The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Plant Species
2.3. Experiments
2.4. Investigation of Root Geometry Distribution
2.5. Mathematical Models
2.5.1. Root Reinforcement Model
2.5.2. Root Distribution Model
2.5.3. Calibration of the Mathematical Models
3. Results
3.1. Root System Distribution
3.2. Reinforcement of the Tree Root System
3.3. Calibration of the Root Distribution Model
3.4. Root Reinforcement of Large Trees
4. Discussion
4.1. Evaluation of the Root Distribution Model
4.2. Tree Root Reinforcement in Forests
5. Conclusions
- Tree size significantly influences root reinforcement: Diameter at breast height (DBH) is a critical factor in determining tree root reinforcement. For Trema, root reinforcement values at 100 cm from the stem were 0.3, 2.4, 12.1, 28.7, and 55.1 kN/m for DBHs of 10, 20, 30, 40, and 50 cm, respectively. For Mallotus, the corresponding values were 0.6, 1.1, 6.3, 10.1, and 15.4 kN/m.
- Large trees provide significantly greater root reinforcement than smaller ones: The root reinforcement of Mallotus with a DBH of 30 cm was 8.8 and 10.3 times greater than that of a tree with a DBH of 10 cm at 50 cm and 100 cm from the stem, respectively. For Trema, these values were even higher—21.7 and 45 times greater—at the same distances.
- Root distribution is strongly affected by slope and soil conditions: Root systems on slopes exhibited marked asymmetry, with substantial differences in root biomass between the upslope and downslope sides. Local slope geometry and soil conditions play a significant role in shaping root distribution patterns. Full excavation of the root system remains the most reliable method to accurately assess its geometry and mechanical contribution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Zadelhoff, F.B.; Albaba, A.; Cohen, D.; Phillips, C.; Schaefli, B.; Dorren, L.K.A.; Schwarz, M. Introducing SlideforMAP: A probabilistic finite slope approach for modelling shallow-landslide probability in forested situations. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 22, 2611–2635. [Google Scholar] [CrossRef]
- Endo, T.; Tsuruta, T. Effects of tree root upon the shearing strengths of soils. Annu. Rep. Hokkaido Branch Tokyo For. Exp. Stn. 1969, 18, 168–179. [Google Scholar]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Hydrological effect of vegetation against rainfall-induced landslides. J. Hydrol. 2017, 549, 374–387. [Google Scholar] [CrossRef]
- Arnone, E.; Dialynas, Y.G.; Noto, L.V.; Bras, R.L. Accounting for Soil Parameter Uncertainty in a Physically Based and Distributed Approach for Rainfall- Triggered Landslides. Hydrol. Process. 2016, 30, 927–944. [Google Scholar] [CrossRef]
- Temgoua, A.G.T.; Kokutse, N.K.; Kavazović, Z. Influence of forest stands and root morphologies on hillslope stability. Ecol. Eng. 2016, 95, 622–634. [Google Scholar] [CrossRef]
- Vergani, C.; Schwarza, M.; Soldatia, M.; Cordab, A.; Giadrossich, F.; Chiaradiac, E.A.; Morandoc, P.; Bassanell, C. Root reinforcement dynamics in subalpine spruce forests following timber harvest: A case study in Canton Schwyz, Switzerland. Catena 2016, 143, 276–282. [Google Scholar] [CrossRef]
- Wu, T.H.; McKinell, W.P.; Swanston, D.N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 1979, 16, 19–33. [Google Scholar] [CrossRef]
- Waldron, L.J.; Dakessian, S. Soil reinforcement by roots: Calculation of increased soil resistance from root properties. Soil Sci. 1981, 132, 427–435. [Google Scholar] [CrossRef]
- Schwarz, M.; Lehmann, P.; Or, D. Quantifying lateral root reinforcement in steep slopes from a bundle of roots to tree stands. Earth Surf. Process. Landf. 2010, 35, 354–367. [Google Scholar] [CrossRef]
- Schwarz, M.; Giadrossich, F.; Cohen, D. Modeling root reinforcement using root-failure Weibull survival function. Hydrol. Earth Syst. Sci. 2013, 17, 4367–4377. [Google Scholar] [CrossRef]
- Operstein, V.; Frydman, S. The influence of vegetation on soil strength. Ground Improv. 2000, 4, 81–89. [Google Scholar] [CrossRef]
- Fan, C.C.; Su, C.F. Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecol. Eng. 2008, 33, 157–166. [Google Scholar] [CrossRef]
- Hubble, T.C.T.; Docker, B.B.; Rutherfurd, I.D. The role of riparian trees in maintaining riverbank stability: A review of Australian experience and practice. Ecol. Eng. 2010, 36, 292–304. [Google Scholar] [CrossRef]
- Pollen, N.; Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 2005, 41, W07025. [Google Scholar] [CrossRef]
- Cohen, D.; Schwarz, M.; Or, D. An analytical fiber bundle model for pullout mechanics of root bundles. J. Geophys. Res. 2011, 116, F03010. [Google Scholar] [CrossRef]
- Pollen, N. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 2007, 69, 197–205. [Google Scholar] [CrossRef]
- Tosi, M. Root tensile strength relationships and their slope stability implications of three shrubs species in the northern Apennines (Italy). Geomorphology 2010, 87, 268–283. [Google Scholar] [CrossRef]
- Pollen-Bankhead, N.; Simon, A. Enhanced application of root-reinforcement algorithms for bank-stability modeling. Earth Surf. Process. Landf. 2009, 34, 471–480. [Google Scholar] [CrossRef]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Fan, C.C.; Lu, J.Z.; Chen, H.H. The pullout resistance of plant roots in the field at different soil water conditions and root geometries. Catena 2021, 207, 105593. [Google Scholar] [CrossRef]
- O’Loughlin, C.L. An Investigation of the Stability of the Steepland Forest Soils in the Coast Mountains, Southwest British Columbia. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1972. [Google Scholar]
- Moos, C.; Bebi, P.; Graf, F.; Mattli, J.; Rickli, C.; Schwarz, M. How does forest structure affect root reinforcement and susceptibility to shallow landslides? Earth Surf. Process. Landf. 2016, 41, 951–960. [Google Scholar] [CrossRef]
- Schwarz, M.; Phillips, C.; Marden, M.; Mclvor, I.R.; Douglas, G.B.; Watson, A. Modelling of root reinforcement and erosion control by ‘Veronese’ poplar on pastoral hill country in New Zealand. N. Z. J. For. Sci. 2016, 46, 4. [Google Scholar] [CrossRef]
- Giadrossich, F.; Schwarz, M.; Marden, M.; Marrosu, R.; Phillips, C. Minimum representative root distribution sampling for calculating slope stability in Pinus radiata D.Don plantations in New Zealand. N. Z. J. For. Sci. 2020, 50, 5. [Google Scholar] [CrossRef]
- Stokes, A.; Atger, C.; Bengough, A.; Fourcaud, T.; Sidle, R. Desirable plant roottraits for protecting natural and engineered slopes against landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Chiatante, D.; Scippa, S.G.; Di Lorio, A.; Sarnataro, M. The influence of steep slopes on root system development. J. Plant Growth Regul. 2003, 21, 247–260. [Google Scholar] [CrossRef]
- Jagodzinski, A.M.; Ziółkowski, J.; Warnkowska, A.; Prais, H. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands. PLoS ONE 2016, 11, e0148668. [Google Scholar] [CrossRef] [PubMed]
- Laio, F.; D’odorico, P.; Ridolfi, L. An analytical model to relate the vertical root distribution to climate and soil properties. Geophys. Res. Lett. 2006, 33, L18401. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef]
- Vergani, C.; Schwarz, M.; Cohen, D.; Thormann, J.J.; Bischetti, G.B. Effect of root tensile force and diameter distribution variability on root reinforcement in the Swiss and Italian Alps. Can. J. For. Res. 2014, 44, 1426–1440. [Google Scholar] [CrossRef]
- Flepp, G.; Robyr, R.; Scotti, R.; Giadrossich, F.; Conedera, M.; Vacchiano, G.; Fischer, C.; Ammann, P.; May, D.; Schwarz, M. Temporal Dynamics of Root Reinforcement in European Spruce Forests. Forests 2021, 12, 815. [Google Scholar] [CrossRef]
- Giadrossich, F.; Cohen, D.; Schwarz, M.; Seddaiu, G.; Contran, N.; Lubino, M.; Valdés-Rodríguez, O.A.; Niedda, M. Modeling bio-engineering traits of Jatropha curcas L. Ecol. Eng. 2016, 89, 40–48. [Google Scholar]
- Chen, Y.-H.; Chung, A.-C.; Lin, W.-C.; Chou, F.-S.; Kung, K.-N. Survey of the plant species of the landslide site at Duona forest road. For. Res. Newsl. 2018, 25, 79–83. [Google Scholar]
- Schwarz, M.; Cohen, D.; Or, D. Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology 2012, 171, 190–200. [Google Scholar] [CrossRef]
- Tardío, G.; Gonzalez-Ollauri, A.; Mickovski, S.B. A non-invasive preferential root distribution analysis methodology from a slope stability apporach. Ecol. Eng. 2016, 97, 46–57. [Google Scholar] [CrossRef]
- Preti, F.; Dani, A.; Laio, F. Root profile assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes. Ecol. Eng. 2010, 36, 305–316. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Zaman-Allah, M.; Marimuthu, S.; Wani, S.P.; Kesava Rao, A.V.R. Root growth in Jatropha and its implications for drought adaptation. Biomass Bioenergy 2012, 39, 247–252. [Google Scholar] [CrossRef]
- Shrestha, M.B.; Horiuchi, M.; Yamadera, Y.; Miyazaki, T. A study on the adaptability mechanism of tree roots on steep slopes. In The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology. Developments in Plant and Soil Sciences; Stokes, A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 51–57. [Google Scholar]
- Raz-Yaseef, N.; Koteen, L.; Baldocchi, D.D. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar. J. Geophys. Res. Biogeosci. 2013, 118, 135–147. [Google Scholar] [CrossRef]
- Tanikawa, T.; Ikeno, H. Leaf litter thickness, but not plant species, can affect root detection by ground penetrating radar. Plant Soil 2016, 408, 271–283. [Google Scholar] [CrossRef]
- Yamase, K.; Tanikawa, T.; Dannoura, M.; Ohashi, M.; Todo, C.; Ikeno, H.; Aono, K.; Hirano, Y. Ground-penetrating radar estimates of tree root diameter and distribution under field conditions. Trees 2018, 32, 1657–1668. [Google Scholar] [CrossRef]
- Schiechtl, H.M. Bioengineering for Land Reclamation and Conservation; University of Alberta Press: Edmonton, AB, Canada, 1980. [Google Scholar]
- Mattheck, C. Thinking Tools After Nature; Verlag Forschungszentrum Karlsruhe: Karlsruhe, Germany, 2011. [Google Scholar]
- Dymond, J.R.; Ausseil, A.G.; Shepherd, J.D.; Buettner, L. Validation of a region-wide model of landslide susceptibility in the Manawatu-Wanganui region of New Zealand. Geomorphology 2006, 74, 70–79. [Google Scholar] [CrossRef]
- Douglas, G.B.; McIvor, I.R.; Manderson, A.K.; Koolaard, J.P.; Todd, M.; Braaksma, S.; Gray, R.A.J. Reducing shallow landslide occurrence in pastoral hill country using wide-spaced trees. Land Degrad. Dev. 2013, 24, 103–114. [Google Scholar] [CrossRef]
- Preti, F. Forest protection and protection forest: Tree root degradation over hydrological shallow landslides triggering. Ecol. Eng. 2013, 61, 633–645. [Google Scholar] [CrossRef]
- Gehring, E.; Conedera, M.; Maringer, J.; Giadrossich, F.; Guastini, E.; Schwarz, M. Shallow landslide disposition in burnt European beech (Fagus sylvatica L.) forests. Sci. Rep. 2019, 9, 8638. [Google Scholar] [CrossRef] [PubMed]
- Scheidl, C.; Heiser, M.; Kamper, S.; Thaler, T.; Klebinder, K.; Nagl, F.; Lechner, V. The Influence of Climate Change and Canopy Disturbances on Landslide Susceptibility in Headwater Catchments. Sci. Total Environ. 2020, 742, 140588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Peng, H.; Xu, L.; Sun, P. Statistical landslide susceptibility assessment using Bayesian logistic regression and Markov Chain Monte Carlo (MCMC) simulation with consideration of model class selection. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2023, 18, 211–227. [Google Scholar] [CrossRef]
- Oguz, E.A.; Benestad, R.E.; Parding, K.M.; Depina, I.; Thakur, V. Quantification of climate change impact on rainfall-induced shallow landslide susceptibility: A case study in central Norway. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2024, 18, 467–490. [Google Scholar] [CrossRef]
- Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [Google Scholar] [CrossRef]
- Chiang, S.H.; Chang, K.T. The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology 2011, 133, 143–151. [Google Scholar] [CrossRef]
- Hwang, T.; Band, L.E.; Hales, T.C.; Miniat, C.F.; Vose, J.M.; Bolstad, P.V.; Miles, B.; Price, K. Simulating vegetation controls on hurricane-induced shallow landslides with a distributed ecohydrological model. J. Geophys. Res. Biogeosci. 2015, 120, 361–378. [Google Scholar] [CrossRef]
Tree No. | DBH (cm) | Tree Height (m) | Maximum Root Length (cm) |
---|---|---|---|
W1 | 8 | 4.8 | 200 |
W2 | 7 | 4.6 | 200 |
W3 | 6.7 | 4.5 | 170 |
S1 | 6 | 3.9 | 245 |
S2 | 5.7 | 3.7 | 310 |
S3 | 39 | 10 | 400 |
Plant Species | Fo | α | k | β | λ | ω |
---|---|---|---|---|---|---|
Mallotus | 50.7 | 1.15 | 600,529 | 1 | 1.1 | 3.04 |
Trema | 14.19 | 1.61 | 1,282,281 | 1 | 1.02 | 6.22 |
Mallotus | Trema | ||||||
---|---|---|---|---|---|---|---|
η | ψ | μ | γ | η | ψ | μ | γ |
33.3 | 31.1 | 4488 | −0.462 | 42.04 | 49.7 | 6987 | −0.39 |
DBH (cm) | 10 | 20 | 30 | 40 | 50 | |
---|---|---|---|---|---|---|
Plant Species | ||||||
Mallotus | 0.6 | 1.1 | 6.3 | 10.1 | 15.4 | |
Trema | 0.3 | 2.4 | 12.1 | 28.7 | 55.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.-C.; Chen, G.-T.; Song, G.-Z. The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus. Forests 2025, 16, 1175. https://doi.org/10.3390/f16071175
Fan C-C, Chen G-T, Song G-Z. The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus. Forests. 2025; 16(7):1175. https://doi.org/10.3390/f16071175
Chicago/Turabian StyleFan, Chia-Cheng, Guan-Ting Chen, and Guo-Zhang Song. 2025. "The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus" Forests 16, no. 7: 1175. https://doi.org/10.3390/f16071175
APA StyleFan, C.-C., Chen, G.-T., & Song, G.-Z. (2025). The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus. Forests, 16(7), 1175. https://doi.org/10.3390/f16071175