A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LiDAR Data Collection and Preprocessing
2.3. Reference Data
2.3.1. Field Measurement Data Collection
2.3.2. Filtered Classification Reference Data
2.4. Methodology of PCSF
2.4.1. Calculating the Vegetation Cover Index
- Search for the lowest point in each grid.
- 2.
- Create a bottom buffer.
- 3.
- Compute the VCI.
2.4.2. Grid Classification
2.4.3. Partition Filtering
2.5. Accuracy Evaluation
2.5.1. Vegetation Cover Index Reliability Evaluation
2.5.2. Validation of the Filtering
2.5.3. Tree Height Extraction and Accuracy Evaluation
3. Results
3.1. Vegetation Cover Index Partition
3.2. Accuracy of Ground Filtering
3.2.1. Quality Evaluation
3.2.2. Quantitative Evaluation
3.3. Evaluation of Stand Parameter Extraction
4. Discussion
4.1. Parameter Sensitivity of PCSF
4.2. PCSF Performance Analysis
4.3. Advantages and Disadvantages of PCSF in Forested Areas
5. Conclusions
- (1)
- The VCI can be used as an evaluation index of forest vegetation cover, and its results are reliable. The VCI and CC fitting results are linearly distributed, showing a significant positive correlation, with an r of 0.708 (p < 0.05);
- (2)
- The PCSF effectively improves the filtering accuracy over a large forested area. Among the five methods, PCSF has the smallest total error (TE = 2.98%) and the highest accuracy (kappa = 88.29%), and the generated DEM is closest to the reference data.
- (3)
- The PCSF significantly improves the accuracy of tree height extraction, with rRMSE reduced by 1.24%–3.84% compared with other methods.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hunka, N.; May, P.; Babcock, C.; Rosa, J.; Soriano, M.; Saucedo, R.; Armston, J.; Santoro, M.; Suarez, D.; Herold, M.; et al. A geostatistical approach to enhancing national forest biomass assessments with Earth Observation to aid climate policy needs. Remote Sens. Environ. 2025, 318, 114557. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kaartinen, H.; Lehtomäki, M.; Pyörälä, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg, J.; et al. International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories. ISPRS J. Photogramm. Remote Sens. 2018, 144, 137–179. [Google Scholar] [CrossRef]
- Kašpar, V.; Zapletal, M.; Samec, P.; Komárek, J.; Bílek, J.; Juráň, S. Unmanned aerial systems for modelling air pollution removal by urban greenery. Urban For. Urban Green. 2022, 78, 127757. [Google Scholar] [CrossRef]
- Mercier, A.; Myllymäki, M.; Hovi, A.; Schraik, D.; Rautiainen, M. Exploring the potential of SAR and terrestrial and airborne LiDAR in predicting forest floor spectral properties in temperate and boreal forests. Remote Sens. Environ. 2025, 316, 114486. [Google Scholar] [CrossRef]
- Liang, X.; Kukko, A.; Hyyppä, J.; Lehtomäki, M.; Pyörälä, J.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Wang, Y. In-situ measurements from mobile platforms: An emerging approach to address the Old Challenges Associated with Forest Inventories. ISPRS J. Photogramm. Remote Sens. 2018, 143, 97–107. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Ni, W.; Mu, X.; Wu, X.; Laurin, G.; Vangi, E.; Stereńczak, K.; Chirici, G.; Yu, S.; et al. Validating GEDI tree canopy cover product across forest types using co-registered aerial LiDAR data. ISPRS J. Photogramm. Remote Sens. 2024, 207, 326–337. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual Tree Segmentation and Tree Species Classification in Subtropical Broadleaf Forests Using UAV-Based LiDAR, Hyperspectral, and Ultrahigh-Resolution RGB Data. Remote Sens. Environ. 2022, 280, 113143. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, J.; Liu, Y.; Wang, X.; Li, Y.; Zeng, Y.; Liu, P.; Wang, X.; Zhang, Z.; Zhang, J.; et al. Unveiling Scale-Dependent Elevational Patterns and Drivers of Tree β Diversity on a Subtropical Mountain Using Sentinel-2 Remote Sensing Data. Forest 2025, 16, 917. [Google Scholar] [CrossRef]
- Ma, K.; Xiong, Y.; Jiang, F.; Chen, S.; Sun, H. A Novel Vegetation Point Cloud Density Tree-Segmentation Model for Overlapping Crowns Using Uav Lidar. Remote Sens. 2021, 13, 1442. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, L.; Wang, D.; Guo, Q.; Zhao, R. FS-MVSNet: A Multi-View Image-Based Framework for 3D Forest Reconstruction and Parameter Extraction of Single Trees. Forests 2025, 16, 927. [Google Scholar] [CrossRef]
- Kükenbrink, D.; Marty, M.; Rehush, N.; Abegg, M.; Ginzler, C. Evaluating the potential of handheld mobile laser scanning for an operational inclusion in a national forest inventory-A Swiss case study. Remote Sens. Environ. 2025, 321, 114685. [Google Scholar] [CrossRef]
- Fareed, N.; Flores, J.P.; Das, A.K. Analysis of UAS-LiDAR Ground Points Classification in Agricultural Fields Using Traditional Algorithms and PointCNN. Remote Sens. 2023, 15, 483. [Google Scholar] [CrossRef]
- Cai, S.; Yu, S.; Hui, Z.; Tang, Z. ICSF: An Improved Cloth Simulation Filtering Algorithm for Airborne LiDAR Data Based on Morphological Operations. Forests 2023, 14, 1520. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Xi, X.; Luo, S.; Zhu, X.; Li, G.; Liu, H.; Tian, J.; Zhang, S. Assessing the Impacts of Various Factors on Treetop Detection Using LiDAR-Derived Canopy Height Models. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10099–10115. [Google Scholar] [CrossRef]
- Vosselman, G. Slope Based Filtering of Laser Altimetry Data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 935–942. [Google Scholar]
- Sithole, G.; Vosselman, G. Filtering of Laser Altimetry Data Using a Slope Adaptive Filter. Int. Arch. Photogramm. Remote Sens. 2001, 34, 203–210. [Google Scholar]
- Nie, S.; Wang, C.; Dong, P. A Revised Progressive TIN Densification for Filtering Airborne LiDAR Data. Measurement 2017, 104, 70–77. [Google Scholar] [CrossRef]
- Ni, Z.; Shi, K.; Cheng, X.; Wu, X.; Yang, J.; Pang, L.; Shi, Y. Research on UAV-LiDAR-Based Detection and Prediction of Tree Risks on Transmission Lines. Forests 2025, 16, 578. [Google Scholar] [CrossRef]
- Li, F.; Zhu, H.; Luo, Z.; Shen, H.; Li, L. An Adaptive Surface Interpolation Filter Using Cloth Simulation and Relief Amplitude for Airborne Laser Scanning Data. Remote Sens. 2021, 13, 2938. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved Progressive TIN Densification Filtering Algorithm for Airborne LiDAR Data in Forested Areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Yu, Y. Multi-Criteria Filtration and Extraction Strategy for Understory Elevation Control Points Using ICESat-2 ATL08 Product. Forests 2024, 15, 2064. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Ge, X.; Li, Y.; Liu, Y.; Bu, X.; Liang, X. An Improved Knowledge-Based Ground Moving Target Relocation Algorithm for a Lightweight Unmanned Aerial Vehicle-Borne Radar System. Remote Sens. 2025, 17, 1182. [Google Scholar] [CrossRef]
- Cai, S.; Liang, X.; Yu, S. A Progressive Plane Detection Filtering Method for Airborne LiDAR Data in Forested Landscapes. Forests 2023, 14, 498. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Pingel, T.J.; Clarke, K.C.; McBride, W.A. An Improved Simple Morphological Filter for the Terrain Classification of Airborne LIDAR Data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Hui, Z.; Hu, Y.; Yevenyo, Y.Z.; Yu, X. An Improved Morphological Algorithm for Filtering Airborne LiDAR Point Cloud Based on Multi-Level Kriging Interpolation. Remote Sens. 2016, 8, 35. [Google Scholar] [CrossRef]
- Hui, Z.; Jin, S.; Xia, Y.; Nie, Y.; Xie, X.; Li, N. A Mean Shift Segmentation Morphological Filter for Airborne LiDAR DTM Extraction under Forest Canopy. Opt. Laser Technol. 2021, 136, 106728. [Google Scholar] [CrossRef]
- Moudrý, V.; Klápště, P.; Fogl, M.; Gdulová, K.; Barták, V.; Urban, R. Assessment of LiDAR Ground Filtering Algorithms for Determining Ground Surface of Non-Natural Terrain Overgrown with Forest and Steppe Vegetation. Meas. J. Int. Meas. Confed. 2020, 150, 107047. [Google Scholar] [CrossRef]
- Chen, C.; Guo, J.; Wu, H.; Li, Y.; Shi, B. Performance Comparison of Filtering Algorithms for High-Density Airborne LiDAR Point Clouds over Complex Landscapes. Remote Sens. 2021, 13, 2663. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Ma, K.; Li, C.; Jiang, F.; Xu, L.; Yi, J.; Huang, H.; Sun, H. Improvement of Treetop Displacement Detection by UAV-LiDAR Point Cloud Normalization: A Novel Method and A Case Study. Drones 2023, 7, 262. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Long, B.; Qin, S.; Yan, Y.; Wang, L.; Qin, J. Method for determining cloth simulation filtering threshold value based on Curvature Value of Fitting Curve. Int. J. Grid Util. Comput. 2021, 12, 276–286. (In Chinese) [Google Scholar] [CrossRef]
- Wan, P.; Zhang, W.; Skidmore, A.K.; Qi, J.; Jin, X.; Yan, G.; Wang, T. A Simple Terrain Relief Index for Tuning Slope-Related Parameters of LiDAR Ground Filtering Algorithms. ISPRS J. Photogramm. Remote Sens. 2018, 143, 181–190. [Google Scholar] [CrossRef]
- Qin, N.; Tan, W.; Ma, L.; Zhang, D.; Guan, H.; Li, J. Deep learning for filtering the ground from ALS point clouds: A dataset, evaluations and issues. ISPRS J. Photogramm. Remote Sens. 2023, 202, 246–261. [Google Scholar] [CrossRef]
- Grilli, E.; Menna, F.; Remondino, F. A Review of Point Clouds Segmentation and Classification Algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 339–344. [Google Scholar] [CrossRef]
- Yang, A.; Wu, Z.; Yang, F.; Su, D.; Ma, Y.; Zhao, D.; Qi, C. Filtering of Airborne LiDAR Bathymetry Based on Bidirectional Cloth Simulation. ISPRS J. Photogramm. Remote Sens. 2020, 163, 49–61. [Google Scholar] [CrossRef]
- Ni, H.; Lin, X.; Zhang, J.; Chen, D.; Peethambaran, J. Joint Clusters and Iterative Graph Cuts for ALS Point Cloud Filtering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 990–1004. [Google Scholar] [CrossRef]
- Qin, L.; Wu, W.; Tian, Y.; Xu, W. LiDAR Filtering of Urban Areas with Region Growing Based on Moving-Window Weighted Iterative Least-Squares Fitting. IEEE Geosci. Remote Sens. Lett. 2017, 14, 841–845. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Zhang, S.; Ding, L. A Point Clouds Filtering Algorithm Based on Grid Partition and Moving Least Squares. Procedia Eng. 2012, 28, 476–482. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X. Filtering Airborne LiDAR Data by Embedding Smoothness-Constrained Segmentation in Progressive TIN Densification. ISPRS J. Photogramm. Remote Sens. 2013, 81, 44–59. [Google Scholar] [CrossRef]
- Pfeifer, N.; Stadler, P.; Briese, C. Derivation of Digital Terrain Models in the SCOP++ Environment. In Proceedings of the OEEPE Workshop on Airborne Laser scanning and Interferometric SAR for Detailed Digital Terrain Models, Stockholm, Sweden, 1–3 March 2001; p. 3612. [Google Scholar]
- Rusu, R.B.; Cousins, S. 3D Is Here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, X.; Su, Y.; Li, W.K.; Hu, T.; Liu, J.; Guo, Q. A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas. Can. J. Remote Sens. 2018, 44, 287–298. [Google Scholar] [CrossRef]
- Ma, Q.; Su, Y.; Guo, Q. Comparison of Canopy Cover Estimations from Airborne LiDAR, Aerial Imagery, and Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4225–4236. [Google Scholar] [CrossRef]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M. Generating Spike-Free Digital Surface Models Using LiDAR Raw Point Clouds: A New Approach for Forestry Applications. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 104–114. [Google Scholar] [CrossRef]
- Wulder, M.; Niemann, K.O.; Goodenough, D.G. Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery. Remote Sens. Environ. 2000, 73, 103–114. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating Plot-Level Tree Heights with Lidar: Local Filtering with a Canopy-Height Based Variable Window Size. Comput. Electron. Agric. 2003, 37, 71–95. [Google Scholar] [CrossRef]
- Sithole, G.; Vosselman, G. Report: ISPRS Comparison of Filters; ISPRS Commission III. Working Group; Department of Earth Observation and Space Systems, Delft University of Technology: Delft, The Netherlands, 2003; pp. 71–78. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating Individual Trees in a Savanna Woodland Using Small Footprint LiDAR Data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef]
- Ma, K.; Chen, Z.; Fu, L.; Tian, W.; Jiang, F.; Yi, J.; Du, Z.; Sun, H. Performance and Sensitivity of Individual Tree Segmentation Methods for UAV-LiDAR in Multiple Forest Types. Remote Sens. 2022, 14, 298. [Google Scholar] [CrossRef]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting Tree Crowns from Terrestrial and Mobile LiDAR Data by Exploring Ecological Theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, W.; Liang, X.; Wan, P.; Qi, J.; Yu, S.; Yan, G.; Shao, J. Filtering Airborne LiDAR Data through Complementary Cloth Simulation and Progressive TIN Densification Filters. Remote Sens. 2019, 11, 1037. [Google Scholar] [CrossRef]
- Chen, C.; Wang, M.; Chang, B.; Li, Y. Multi-Level Interpolation-Based Filter for Airborne LiDAR Point Clouds in Forested Areas. IEEE Access 2020, 8, 41000–41012. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J. Segmentation-Based Filtering of Airborne LiDAR Point Clouds by Progressive Densification of Terrain Segments. Remote Sens. 2014, 6, 1294–1326. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Cheng, L.; Yao, M.; Deng, S.; Li, M.; Cai, D. Airborne Laser Scanning Point Clouds Filtering Method Based on the Construction of Virtual Ground Seed Points. J. Appl. Remote Sens. 2017, 11, 016032. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Lu, D.; Chen, E.; Wei, X. Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne LiDAR Data. Remote Sens. 2020, 12, 1101. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A. Integration of LiDAR and Landsat Data to Estimate Forest Canopy Cover in Coastal British Columbia. Photogramm. Eng. Remote Sens. 2014, 80, 953–961. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Yan, C.; Dai, H.; Liu, G.; Guo, J. An Improved Multi-Resolution Hierarchical Classification Method Based on Robust Segmentation for Filtering ALS Point Clouds. Int. J. Remote Sens. 2016, 37, 950–968. [Google Scholar] [CrossRef]
- Dai, H.; Hu, X.; Shu, Z.; Qin, N.; Zhang, J. Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction. Remote Sens. 2023, 15, 961. [Google Scholar] [CrossRef]
- Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet-Brunet, V. Semantic Segmentation of Forest Stands of Pure Species Combining Airborne Lidar Data and Very High-Resolution Multispectral Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 126, 129–145. [Google Scholar] [CrossRef]
Reference | Filtered | Number of References | Metrics of Quantitative Evaluations | ||
---|---|---|---|---|---|
Ground | Non-Ground | ||||
Ground | a | b | e = a + b | TI 1 = b/e | Po = (a + d)/n |
Non-ground | c | d | f = c + d | TII 2 = c/f 1 | Pc = (e × g + f × h)/n2 |
Number of filtered | g = a + c | h = b + d | n = e + f | TE 3 = (b + c)/n | kappa 4 = (Po − Pc)/(1 − Pc) |
Method | Parameters | Value Range | Optimum Value | Unit |
---|---|---|---|---|
Slope-based | Grid size | 1–10 | 3 | m |
Search window | 1–10 | 2 | m | |
Maximum slope | 1–10 | 5 | degree | |
PTD 1 | Window size | 5–50 | 20 | m |
Terrain angle | Defaulted 88° | Defaulted 88° | degree | |
Iteration angle | 15–45 | 30 | degree | |
Iteration distance | 0.5–2 | 1.5 | m | |
MSFF 2 | Grid resolution | 1–10 | 4 | m |
CSF 3 | Rigidness | 1,2,3 | 3 | |
Grid resolution (GR) | 0.2–2 | 0.3 | m | |
distance threshold (hcc) | 0.4–2 | 1.6 | m |
Method | Type I Error (%) | Type II Error (%) | Total Error (%) | Kappa Coefficient (%) |
---|---|---|---|---|
Slop-based | 5.50 | 4.53 | 4.26 | 84.57 |
PTD 1 | 24.71 | 2.67 | 6.35 | 82.53 |
MSFF 2 | 9.79 | 3.82 | 5.29 | 86.21 |
CSF 3 | 7.53 | 4.20 | 4.25 | 85.39 |
PCSF 4 | 5.03 | 1.36 | 2.13 | 90.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Yi, J.; Sun, H.; Chen, S.; Li, C.; Gong, M. A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China. Forests 2025, 16, 1179. https://doi.org/10.3390/f16071179
Ma K, Yi J, Sun H, Chen S, Li C, Gong M. A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China. Forests. 2025; 16(7):1179. https://doi.org/10.3390/f16071179
Chicago/Turabian StyleMa, Kaisen, Jing Yi, Hua Sun, Song Chen, Chaokui Li, and Ming Gong. 2025. "A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China" Forests 16, no. 7: 1179. https://doi.org/10.3390/f16071179
APA StyleMa, K., Yi, J., Sun, H., Chen, S., Li, C., & Gong, M. (2025). A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China. Forests, 16(7), 1179. https://doi.org/10.3390/f16071179