used in forestry storage facilities are critical for ensuring the safety and environmental control of timber and wood-based materials. To effectively reduce vibration levels and mitigate resonance risks, this study proposes a structural [...] Read more.
The operational stability and vibration performance of large-scale ventilation fans used in forestry storage facilities are critical for ensuring the safety and environmental control of timber and wood-based materials. To effectively reduce vibration levels and mitigate resonance risks, this study proposes a structural parameter optimization method that explicitly considers substructure uncertainty. By establishing an interval uncertainty optimization model, critical substructures and key structural parameters affecting natural frequencies were systematically identified. Structural parameters were optimized using response surface methodology to maximize the separation between the fan’s natural frequencies and its operating frequency, thereby reducing the likelihood of resonance. Experimental results validated a substantial reduction in vibration levels, confirming the method’s effectiveness in enhancing operational stability and prolonging the service life of these large-scale ventilation systems. This approach provides valuable insights and practical guidance for vibration control and reliability improvement of mechanical equipment in forestry storage and environmental control systems Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

18 pages, 10118 KiB  
Article
A Comparative Study on the Effects of Heat Treatment on the Properties of Rubberwood Veneer
by Yayun Wu, He Sun, Zi You, Zhiwei He, Shiqi Zeng, Yuxing Han and Taian Chen
Forests 2025, 16(6), 1010; https://doi.org/10.3390/f16061010 - 16 Jun 2025
Abstract
Heat treatment is a widely employed method for modifying solid wood and has also been extended to veneer-type woods. Owing to the thinness and ease of handling of veneers, the regulation of protective media in heat treatment has not been highly regarded by [...] Read more.
Heat treatment is a widely employed method for modifying solid wood and has also been extended to veneer-type woods. Owing to the thinness and ease of handling of veneers, the regulation of protective media in heat treatment has not been highly regarded by the industry and is scarcely reported in research. In light of this, in this paper, rubber wood (Hevea brasiliensis) veneer is taken as the research subject to investigate the influences of heat treatment with hot air (HTHA) and heat treatment with superheated steam (HTSS) at different temperatures on the chemical properties, longitudinal tensile strength, color values, hygroscopicity, thermal degradation performance and microstructure of the wood. The results show that heat treatment alters the chemical properties of wood. Both heat treatments reduce the content of hemicellulose and other components in the veneer, and the characteristic peak of lignin in HTSS is slightly enhanced. The crystallinity of the veneer slightly increases after heat treatment, and the increase in HTSS is greater than that in HTHA. Through scanning electron microscopy, it is observed that heat treatment can effectively remove starch granules in rubber wood veneer, with HTSS being superior to HTHA, and the removal effect increases with the rise in temperature. The longitudinal tensile strength of the veneer decreased by 0.69%, 3.87%, and 24.98% respectively at 135~155 °C HTHA, and by 3.25%, 7.00%, and 18.47% respectively at 135~155 °C HTSS. Both heat treatments reduced the lightness of the veneer and increased the chroma index. At 155 °C, the color difference value of the veneer treated by HTSS was smaller than that treated by HTHA. The effects of heat treatment on the moisture absorption performance of the veneer were different. The equilibrium moisture content of the veneer treated at 135 °C HTHA and 135~155 °C HTSS was lower than that of the untreated material, indicating an improvement in moisture absorption stability. The maximum moisture sorption hysteresis of untreated material is 3.39%. The maximum moisture sorption hysteresis of 135 °C HTHA is not much different from that of untreated material. The values of 145 °C and 155 °C HTHA increase by 8.85% and 9.14% respectively. The values of 135 °C, 145 °C, and 155 °C HTSS increase by 22.42%, 25.37%, and 19.47% respectively. The moisture absorption hysteresis of the veneer increases after heat treatment, and the effect of HTSS improvement is more significant. From the TG and DTG curves, it can be seen that the residual mass percentage of the veneer after heat treatment is higher than that of the untreated material. The residual mass percentage of HTHA at 135 °C, 145 °C, and 155 °C increased by 3.13%, 3.07%, and 2.06% respectively, and that of HTSS increased by 5.14%, 7.21%, and 6.08% respectively. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

12 pages, 1708 KiB  
Article
Preliminary Report of Three Entomopathogenic Fungi as Potential Biocontrol Agents Against the Oak Wilt Vector, Platypus koryoensis
by Jin Heung Lee, Nam Kyu Kim, Keumchul Shin, Jong Kyu Lee and Dong-Hyeon Lee
Forests 2025, 16(6), 1009; https://doi.org/10.3390/f16061009 - 16 Jun 2025
Abstract
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence [...] Read more.
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence of pesticide-resistant pests in agricultural systems. Representative examples include Beauveria bassiana and Metarhizium anisopliae, which are regarded as natural enemies of pests in agroecosystems. Since the first report of Korean oak wilt disease in 2004, the disease has continuously spread across the country and causes severe damage to deciduous oak species, especially Quercus mongolica. Although many efforts have been made to effectively control the disease, including chemical treatments, the control efficacy was shown to be low, and given the environmental side effects arising from the use of insecticides, there has been a demand for alternative control strategies. Integrated Pest Management in forests promotes ecological sustainability by reducing chemical pesticide use, conserving biodiversity, and enhancing long-term forest health. In this study, to mitigate issues with disease management strategies, assessments were made on three entomopathogenic fungi, B. bassiana, M. anisopliae, and Purpureocillium lilacinum, as potential biological control agents against oak wilt disease and its insect vector, Platypus koryoensis. In this regard, we investigated the insecticidal efficacy and LT50 of each entomopathogenic fungus, and the results showed that all three entomopathogenic fungal strains exhibited fast insecticidal effects against the insect vector, P. koryoensis, with M. anisopliae showing the fastest action, recording a lethal time to 50% mortality (LT50) of 58.7 h. The spores of M. anisopliae were found to be sensitive to high temperatures, while demonstrating a relatively high germination rate under UV exposure and strong initial germination ability at low temperatures. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

18 pages, 3086 KiB  
Article
Contribution of Different Forest Strata on Energy and Carbon Fluxes over an Araucaria Forest in Southern Brazil
by Marcelo Bortoluzzi Diaz, Pablo Eli Soares de Oliveira, Vanessa de Arruda Souza, Claudio Alberto Teichrieb, Hans Rogério Zimermann, Gustavo Pujol Veeck, Alecsander Mergen, Maria Eduarda Oliveira Pinheiro, Michel Baptistella Stefanello, Osvaldo L. L. de Moraes, Gabriel de Oliveira, Celso Augusto Guimarães Santos and Débora Regina Roberti
Forests 2025, 16(6), 1008; https://doi.org/10.3390/f16061008 - 16 Jun 2025
Abstract
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each [...] Read more.
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each forest stratum to improve understanding of surface–atmosphere interactions. Eddy covariance data from November 2009 to April 2012 were used to assess fluxes in an Araucaria forest in Paraná, Brazil, across the ecosystem, understory, and overstory strata. On average, the ecosystem acts as a carbon sink of −298.96 g C m−2 yr−1, with absorption doubling in spring–summer compared to autumn–winter. The understory primarily acts as a source, while the overstory functions as a CO2 sink, driving carbon absorption. The overstory contributes 63% of the gross primary production (GPP) and 75% of the latent heat flux, while the understory accounts for 94% of the ecosystem respiration (RE). The energy fluxes exhibited marked seasonality, with higher latent and sensible heat fluxes in summer, with sensible heat predominantly originating from the overstory. Annual ecosystem evapotranspiration reaches 1010 mm yr−1: 60% of annual precipitation. Water-use efficiency is 2.85 g C kgH2O−1, with higher values in autumn–winter and in the understory. The influence of meteorological variables on the fluxes was analyzed across different scales and forest strata, showing that solar radiation is the main driver of daily fluxes, while air temperature and vapor pressure deficit are more relevant at monthly scales. This study highlights the overstory’s dominant role in carbon absorption and energy fluxes, reinforcing the need to preserve these ecosystems for their crucial contributions to climate regulation and water-use efficiency. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 6195 KiB  
Article
Physiological and Transcriptomic Insights into Lead Uptake and Tolerance in Moso Bamboo (Phyllostachys edulis) Highlight Its Strong Lead Tolerance Capacity
by Fan Yang, Rong Xu, Chenyang Zhu, Haibao Ji, Ji Feng Shao and Kangkang Huang
Forests 2025, 16(6), 1007; https://doi.org/10.3390/f16061007 - 15 Jun 2025
Viewed by 53
Abstract
Lead (Pb) contamination in Moso bamboo forests poses a challenge in terms of sustainable development and raises concerns about the safety of bamboo shoots for consumption. However, the physiological impacts of Pb stress on Moso bamboo growth and the molecular mechanisms governing its [...] Read more.
Lead (Pb) contamination in Moso bamboo forests poses a challenge in terms of sustainable development and raises concerns about the safety of bamboo shoots for consumption. However, the physiological impacts of Pb stress on Moso bamboo growth and the molecular mechanisms governing its adaptive responses remain poorly understood. This study comprehensively investigated the physiological and transcriptomic responses of Moso bamboo to Pb stress. The results showed that low concentrations (1–10 µM) of Pb stress had minimal adverse effects on biomass accumulation and the photochemical quantum yield of PSII in Moso bamboo. However, at a high Pb concentration (50 µM), the growth of roots was significantly inhibited, while Pb accumulation in the roots and shoots reached 15,611 mg·kg−1 and 759 mg·kg−1, respectively. The uptake of Pb was increased as the external Pb concentration increased, but the xylem loading of Pb reached saturation at 57.79 µM after six-hour exposure. Pb was mainly localized in the epidermis and pericycle cells in the roots, where the thickening of cell walls in these cells was found after Pb treatment. Transcriptomic profiling identified 1485 differentially expressed genes (DEGs), with significant alterations in genes associated with metal cation transporters and cell wall synthesis. These findings collectively indicate that Moso bamboo is a Pb-tolerant plant, characterized by a high accumulation capacity and efficient xylem loading. The tolerance mechanism likely involves the transcriptional regulation of genes related to heavy metal transport and cell wall biosynthesis. Full article
Show Figures

Figure 1

17 pages, 6414 KiB  
Article
Vegetation Restoration Significantly Increased Soil Organic Nitrogen Mineralization and Nitrification Rates in Karst Regions of China
by Lin Yang, Hui Yang, Lijun Liu, Shuting Yang, Dongni Wen, Xuelan Li, Lei Meng, Zhong Deng, Jian Liang, Danmei Lu and Tongbin Zhu
Forests 2025, 16(6), 1006; https://doi.org/10.3390/f16061006 - 15 Jun 2025
Viewed by 50
Abstract
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is [...] Read more.
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is of great significance for guiding the restoration of degraded ecosystems. This study used space-for-time substitution to investigate the dynamic changes in the rates of organic N mineralization (MNorg) and nitrification (ONH4) in soil at different vegetation restoration stages. Soil samples were collected from grassland (3–5 years), shrub-grassland (7–8 years), early-stage shrubland (15–20 years), late-stage shrubland (30–35 years), early-stage woodland (45–50 years), and late-stage woodland (70–80 years) in the subtropical karst region of China during the dry (December) and rainy (July) seasons. The MNorg and ONH4 were determined using the 15N labeling technique. The soil microbial community was determined using the phospholipid fatty acid method. Soil organic carbon (SOC), total nitrogen (TN), NH4+, NO3, and inorganic N contents, as well as the soil moisture content (SMC) were also measured. Our results showed that SOC and TN contents, and the SMC, as well as microbial community abundances increased markedly from grassland to the late-stage shrubland. Especially in the late-stage shrubland, the abundance of the total microbial community, bacteria, fungi, actinomycetes, and AMF in soil was significantly higher than other restoration stages. These results indicate that vegetation restoration significantly increased soil nutrient content and microbial community abundance. From grassland to the late-stage shrubland, the soil NH4+, NO3, and inorganic N contents increased significantly, and the NH4+:NO3 ratios changed from greater than 1 to less than 1, indicating that vegetation restoration significantly influenced soil inorganic N content and composition. As restoration progressed, the MNorg and ONH4 increased significantly, from 0.04 to 3.01 mg N kg−1 d−1 and 0.35 to 2.48 mg N kg−1 d−1 in the dry season, and from 3.26 to 7.20 mg N kg−1 d−1 and 1.47 to 10.7 mg N kg−1 d−1 in the rainy season. At the same vegetation restoration stage, the MNorg and ONH4 in the rainy season were markedly higher than those in the dry season. These results indicate that vegetation restoration and seasonal variations could significantly influence MNorg and ONH4. Correlation analysis showed that the increase in MNorg during vegetation restoration was mainly attributed to the increase in SOC and TN contents, as well as the total microbial community, bacterial, fungal, actinomycetes, and AMF abundances, and that the increase in ONH4 was mainly attributed to the increase in MNorg and the decrease in the F: B ratio. Moreover, the MNorg and ONH4 showed a strong positive correlation with inorganic N content. This study clarifies that vegetation restoration in karst regions could significantly increase MNorg and ONH4 through enhancing soil carbon and N contents, as well as microbial community abundances, thereby increasing the available soil N supply, which could provide a theoretical basis for soil fertility regulation in future rocky desertification management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

24 pages, 3630 KiB  
Article
Climate-Induced Shift in the Population Dynamics of Tortrix viridana L. in Ukraine
by Valentyna Meshkova, Serhij Stankevych, Yana Koshelyaeva, Volodymyr Korsovetskyi and Oleksandr Borysenko
Forests 2025, 16(6), 1005; https://doi.org/10.3390/f16061005 - 14 Jun 2025
Viewed by 21
Abstract
Tortrix viridana (Linnaeus, 1758) (Lepidoptera: Tortricidae) (TV) is a serious pest of oaks in the West-Palearctic. In Ukraine in the 50–70s of the 20th century, the area of TV outbreaks reached 140–180 thousand hectares. Since the late 1980s, outbreaks have become rarer and [...] Read more.
Tortrix viridana (Linnaeus, 1758) (Lepidoptera: Tortricidae) (TV) is a serious pest of oaks in the West-Palearctic. In Ukraine in the 50–70s of the 20th century, the area of TV outbreaks reached 140–180 thousand hectares. Since the late 1980s, outbreaks have become rarer and have occurred in a smaller area. This research aimed to assess the main parameters of TV outbreaks in Ukraine, considering its prevalence in flush feeders’ complex, the suitability of forest structure for this insect, and the phenological mismatch between bud-flushing and TV hatching. Historical data on TV outbreaks in Ukraine since 1947, data for 1978–2025 by regions, field and climate data, and forest management databases as of 1996 and 2017 from the Kharkiv region were analyzed. Since 1985, the incidence, severity, and duration of TV outbreaks have decreased in all regions of Ukraine. It was explained by: (1) TV decrease in the flush feeding complex due to monophagy; (2) decrease in the suitable area due to a change in the forest age composition, proportion of pure oak stands, and stands with low relative stocking density; (3) the shift of oak bud-flushing and TV hatching to earlier dates with the tendency of earlier bud-flushing than egg-hatching. Full article
Show Figures

Figure 1

29 pages, 2209 KiB  
Review
Phylogenetic Diversity in Forests: Insights into Evolutionary Patterns and Conservation Strategies
by Sajid Ali, Adnan Amin, Muhammad Saeed Akhtar and Wajid Zaman
Forests 2025, 16(6), 1004; https://doi.org/10.3390/f16061004 - 14 Jun 2025
Viewed by 17
Abstract
Forests harbor most of the world’s terrestrial biodiversity; however, traditional conservation frameworks prioritize species richness over evolutionary diversity. Phylogenetic diversity (PD) reflects the complete evolutionary history contained within a community, offering a more comprehensive understanding of biodiversity. This review examines the theoretical foundations [...] Read more.
Forests harbor most of the world’s terrestrial biodiversity; however, traditional conservation frameworks prioritize species richness over evolutionary diversity. Phylogenetic diversity (PD) reflects the complete evolutionary history contained within a community, offering a more comprehensive understanding of biodiversity. This review examines the theoretical foundations of PD, highlights methodological advancements in its assessment, and discusses its conservation applications in forest ecosystems. We discuss key metrics, including Faith’s PD, mean pairwise distance (MPD), mean nearest taxon distance (MNTD), and indices, including the net relatedness index (NRI) and nearest taxon index (NTI), as well as analytical tools (Picante, Phylocom, Biodiverse) and frameworks like the categorical analysis of neo- and paleo-endemism (CANAPE) and the evolutionarily distinct and globally endangered (EDGE) index, evaluating their effectiveness in identifying evolutionarily significant conservation areas. We examine global and regional forest PD patterns, including elevational and latitudinal gradients, using case studies from the Pan-Himalayan region, Tibetan Plateau, and northern Pakistan, along with the environmental and anthropogenic drivers, e.g., soil pH, precipitation, land-use change, and invasive species, and historical biogeographic forces that shape lineage diversification. We emphasize the need for data standardization, regional research expansion, and the inclusion of PD in national biodiversity strategies and global policy frameworks. This review highlights the transformative potential of shifting from species-centric to evolutionarily informed conservation, and provides a critical framework for enhancing the long-term resilience and adaptive capacity of forest ecosystems. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

17 pages, 4694 KiB  
Article
Characteristics of the Distribution of Village Enclosure Forests in the Beijing Plain Area and Influencing Factors
by Yuan Zhang, Erfa Qiu, Chenxuan Wang, Zhenkai Sun and Jiali Jin
Forests 2025, 16(6), 1003; https://doi.org/10.3390/f16061003 - 14 Jun 2025
Viewed by 19
Abstract
Beijing’s plain-region villages face significant shortages of internal green space, yet studies on village enclosure forests as a supplementary green infrastructure to serve rural communities are limited. So, this study examines village enclosure forests in Beijing Plain to address rural forest shortages. Using [...] Read more.
Beijing’s plain-region villages face significant shortages of internal green space, yet studies on village enclosure forests as a supplementary green infrastructure to serve rural communities are limited. So, this study examines village enclosure forests in Beijing Plain to address rural forest shortages. Using 2019 aerial imagery (0.5 m resolution) and forest inventory data, we analysed 1271 villages’ 300 m radius forest coverage via ArcGIS Pro. Key findings show (1) overall forest coverage is 45.30%, higher in outer suburbs (OA), traditional villages (TSH), and large villages; (2) functional types are mainly ecological landscape (37.58%) and ecological–economic forests (36.37%); and (3) afforestation projects (Million-Mu Project rounds 1–2) account for 47.37% coverage. Regression analyses reveal human activities as dominant influencers, with cultivated land area (CLA) having the highest explanatory power. Other significant factors (p < 0.05) include distance from commercial residences (DCR), village size (VS), distance from famous historical sites based on developmental zoning, and forest functions to optimize rural habitats. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

27 pages, 15466 KiB  
Article
Land-Use Change Scenarios and Their Implications for Bird Conservation in Subtropical Forests
by Luna E. Silvetti, Julieta R. Arcamone, Gregorio Gavier Pizarro, Marcos A. Landi and Laura M. Bellis
Forests 2025, 16(6), 1001; https://doi.org/10.3390/f16061001 - 14 Jun 2025
Viewed by 11
Abstract
(1) Background: Land-use change threatens biodiversity globally, making it essential to anticipate future impacts. (2) Methods: We assess future land-use change scenarios as a tool for analyzing the taxonomic and functional richness of birds in the Serrano forest. We developed two change scenarios: [...] Read more.
(1) Background: Land-use change threatens biodiversity globally, making it essential to anticipate future impacts. (2) Methods: We assess future land-use change scenarios as a tool for analyzing the taxonomic and functional richness of birds in the Serrano forest. We developed two change scenarios: The “Business as usual” scenario assumes that the trend of land-use change observed between 2004 and 2019 will continue without modifications by 2035 and 2050. The “Sustainable” scenario seeks to achieve a sustainable relationship between anthropogenic land-use activities and ecosystem conservation. We created distribution models and derived the potential distribution of the taxonomic and functional richness of forest and understory specialist birds in the change scenarios. (3) Results: The taxonomic and functional richness of both bird groups was strongly affected in the “Business as usual” change scenario, which presented extreme deforestation events, while the “Sustainable” change scenario tended to maintain bird richness over time. We detected areas with a reduction in richness greater than 20% and areas where richness increased due to being distant from urbanization and exotic forests. Full article
(This article belongs to the Special Issue Conservation of Birds and Their Habitats in Forest Landscapes)
Show Figures

Figure 1

15 pages, 2684 KiB  
Article
Seasonal Variation in Transpiration and Stomatal Conductance of Three Savanna Tree Species in Ruma National Park, Kenya
by John Maina Nyongesa, Wycliff Oronyi, Oyoo Lawrence, Ernest Kiplangat Ronoh, Lindsay Sikuku Mwalati, Vincent Suba, Leopody Gayo, Jacques Nkengurutse, Denis Ochuodho Otieno and Yuelin Li
Forests 2025, 16(6), 999; https://doi.org/10.3390/f16060999 - 13 Jun 2025
Viewed by 99
Abstract
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, [...] Read more.
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, and Balanites aegyptiaca (L.) Delile) in Ruma National Park, Kenya. Measurements were taken during wet and dry seasons under varying canopy light conditions (light-exposed vs. shaded leaves) and soil moisture regimes. A randomized design with four treatments and three replicates was employed. Results showed significantly higher transpiration and stomatal conductance during wet seasons, especially in sunlit leaves (p < 0.05). P. thonningii exhibited the highest rates of transpiration (9 mmol m−2 s−1) and stomatal conductance (~2.2 mmol m−2 s−1) in light conditions, while B. aegyptiaca maintained consistently low values, reflecting a drought-tolerant strategy. C. molle demonstrated intermediate responses, suggesting a balance between water conservation and resource use. Despite seasonal trends, low R2 values indicated that internal physiological regulation outweighed the influence of external climatic drivers. These findings reveal species-specific water-use strategies and highlight the ecological significance of leaf-level responses to light and moisture availability in tropical savannas. The study provides valuable insights for forest management and climate-resilient restoration planning in water-limited ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

26 pages, 5576 KiB  
Article
Comparison Between Traditional Forest Inventory and Remote Sensing with Random Forest for Estimating the Periodic Annual Increment in a Dry Tropical Forest
by Anelisa Pedroso Finger, Rinaldo Luiz Caraciolo Ferreira, Mayara Dalla Lana, José Antônio Aleixo da Silva, Emanuel Araújo Silva, Fábio Marcelo Breunig, Polyanna da Conceição Bispo, Veraldo Liesenberg and Sara Sebastiana Nogueira
Forests 2025, 16(6), 998; https://doi.org/10.3390/f16060998 - 13 Jun 2025
Viewed by 166
Abstract
This study evaluates the effectiveness of combining remote sensing techniques with the Random Forest algorithm for estimating the Periodic Annual Increment (PAI) in a dry tropical forest located within the Caatinga biome in northeastern Brazil. The analysis integrates forest inventory data collected from [...] Read more.
This study evaluates the effectiveness of combining remote sensing techniques with the Random Forest algorithm for estimating the Periodic Annual Increment (PAI) in a dry tropical forest located within the Caatinga biome in northeastern Brazil. The analysis integrates forest inventory data collected from permanent plots monitored between 2011 and 2019 with Landsat satellite imagery processed through the Google Earth Engine platform. By incorporating surface reflectance and vegetation indices, the approach significantly improved the accuracy of productivity estimates while reducing the costs and efforts associated with traditional field-based methods. The Random Forest model achieved a strong performance (R2 = 0.8867; RMSE = 0.87), and its predictions were further refined using post-processing correction factors. These results demonstrate the potential of data-driven modeling to support forest monitoring and sustainable management practices, especially in ecosystems vulnerable to the impacts of climate change. Full article
Show Figures

Figure 1

27 pages, 1048 KiB  
Article
Innovative Strategies of Sustainable Waste Management in Recreational Activities for a Clean and Safe Environment in Turkey, Lithuania, and Morocco
by Dalia Perkumienė, Ahmet Atalay, Larbi Safaa, Mindaugas Škėma and Marius Aleinikovas
Forests 2025, 16(6), 997; https://doi.org/10.3390/f16060997 - 13 Jun 2025
Viewed by 174
Abstract
Forested areas are defined as wooded regions characterized by dense vegetation, largely preserved natural ecosystem features, and availability for recreational use. These areas play a critical role in maintaining ecological balance and are increasingly utilized as preferred sites for various outdoor activities. However, [...] Read more.
Forested areas are defined as wooded regions characterized by dense vegetation, largely preserved natural ecosystem features, and availability for recreational use. These areas play a critical role in maintaining ecological balance and are increasingly utilized as preferred sites for various outdoor activities. However, the growing intensity of recreational activities in such sensitive ecosystems contributes to increased waste generation and poses significant threats to environmental sustainability. The objective of this study is to calculate the carbon footprint resulting from waste produced during recreational activities in forested areas of Lithuania, Turkey, and Morocco, and to identify innovative waste management strategies aimed at achieving clean and safe forest ecosystems. This study includes a comparison of Turkey, Lithuania, and Morocco. Quantitative data and carbon footprint calculations were conducted, while quantitative methods were also employed through semi-structured interviews with experts. Firstly, carbon footprint calculations were carried out based on the types and amounts of waste generated by participants. Subsequently, semi-structured interviews were conducted with experts and participants from all three countries to identify issues related to waste management and innovative waste management strategies. The carbon footprint resulting from waste generation was estimated to be 1517.26 kg in Turkey, 613.25 kg in Lithuania, and 735.68 kg in Morocco. Experts from Turkey, Lithuania, and Morocco have proposed innovative solutions for improving waste management systems in their respective countries. In Turkey, the predominant view emphasizes the need for increased use of digital tools, stricter enforcement measures, a rise in the number of personnel and waste bins, as well as the expansion of volunteer-based initiatives. In Lithuania, priority is given to educational and awareness-raising activities, updates to legal regulations, the placement of recycling bins, the development of infrastructure, and the promotion of environmentally friendly projects. In Morocco, it is highlighted that there is a need for stronger enforcement mechanisms, updated legal frameworks, increased staffing, more frequent waste collection, and the implementation of educational programs. Full article
(This article belongs to the Special Issue The Sustainable Use of Forests in Tourism and Recreation)
Show Figures

Figure 1

24 pages, 5453 KiB  
Article
Biomechanical Analysis of Gait in Forestry Environments: Implications for Movement Stability and Safety
by Martin Röhrich, Eva Abramuszkinová Pavlíková and Jakub Šácha
Forests 2025, 16(6), 996; https://doi.org/10.3390/f16060996 - 13 Jun 2025
Viewed by 118
Abstract
Forestry is recognized as one of the most physically demanding professions. Walking in presents unique biomechanical challenges due to complex, irregular terrain, with several possible risks. This study investigated how human gait adapts across solid surfaces, forest trails, and natural forest environments. Fifteen [...] Read more.
Forestry is recognized as one of the most physically demanding professions. Walking in presents unique biomechanical challenges due to complex, irregular terrain, with several possible risks. This study investigated how human gait adapts across solid surfaces, forest trails, and natural forest environments. Fifteen healthy adult participants (average age 38.3; ten males and five females) completed 150 walking trials, with full-body motion captured via a 17 Inertial Measurement Unit (IMU) sensors (Xsens MVN Awinda system). The analysis focused on spatial and temporal gait parameters, including cadence, step length, foot strike pattern, and center of mass variability. Statistical methods (ANOVA and Kruskal–Wallis) revealed that surface type significantly influenced gait mechanics. On forest terrain, participants exhibited wider steps, reduced cadence, increased step and stride variability, and a substantial shift from heel-to-toe strikes. Gait adaptations reflect compensatory neuromuscular strategies to maintain body balance. The findings confirm that forestry terrain complexity compromises human gait stability and increases physical demands, supporting step variability and slip, trip, and fall risk. By identifying key biomechanical markers of instability, this study contributes to understanding human locomotion principles. Understanding these changes can help design safety measures for outdoor professions, particularly forestry. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

14 pages, 2861 KiB  
Article
Strength Properties and Numerical Modeling of Cellular Panels with a Thermoplastic Shaped Core
by Piotr Borysiuk, Izabela Burawska, Karol Szymanowski and Radosław Auriga
Forests 2025, 16(6), 1002; https://doi.org/10.3390/f16061002 - 13 Jun 2025
Viewed by 81
Abstract
Lightweight, layered wood-based panels are gaining attention due to favorable mechanical and physical properties. This study examined numerical modeling as a method to predict the strength of innovative three-layer sandwich panels with thermoplastic cores containing wood particles as the filler. Two core geometries [...] Read more.
Lightweight, layered wood-based panels are gaining attention due to favorable mechanical and physical properties. This study examined numerical modeling as a method to predict the strength of innovative three-layer sandwich panels with thermoplastic cores containing wood particles as the filler. Two core geometries (F and S) and two material formulations (60% HDPE + 40% sawdust, and 40% HDPE + 60% sawdust) were tested. The panels were produced without additional adhesives; bonding with high-density fiberboard (HDF) facings was achieved through the thermoplastic properties of the core. Mechanical properties such as bending strength (MOR), modulus of elasticity (MOE), and compressive strength perpendicular to the surface were measured. Results showed that both core geometry and material composition significantly influenced structural performance. Panels with the F profile showed better bending strength and stiffness (MOR—13.2 N/mm2, MOE—2017 N/mm2), while the S profile had higher compressive strength (0.62 N/mm2). Numerical simulations using SolidWorks Simulation confirmed the experimental data, with stress and displacement distributions matching laboratory results. These findings demonstrate the potential of thermoplastically formed cores for creating lightweight, recyclable wood-based composites with tailored mechanical properties. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties: 2nd Edition)
Show Figures

Figure 1

15 pages, 2316 KiB  
Article
Fuels Treatments and Tending Reduce Simulated Wildfire Impacts in Sequoia sempervirens Under Single-Tree and Group Selection
by Jade D. Wilder, Keith A. Shuttle, Jeffrey M. Kane and John-Pascal Berrill
Forests 2025, 16(6), 1000; https://doi.org/10.3390/f16061000 - 13 Jun 2025
Viewed by 147
Abstract
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire [...] Read more.
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire behavior over a century in stands dominated by coast redwood (Sequoia sempervirens (Lamb. ex. D. Don) Endl.) on California’s north coast. We used the fire and fuels extension to the forest vegetation simulator (FFE-FVS) to compare group selection (GS) to single-tree selection silviculture with either low-density (LD) or high-density (HD) retention on a 20-year harvest return interval. These three approaches were paired with six options involving vegetation management (i.e., hardwood control or pre-commercial thinning (PCT)) with and without fuels treatments (i.e., prescribed fire or pile burning), or no subsequent vegetation or fuel treatment applied after GS, HD, or LD silviculture. Fuel treatment involving prescribed fire reduced hazardous fuel loading but lowered stand density and hence productivity. Hardwood control followed by prescribed fire mitigated potential wildfire behavior and promoted dominance of merchantable conifers. PCT of small young trees regenerating after selection harvests, followed by piling and burning of these cut trees, sustained timber production while reducing potential wildfire behavior by approximately 40% relative to selection silviculture without vegetation/fuel management, which exhibited the worst potential wildfire behavior. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

22 pages, 6655 KiB  
Article
Velocity Thresholds for Ultrasonic Tomographic Imaging Aimed at Detecting Cavities and Decay in Trees
by Larissa Tiago Volpi, Stella Stopa Assis Palma and Raquel Gonçalves
Forests 2025, 16(6), 995; https://doi.org/10.3390/f16060995 - 12 Jun 2025
Viewed by 151
Abstract
Trees play a vital role in urban environments by mitigating heat islands, floods, and pollution, while promoting public health and well-being. Acoustic tomography is an effective tool for assessing tree integrity, but its high-cost limits widespread use. To reduce costs, this study evaluated [...] Read more.
Trees play a vital role in urban environments by mitigating heat islands, floods, and pollution, while promoting public health and well-being. Acoustic tomography is an effective tool for assessing tree integrity, but its high-cost limits widespread use. To reduce costs, this study evaluated the use of ultrasonic tomography with standardized velocity thresholds (VTs) for detecting cavities and decay in trunks. A total of 38 discs from 21 trees species were analyzed using different VTs (35%, 40%, 45%, and 50%). The results showed that thresholds of 35% Vmax for cavity detection and 50% Vmax for cavity with decay detection can be adopted for tomographic image assessments of trees, regardless of species. Using the same velocity thresholds regardless of species enables the practical application of the technology, with average accuracy losses (below 5%) that are quite reasonable considering the variability of the material under inspection. These findings support the broader use of technology in tree failure risk assessments. Full article
Show Figures

Figure 1

22 pages, 783 KiB  
Review
Ecological Roles and Forest Management Implications of Small Terrestrial Mammals in Temperate and Boreal Forests—A Review
by Ladislav Čepelka and Martina Dokulilová
Forests 2025, 16(6), 994; https://doi.org/10.3390/f16060994 - 12 Jun 2025
Viewed by 187
Abstract
Small terrestrial mammals (STMs) are vital components of forest ecosystems. They serve as seed dispersers, herbivores, prey, and vectors of pathogens. The STM community structure responds dynamically to forest composition, disturbance, and management regimes. However, despite their central ecological functions and frequent occurrence, [...] Read more.
Small terrestrial mammals (STMs) are vital components of forest ecosystems. They serve as seed dispersers, herbivores, prey, and vectors of pathogens. The STM community structure responds dynamically to forest composition, disturbance, and management regimes. However, despite their central ecological functions and frequent occurrence, STMs remain underestimated. This narrative review aims to comprehensively synthesize existing literature on the reciprocal interactions between STMs, temperate and boreal ecosystems, and forest management. Specifically, we (1) define a group of STMs and their specificities; (2) discuss the influence of forest structure, disturbance, and management on STM populations; and (3) analyze the known direct and indirect effects of STMs on forest ecosystems and forestry. Full article
(This article belongs to the Section Forest Biodiversity)
33 pages, 1352 KiB  
Review
Delignification as a Key Strategy for Advanced Wood-Based Materials: Chemistry, Delignification Parameters, and Emerging Applications
by Paschalina Terzopoulou, Evangelia C. Vouvoudi and Dimitris S. Achilias
Forests 2025, 16(6), 993; https://doi.org/10.3390/f16060993 - 12 Jun 2025
Viewed by 296
Abstract
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has [...] Read more.
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has emerged as a promising pretreatment technique to enhance the properties of wood for advanced subsequent applications. This process selectively removes lignin while preserving the aligned cellulose structure, thereby improving mechanical strength, dimensional stability, and potential for functionalization. Various delignification methods, including alkaline, acidic, and reductive catalytic fractionation, have been explored to optimize the wood’s structural and chemical properties. When combined with densification or impregnation, delignified wood exhibits superior mechanical performance, making it suitable for a range of applications, including structural materials, optical devices, biomedical applications, and energy storage. This detailed review examines the chemistry and mechanisms of delignification, its impact on the physical and mechanical properties of wood, and its role in developing sustainable, high-performance bio-based materials. Furthermore, challenges and future opportunities in delignification research are discussed, highlighting its potential for next-generation wood-based innovative applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

21 pages, 5853 KiB  
Article
Regeneration Capability Comparison of Leaves Between Nodal Cuttings from Young Stems and Suckers and Its Histological Analysis in Triadica sebifera
by Yuan Chen, Yumei Xie, Keyuan Zheng, Yanru Fan, Huijing Zhou and Mulan Zhu
Forests 2025, 16(6), 992; https://doi.org/10.3390/f16060992 - 12 Jun 2025
Viewed by 139
Abstract
Triadica sebifera, an economically and medicinally valuable tree species native to China, was investigated for its in vitro regeneration potential using leaf explants from nodal cuttings of young stems and sprouts. This study evaluated the effects of basal media, plant growth regulators [...] Read more.
Triadica sebifera, an economically and medicinally valuable tree species native to China, was investigated for its in vitro regeneration potential using leaf explants from nodal cuttings of young stems and sprouts. This study evaluated the effects of basal media, plant growth regulators (PGRs), explant sources, and incision methods on adventitious shoot induction, supplemented by histological analysis. The highest shoot regeneration frequency (98.89%) and maximum shoot number (72) were achieved via direct organogenesis using sucker-derived nodal cuttings cultured on MS medium with 2 mg/L 6- benzyladenine (6-BA), 0.3 mg/L kinetin (KT), and 0.2 mg/L α-naphthaleneacetic acid (NAA). Under identical conditions, branch-derived explants showed lower regeneration (84.44%, 64 shoots). Transverse midvein incision proved most effective, with sucker-derived leaves exhibiting superior regeneration. Shoots elongated completely (100%) on Murashige and Skoog (MS) medium containing 0.3 mg/L 6-BA, 0.03 mg/L NAA, and activated charcoal. Rooting was optimal on MS medium with 0.3 mg/L indole-3-butyric acid (IBA), yielding a 98% acclimatization survival rate. Histological analysis revealed de novo meristem formation from parenchyma cells, confirming direct organogenesis without callus intermediation, further validating the enhanced regenerative capacity of sprout-derived explants. This efficient in vitro regeneration system provides a foundation for large-scale propagation and germplasm conservation of T. sebifera, while offering insights for woody plant regeneration studies. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

22 pages, 1527 KiB  
Article
Phytoaccumulation of Heavy Metals in Flowers of Tilia cordata Mill. and Soil on Background Enzymatic Activity
by Anna Figas, Magdalena Tomaszewska-Sowa, Anetta Siwik-Ziomek and Mirosław Kobierski
Forests 2025, 16(6), 991; https://doi.org/10.3390/f16060991 - 11 Jun 2025
Viewed by 140
Abstract
The phytoaccumulation of Fe, Mn, Cu, Zn, and Pb in Tilia cordata flowers and soils from six locations with varying degrees of anthropopressure in Bydgoszcz city and its surroundings (Poland) was assessed. Additionally, metal concentrations and soil enzymatic activity were analyzed. Enrichment Factor [...] Read more.
The phytoaccumulation of Fe, Mn, Cu, Zn, and Pb in Tilia cordata flowers and soils from six locations with varying degrees of anthropopressure in Bydgoszcz city and its surroundings (Poland) was assessed. Additionally, metal concentrations and soil enzymatic activity were analyzed. Enrichment Factor analysis revealed significant Zn enrichment at only one locality, supported by a geoaccumulation index value indicating moderate soil pollution. Total metal content in soils correlated with total organic carbon (TOC), while total iron content correlated with the clay fraction (<0.002 mm). Metal concentrations were comparable to the geochemical background levels for soils in Poland. Assessment of total metal contents in the topsoil surface layer from the six locations indicated that concentrations did not exceed permissible limits established by applicable legislation. The study showed that sampling locations influenced the activities of dehydrogenase (DHA), fluorescein diacetate hydrolysis (FDA), β-glucosidase (GL), and arylsulfatase (AR), and these activities correlated more strongly with pedogenic factors than with metal content. No elevated metal levels were detected in the dry mass of T. cordata flowers. Lead content did not exceed 10 mg·kg−1 dry matter, in accordance with World Health Organization (WHO) recommendations. Continued monitoring of trace element levels in soils and T. cordata flowers, particularly in urban environments, is advisable. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 1594 KiB  
Article
Effect of Lead on the Physiological Parameters and Elemental Composition of Pinus sylvestris L. and Picea abies (L.) H. Karst Seedlings
by Andrea Pogányová, Djordje P. Božović, Martin Bačkor, Michal Goga, Marián Tomka and Marko S. Sabovljević
Forests 2025, 16(6), 990; https://doi.org/10.3390/f16060990 - 11 Jun 2025
Viewed by 152
Abstract
Lead (Pb) pollution poses a long-term threat to forest ecosystems, particularly in mountainous areas affected by atmospheric deposition. This study examined the physiological and biochemical responses of juvenile Pinus sylvestris L. and Picea abies (L.) H. Karst seedlings to low concentrations of lead [...] Read more.
Lead (Pb) pollution poses a long-term threat to forest ecosystems, particularly in mountainous areas affected by atmospheric deposition. This study examined the physiological and biochemical responses of juvenile Pinus sylvestris L. and Picea abies (L.) H. Karst seedlings to low concentrations of lead nitrate during early development. Treatments simulated environmentally relevant Pb exposure and focused on pigment composition, oxidative stress markers, soluble protein and proline levels, and elemental content. Both species exhibited hormetic stimulation of photosynthetic pigments at lower Pb concentrations. In P. sylvestris, this effect declined at the highest dose, whereas P. abies maintained pigment levels, suggesting stronger regulatory control. Pb exposure reduced soluble proteins and induced species-specific alterations in MDA and proline levels. Correlation analysis revealed a well-integrated stress response in P. abies, while P. sylvestris showed a more fragmented pattern. Elemental analysis confirmed Pb accumulation primarily in roots, with higher levels in P. sylvestris. Both species experienced reduced root Mg, K, and Mn, indicating ionic imbalance due to Pb2+ interference. Zn content increased in P. sylvestris but decreased in P. abies, possibly reflecting differences in uptake regulation. These species-specific responses support the hypothesis that P. abies activates more effective defense mechanisms against Pb toxicity, while P. sylvestris exhibits a stronger physiological stress response. Full article
Show Figures

Figure 1

13 pages, 1993 KiB  
Article
Assessing the Sustainability of Timber Production Under Policy-Driven Logging: A Spatial Analysis from Southwestern Japan
by Yusuke Yamada, Hidesato Kanomata, Katsuto Shimizu, Wataru Murakami and Yuichi Yamaura
Forests 2025, 16(6), 989; https://doi.org/10.3390/f16060989 - 11 Jun 2025
Viewed by 203
Abstract
Promoting nature-positive forestry requires sustainable timber production that aligns with ecosystem service (ES) conservation. However, Japan’s recently implemented top-down timber production policy may undermine sustainability in local forest landscapes. We assessed the spatial sustainability of plantation forestry by comparing actual logged areas (2000–2019) [...] Read more.
Promoting nature-positive forestry requires sustainable timber production that aligns with ecosystem service (ES) conservation. However, Japan’s recently implemented top-down timber production policy may undermine sustainability in local forest landscapes. We assessed the spatial sustainability of plantation forestry by comparing actual logged areas (2000–2019) with allowable logging areas. Logged areas were identified using satellite imagery analysis, while allowable logging areas were estimated by excluding forests at high risk of landslides or with unclear ownership and dividing the remaining area by the standard logged age. While total logged area remained below the experience-based sustainable threshold, logging in profitable forests exceeded allowable levels in recent years. Forests with higher profitability experienced concentrated logging after 2015, indicating the strong influence of the national policy. This spatial imbalance threatens long-term sustainability by depleting productive forest patches while ignoring underutilized unprofitable forests. Our findings demonstrate the risks of uniform, production-oriented policies and highlight the need for adaptive, locally responsive forest governance. By integrating ecological and social constraints into spatial analysis, this study proposes a new sustainability measurement in line with nature-based solutions. Future forest policy must incorporate local knowledge and participatory decision-making to sustain forest ESs and timber supply under changing social and environmental conditions. Full article
(This article belongs to the Topic Nature-Based Solutions-2nd Edition)
Show Figures

Figure 1

Previous Issue
Back to TopTop