Special Issue "Advances in Plant Breeding"

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: 30 September 2021.

Special Issue Editors

Prof. Dr. Radu E. Sestras
E-Mail Website
Guest Editor
Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372, Cluj-Napoca, Romania
Interests: genetics and plant breeding; sustainable agriculture; horticulture; forestry; biostatistics; biodiversity
Special Issues and Collections in MDPI journals
Prof. Dr. Jaime Prohens
E-Mail Website
Guest Editor
Institute for Conservation and Improvement of Valencian Agrodiversity, Universitat Politècnica de València, Camí de Vera 14, 46022 Valencia, Spain
Interests: plant breeding; genomics; genetic resources; in vitro culture; experimental breeding populations
Assoc. Prof. Dr. Adriana F. Sestras
E-Mail Website
Guest Editor
Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372, Cluj-Napoca, Romania
Interests: biostatistics; biodiversity and genetic resources; plant breeding; vegetation ecology
Special Issues and Collections in MDPI journals
Dr. Mariola Plazas
E-Mail Website
Guest Editor
Institute for Conservation and Improvement of Valencian Agrodiversity, Universitat Politècnica de València, Camí de Vera 14, 46022 Valencia, Spain
Interests: breeding for quality; abiotic stress breeding; genetic diversity; phenomics; introgression breeding
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The efficient management of plant genetic resources, represented by the diversity of cultivated species but also by spontaneous flora that can provide genes of interest for resistance to abiotic and biotic stress, is of paramount importance for present and future agriculture and its sustainability. The broadening genetic bases of crop production and the need for a greater efficiency in the use of resources (energy, fertilizers, water, etc.) must be taken into account in the current conditions and for the development of sustainable agriculture and food systems. New improved cultivars are one of the most important factors in agricultural production, playing an essential role in ensuring a sustainable agriculture. This Special Issue aims to promote research on plant breeding, aimed at the topical problems of mankind: the continuous growth of the world’s population, which is already 7.8 billion; climate change and the action of multiple and various factors of abiotic stress; restriction in available land areas with favorable conditions for the cultivation of agricultural plants; impoverishment and the crisis of fresh water; desertification; salinization; aggressiveness and intensification of the attack of pathogens and harmful insects, or the appearance of new pathogens or strains of virulence; and the development of agricultural products with better quality. Along with classical breeding objectives and achievements, aimed at satisfying the current requirements of producers and farmers, traders, industry, market, and consumers or users, in this Special Issue we expect contributions about the use and application of innovative modern methodologies in plant breeding for the development of new crop varieties for current and future agriculture. This includes the development of varieties for suboptimal cultivation conditions to achieve sustainable agricultural production and increased food quality and security, but also to supply the raw materials for innovative industrial products and the living needs of mankind.

Prof. Dr. Radu E. Sestras
Prof. Dr. Jaime Prohens
Dr. Adriana F. Sestras
Dr. Mariola Plazas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • conventional plant breeding
  • objectives and methods of plant breeding
  • genetic resources in plant breeding
  • abiotic and biotic stress traits
  • breeding for quality
  • achievements and perspectives in plant breeding
  • broadening the genetic base of crops
  • conservation and use of genetic resources
  • gene background
  • hybridization
  • polyploidy
  • mutations
  • inbreeding and heterosis
  • biotechnology and molecular tools in plant breeding

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Population Structure and Genetic Diversity of Cucurbita moschata Based on Genome-Wide High-Quality SNPs
Plants 2021, 10(1), 56; https://doi.org/10.3390/plants10010056 - 29 Dec 2020
Viewed by 684
Abstract
Pumpkins (Cucurbita moschata) are one of the most important economic crops in genus Cucurbita worldwide. They are a popular food resource and an important rootstock resource for various Cucurbitaceae. Especially, C. moschata is widely used as a rootstock for the commercial [...] Read more.
Pumpkins (Cucurbita moschata) are one of the most important economic crops in genus Cucurbita worldwide. They are a popular food resource and an important rootstock resource for various Cucurbitaceae. Especially, C. moschata is widely used as a rootstock for the commercial production of bloomless cucumbers in East Asia. Since the genetic diversity of the commercial rootstock varieties is narrow, there has been an increasing demand for the trait development of abiotic and biotic stress tolerance breeding. In this study, 2071 high-quality SNPs that were distributed evenly across 20 chromosomes of pumpkins were discovered through the genotyping-by-sequencing (GBS) analysis of 610 accessions of C. moschata germplasm with a global origin. Using these SNPs, various analyses of the genetic diversity and the population structure were performed. Three subgroups were clustered from the germplasm collection, which included East Asia, Africa, and America, and these areas were included the most in each subgroup. Among those groups, accessions from Africa and South Asia showed the highest genetic diversity, which was followed by the Mexico accessions. This result reflected that large gene pools that consist of various native landraces have been conserved in those of countries. Based on the genetic diversity, we finally constructed the C. moschata core collection, which included 67 representative accessions from the 610 germplasms. Five morphological traits that are important in commercial grafting and rootstock seed production, which include the cotyledon length, the cotyledon width, the hypocotyl length, the internode length, and the number of female flowers, were investigated for three years and used to confirm the validity of the core collection selection. The results are expected to provide valuable information about the genetic structure of the worldwide C. moschata germplasm and help to create new gene pools to develop genetically diverse rootstock breeding materials. Full article
(This article belongs to the Special Issue Advances in Plant Breeding)
Show Figures

Figure 1

Article
Development of Interspecific Hybrids between a Cultivated Eggplant Resistant to Bacterial Wilt (Ralstonia solanacearum) and Eggplant Wild Relatives for the Development of Rootstocks
Plants 2020, 9(10), 1405; https://doi.org/10.3390/plants9101405 - 21 Oct 2020
Cited by 1 | Viewed by 866
Abstract
Bacterial wilt caused by Ralstonia solanacerum is one of the most economically and destructive eggplant diseases in many tropical and subtropical areas of the world. The objectives of this study were to develop interspecific hybrids, as potential rootstocks, between the eggplant (Solanum [...] Read more.
Bacterial wilt caused by Ralstonia solanacerum is one of the most economically and destructive eggplant diseases in many tropical and subtropical areas of the world. The objectives of this study were to develop interspecific hybrids, as potential rootstocks, between the eggplant (Solanum melongena) bacterial wilt resistant line EG203 and four wild accessions (S. incanum UPV1, S. insanum UPV2, S.anguivi UPV3, and S. sisymbriifolium UPV4), and to evaluate interspecific hybrids along with parents for resistance to bacterial wilt strains Pss97 and Pss2016. EG203 was crossed successfully with wild accessions UPV2 and UPV3 and produced viable seeds that germinated when wild accessions were used as a maternal parent in the crosses. In addition, viable interspecific hybrids between EG203 and UPV1 were obtained in both directions of the hybridization, although embryo rescue had to be used. Hybridity was confirmed in the four developed interspecific hybrid combinations with three SSR markers. EG203 was resistant to both strains Pss97 and Pss2016, while UPV1 and UPV3 were, respectively, resistant and moderately resistant to Pss2016. The four interspecific hybrids with UPV2, UPV3, and UPV1 were susceptible to both bacterial wilt strains, indicating that the resistance of EG203, UPV1, and UPV3 behaves as recessive in interspecific crosses. However, given the vigor of interspecific hybrids between eggplant and the three cultivated wild species, these hybrids may be of interest as rootstocks. However, the development of interspecific hybrid rootstocks resistant to bacterial wilt will probably require the identification of new sources of dominant resistance to this pathogen in the eggplant wild relatives. Full article
(This article belongs to the Special Issue Advances in Plant Breeding)
Show Figures

Figure 1

Back to TopTop