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Abstract: There has been an increased interest in oilseed crops for agro-industry research and
development breeding programs to secure sustainable food and agriculture. The introgression of
exotic genotypes of oilseed Brassica into cultivated relatives is inevitable in the genetic improvement
of oilseed crops. This experimental attempt aimed to characterize the morphological and molecular
basis for the identification and characterization of some Brassica genotypes. Fatty acid profile, yield,
and morphology are under genetic control and can be used to identify genotypes. Characterization
and identification were fulfilled for five accessions from Brassica spp. Plant height, height of first
branch, number of branches and pods per plant, seed yield per plant, average pod length, number
of seeds per pod, protein and oil contents (%), and fatty acid profile were examined. Besides,
the relationship between seed yield and seed yield-contributing characteristics was estimated, as
well as the phylogenetic relationship of the internal transcribed spacer (ITS). The genotypes varied
significantly for all examined traits, taking into account the most important traits: seed yield per
plant and oil content. For example, oil content in the samples ranged between 41.1 and 49.3%. Path
analysis results showed a high and positive direct effect between each number of primary branches
and the number of pods per plant with seed yield per plant (0.48). The morphological and molecular
observations suggest that the Fay1, Fay3, Fay4, and Fay6 accessions belong to Brassica rapa, while
Fay2 belongs to Brassica carinata. It can be concluded based on the present findings that the Fay3
genotype with the highest oil content and the lowest erucic acid content compared to the other
genotypes can be proposed as a potential donor for future breeding programs for oil production and
quality, while Fay1 can be utilized as donor to increase the seed yield per plant.

Keywords: Brassica; morphological traits; oil quality; internal transcribed spacer; molecular analysis;
genetic diversity; path analysis

1. Introduction

The agricultural sector is relied on all over the world to bridge the gap between
the steady increase in population and agricultural outputs in order to secure food and
sustainable agriculture globally. To achieve this, new promising food crops must be
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introduced into breeding programs to adapt them for cultivation in the different agricultural
areas, each according to its environmental conditions.

The family of Brassicaceae was characterized by morphological and phytochemical
traits and had a wide variation. These characteristics have been used to evaluate the
diversity between different plant species and to identify cultivars [1–3]. The profile of
morphological traits is considered under genetic and environmental control. Accurate iden-
tification is key to breeding studies and is necessary for several disciplines [4]. To ensure
the success of a breeding program aimed at improving desirable traits, it is important to
search for wide genetic variance between and/or within species to select valuable parents.
Ethiopian mustard is usually cultivated for its oil, which is rich in erucic (~40%) and
linoleic acids [5–7]. One of the best ways to breed a Brassica species is to look at the oil
content [8]. A high level of variability is revealed in B. carinata [9] and B. juncea [10] for
some agro-morphological traits. Different tools are available to study genetic variability
and the relationships among accessions including morphological characterization, seed
yield components, multivariate statistical analyzes, principal component analysis, and
molecular markers [11,12]. Different techniques of DNA polymorphism analysis can be
used to identify the phylogenetic relationships of plant species. Among these techniques,
ITS is a widely used technique in phylogenetic studies of plants [13,14]. ITS sequences
have been developed to be distinct for growing species and can be used as a barcode to
distinguish between plant species [15,16]. A large amount of variability has been identi-
fied in ITS, including the presence of polymorphic copies of ITS [17,18]. Morphological,
biochemical, and posterior molecular classification can be used to analyze and identify
diversity. Morphological markers have been used mainly for diversity analysis, and are
still in practice. Of course, these were naturally occurring variants of a given plant genus.
Upon the advancement of genomic tools, molecular markers have become the implemented
alternative for evaluating genetic diversity [19,20]. Path analysis may provide insight into a
complex relationship between different characteristics in a biological system, as well as in-
formation about whether the observed correlation results from direct influence or through
other variables. Path Coefficient Analysis is a very important statistical tool that can be
successfully used to divide the correlation coefficient into direct and indirect influence of
independent variables on the dependent variable, such as yield in rapeseed [21].

The current study aimed to identify promising Ethiopian Brassica landraces by using
morphological formation, fatty acid profile, and molecular characterization. Given these
considerations, the current research also aimed to explore the correlation coefficients among
various vigor and vigor contributing traits, as well as to evaluate the direct and indirect
effects of vigor on other traits.

2. Materials and Methods
2.1. Plant Material

After identification, the authors of this study renamed five Ethiopian Brassica lan-
draces genotypes as Fay1, Fay2, Fay3, Fay4, and Fay6. These landraces were provided by
Dr. Behailo Guta, ONG, Addis Ababa, Ethiopia for use as plant material in this study. The
current study was carried out at Demo Farm, which is considered a newly reclaimed soil
(Southeast Fayoum; 29◦17′ N; 30◦53′ E), Fayoum, Egypt, during two successive seasons:
2017/2018 and 2018/2019. A complete randomized block design was used, with three plots
as three replications in the two seasons. The experimental area was divided into plots and
each plot consisted of 3.5 m ridges 60 cm apart. Planting was conducted in hills that were
10 cm apart on one side of the ridge. Thinning was performed four weeks after planting,
and two plants have remained on each hill.

2.2. Vegetative Growth Characteristics

Morphological parameters were collected at the harvest stage and measured using
10 random plants in each plot. Observations were recorded on nine traits, namely plant
height (PH, cm), height of first branch (HFB, cm), number of primary branches per plant
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(NPB), number of pods per plant (NPP), average pod length (PL, cm), number of seeds
per pod (NSP), seed yield per plant (SYP, g), while seed protein was measured by Near
Infrared Analyzer [22].

2.3. Extraction of Crude Oil from Seeds

Seeds of Brassica spp. were carefully washed to remove any foreign matter, dried to
the necessary moisture level, and then crushed by a blender. A conventional method of oil
extraction was used [23]. The collected oil was dried over anhydrous sodium sulfate, the
mass of oil was determined using the gravimetric method, and the oil was then stored in
dark brown bottles at −20 ◦C until examination. The experimental assays were conducted
in triplicate and were completely randomized.

2.4. Gas Chromatography Analysis of Oils

After preliminary derivatization to form fatty acid methyl esters (FAME), the fatty
acid profiles of the crude oil samples were evaluated using gas chromatography (GC-type
CG-2010 Plus, Shimadzu), in agreement with the method described by Mohdaly et al. [24].
The fatty acid composition values were expressed as a percentage (percentage, w/w).

2.5. Morphological Data Analysis

Data were tested for normal distribution. Randomized complete blocks design with
three replications was practiced. The resulting data were submitted to analysis of variance
(ANOVA) using IBM® SPSS® (SPSS Inc., IBM Corporation, NY, USA) Statistics version 25
for Windows (R). Differences among genotypes were tested with the Bonferroni adjustment
correction post-hoc test (Level of significance p < 0.05, 0.01, and 0.001) [25].

2.6. Path Analysis

In addition to using the correlation coefficient, positive or negative effects for path
analysis results were used. Path analysis results are important when direct and indirect
effects are interpreted. The importance of the path analysis results lies in the case of
interpretation of direct and indirect effects.

Analysis of path coefficients was performed following the procedure developed by
Dewey and Lu [26] using IBM SPSS AMOS 24 [27]. Path coefficient analysis was performed
assuming that seed yield per plant and oil content (%) functioned as dependent variables,
and the other traits were considered as independent variables.

2.7. Molecular Characterization

Following the Cetyl Trimethyl Ammonium Bromide (CTAB) extraction procedure,
total DNA was extracted from fresh leaves (3–4 weeks old seedling) of plants selected
randomly from each genotype [28]. Agarose gel electrophoresis was used to assess the
quality and quantity of DNA samples, which were used for setup PCR amplification.

the its region of the nuclear rdna was amplified by pcr using the primers of its1 and
its4 [29]. clear and sharp amplification bands were purified and sequenced for phylogenetic
studies. the amplified fragment sequence 750 bp was identified and analyzed using a 3130
genetic analyzer. phylogenetic tools have allowed many genera and species to be grouped
using traditional taxonomic methods. the sequence was sent to the blast database to look
for homologies with other its sequences. after comparing the sequence of the studied strain
with the sequences sent to genebank, the percentages of similarity and accession numbers
were obtained. nucleotide variation of the nuclear its regions was used to study phylogenetic
relationships among the examined genotypes. the fraction of nitrogenous bases in a dna or
rna molecule that are either guanine (g) or cytosine (c) is known as gc-content (or guanine–
cytosine content) (c). this metric represents the percentage of g and c bases in a total of four
bases, which includes adenine and thymine in dna and adenine and uracil in rna. the mol (%)
of nucleotide a, c, g, and t were calculated using bioedit 7.2 program to differentiate between
nucleotides through selected landraces. analyses of the its gene using different restriction
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enzymes (eco ri, nco i, bam hi, tfi i, agsi, eco 571, and cfr10i) were fulfilled. pcr-restriction
fragment length polymorphism (pcr-rflp): the its pcr products of the five samples were
digested using different restriction enzymes. the digested products were fractionated and the
brassiceae isolates were characterized.

3. Results
3.1. Agromorphological Traits

Variance analysis for all agronomic traits as well as the protein content (%) indicates
significant differences between accessions over two seasons (Table 1). The Fay1 accession
awarded the highest values of plant height, first branch height, number of branches per
plant, number of pods per plant, seed yield per plant, protein content (%), average pod
length, and number of seeds per pod.

Table 1. Plant height (cm), height of first branch (cm), number of branches and pods per plant, seed yield per plant (g),
length of pods (cm), and number of seeds per pod, as well as protein and oil contents (%) of the evaluation Brassica
accessions for two growing seasons.

Accession
Fay1 Fay2 Fay3 Fay4 Fay6

2017/2018

Plant height 175.3 a ± 4.9 145.9 b ± 4.1 141.8 b ± 5.1 141.2 b ± 5.8 142.0 b ± 1.3

Height of first branch 14.0 e ± 0.4 32.9 b ± 0.5 43.5 a ± 0.8 17.3 d ± 0.7 23.3 c ± 0.7

No. of branches per plant 22.2 a ± 0.8 13.7 c ± 0.6 8.5 d ± 0.4 20.7 a ± 0.5 17.8 b ± 0.4

No. of pods per plant 2968.7 a ± 5.3 1992.9 d ± 3.4 1147.8 e ± 13.3 2764.3 b ± 9.4 2536.5 c ± 18.2

Seed yield per plant 87.8 a ± 2.6 49.6 d ± 0.4 37.9 e ± 0.6 60.2 b ± 2.22 56.6 c ± 0.5

Average pod length 5.2 a ± 0.05 3.3 c ± 0.1 2.5 d ± 0.2 5.1 a ± 0.1 4.7 b ± 0.1

Number of seeds per pod 21.3 a ± 0.3 13.0 d ± 0.7 7.8 e ± 0.3 19.8 b ± 0.5 17.3 c ± 0.3

Protein content 31.2 a ± 0.2 23.0 c ± 0.5 26.3 b ± 1.4 26.8 b ± 0.2 26.5 b ± 0.7

Oil content 41.2 c ± 0.4 44.8 b ± 0.2 49.2 a ± 0.5 44.8 b ± 0.9 42.4 c ± 0.5

2018/2019

Plant height 165.2 a ± 4.3 160.0 a ± 2.1 141.0 b ± 5.1 136.5 b ± 5.8 134.3 b ± 5.1

Height of first branch 14.3 e ± 0.3 33.1 b ± 0.6 43.8 a ± 0.9 19.3 d ± 0.5 23.4 c ± 0.4

No. of branches per plant 21.8 a ± 0.6 15.9 c ± 0.5 7.3 d ± 0.4 20.3 b ± 0.5 19.7 b ± 0.5

No. of pods per plant 2970.3 a ± 5.6 1979.5 d ± 3.7 1130.7 e ± 7.3 2741.3 b ± 14.2 2565.4 c ± 11.4

Seed yield per plant 90.3 a ± 1.1 51.2 c ± 1.1 37.0 d ± 0.7 58.2 b ± 0.8 55.3 b ± 0.1

Average pod length 5.3 a ± 0.1 3.7 d ± 0.1 2.7 e ± 0.1 4.6 b ± 0.1 4.1 c ± 0.1

Number of seeds per pod 20.8 a ± 0.3 13.9 c ± 0.4 11.3 d ± 0.6 19.7 a ± 0.7 16.9 b ± 0.5

Protein content 31.8 a ± 0.2 24.3 c ± 0.4 26.7 b ± 1.1 26.8 b ± 0.3 28.3 b ± 0.4

Oil content 41.1 d ± 0.4 44.8 b ± 0.2 49.3 a ± 0.2 45.1 b ± 0.3 43.4 c ± 0.2

Means in the same row denoted by a different letter indicate significant difference between genotypes. p ≤ 0.05. No. = Number.

3.2. Total Oil Content of Rapeseeds Genotypes

The results indicated that total oil content (%) of the five brassica landraces ranged
between 41.1 and 49.3%, with the maximum value in the Fay3 genotype, whereas the Fay1
genotype presented the lowest value of oil content (Table 1).

3.3. Fatty Acid Composition

The compositions of fatty acids of different oilseed genotypes were determined
through GC analysis, and the results obtained are given in Table 2. In the samples, sixteen
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different fatty acids were identified and quantified. Erucic, oleic, linoleic, α-linolenic, and
paullinic acids were the principal fatty acids identified in oil samples. Erucic acid (C22: 1)
was the most abundant fatty acid in most of the rapeseed genotype oil profile; it is toxic and
not essential for human growth, and renders the oil unfit for human consumption. Fay1,
Fay2, Fay4, and Fay6 genotypes had almost identical abundances of erucic acid at 45.87%,
47.78%, 45.88%, and 44.25%, respectively. On the contrary, the Fay3 genotype showed
low content of erucic acid (20.83%) and had the highest content of oleic acid (22.98%).
Considering the fact that oleic acid plays a significant role in increasing the nutritional
quality of brassica oil, the high oleic acid content of the sample Fay3 is considered very
advantageous for health as this fatty acid is suitable for hypo-cholesterol diets, particularly
in the preparation of frozen food, and its high stability makes it suitable for use in cooking
and frying oils [30]. Our results indicate that breeding efforts to decrease erucic acid content
and increase oleic acid content in rapeseed might be successful with the Fay3 genotype. Sat-
uration of single-chain fatty acids, such as stearic acid (18:0), myristic acid (14:0), margaric
acid (17:0), arachidic acid (20:0), palmitic acid (16:0), and behenic acid (22:0), takes place.
Saturated fatty acids (SFAs) contribute to an increased risk of cardiovascular disease, while
monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), in the
opposite direction, reduce the risk of coronary heart disease (CHD). It was observed that
our brassica oil samples had very low levels of SFA (5.1–5.7%) and substantial amounts
of MUFA (55.88–62%) and PUFA (31.54–36.91%). Due to their ability to reduce serum
cholesterol and Low-Density Lipoprotein (LDL) levels, these genotypes may be used as
good sources of essential fatty acids due to their high percentage of linoleic acid [31].

In the samples under review, the amount (%) of unsaturated fatty acids was 92% and
above. The proportions of saturated fatty acids to unsaturated fatty acids (SFA/UnSFA),
criteria commonly used to describe the nutritional value of an oil, were low for all oil
samples (around 0.06%). Based on the analyses, we can conclude that the Fay3 genotype
oil can be considered as a greater potential healthy dietary source than other genotypes
because it has a low amount of erucic acid and a high proportion of oleic acid. In addition,
it is recommended that reductions in erucic acid content from 20% to <2% be achieved in
Fay3 genotype oil via further breeding programs.

3.4. Path Analysis

The path analysis approach was used to assess the relationships between seed yield
per plant (SYP) as the dependent variable and plant height (PH), number of primary
branches per plant (NPB), average pod length (PL), and number of pods per plant (NPP) as
independent variables. Relationships between the dependent and independent variables
are shown in Figure 1.

The positive direct effects between plant height (PH), number of primary branches per
plant (NPB), number of pods per plant (NPP) with seed yield per plant (SYP), respectively,
were 0.37, 0.48, and 0.48, whereas the negative direct coefficient was −0.26 for average
pod length (PL). NPB and NPP have had the highest direct effect on SYP, while the lowest
direct effect was for PH. Likewise, the NPB and PL showed indirect positive effects on SYP
through the NPP.

Figure 1 shows the Pearson correlation between SYP and its components. SYP was
significantly positive and closely correlated with NPB (0.85), NPP (0.84) and PL (0.77).
PH showed a moderate and significant positive correlation with SYP (0.67) and a weak
significant positive correlation with NPP (0.38). The direct and indirect effects, Pearson
correlation, and coefficient of determination (R2) of different agronomic and quality char-
acteristics on the oil percentages of five landraces of Brassica are shown in Table 3. The
resulting data indicated that, in general, all traits had a negative direct effect on oil content
except protein content (0.23). Height to first branch (HFB) contributed the highest positive
total indirect effects (2.73) on oil content, while number of pods per plant (NPP) showed
the highest negative total indirect effect on oil percent (−0.64). Table 3 also shows the corre-
lation matrix between oil percent and eight traits. Oil content had a strong and statistically
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significant positive correlation with height to first branches (HFB) (0.77). While oil content
had a strong and significant negative correlation with number of pods per plant (NPP)
(−0.82), number of primary branches (NPB) (−0.79), number of seeds per pod (−0.78), seed
yield per plant (SYP) (−0.76) and average pod length (PL) (−0.74), a weak and significant
negative correlation was observed between oil percent and each of the plant height (−0.46)
and the protein percent (−0.37).

3.5. Molecular Characterization

DNA was successfully extracted for the five selected accessions. Molecular identifica-
tion of the selected accessions was identified using PCR-amplified ITS genes. The products
of the PCR were analyzed using 1% agarose gel (Figure 2).

Table 2. Fatty acid composition of oil (%) from different accessions of Brassica accessions.

Compounds Fay1 Fay2 Fay3 Fay4 Fay6

C14 Myristic 0.04 * ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

C16 Palmitic 3.16 ± 0.41 3.08 ± 0.40 3.28 ± 0.43 3.31 ± 0.43 3.37 ± 0.44

C16:1 Palmitoleic 0.08 ± 0.01 0.13 ± 0.02 0.22 ± 0.03 0.08 ± 0.01 0.12 ± 0.02

C17 Margaric 0.05 ± 0.01 0.06 ± 0.01 0.03 ± 0.00 0.07 ± 0.01 0.06 ± 0.01

C18 Stearic 0.88 ± 0.12 0.77 ± 0.10 1.12 ± 0.15 0.82 ± 0.11 0.93 ± 0.12

C18:1 n9 cis Oleic 7.73 ± 1.12 7.02 ± 0.92 22.98 ± 3.00 8.30 ± 1.08 9.90 ± 1.29

C18:1 n9 t Elaidic 0.11 ± 0.01 0.06 ± 0.01 0.03 ± 0.00 0.11 ± 0.01 0.08 ± 0.01

C18:2 n6 cis Linoleic 15.52 ± 2.03 15.65 ± 2.05 21.69 ± 2.84 16.44 ± 2.15 16.34 ± 2.14

C18:3 n3 Linolenic 14.14 ± 1.85 14.27 ± 1.87 14.02 ± 1.83 12.29 ± 1.61 12.11 ± 1.58

C20 Arachidic 0.73 ± 0.10 0.56 ± 0.07 0.71 ± 0.09 0.68 ± 0.09 0.74 ± 0.10

C20:1n11c Paullinic 6.45 ± 0.84 5.78 ± 0.76 11.01 ± 1.44 6.80 ± 0.89 6.54 ± 0.85

C20:1 n-9 Gondoic 0.97 ± 0.13 0.87 ± 0.11 0.81 ± 0.11 0.83 ± 0.11 0.80 ± 0.10

C22 Behenic acid 0.48 ± 0.06 0.49 ± 0.06 0.30 ± 0.04 0.47 ± 0.06 0.56 ± 0.07

C22 1 n9 Erucic 45.87 ± 6.0 47.78 ± 6.25 20.83 ± 2.72 45.88 ± 6.00 44.25 ± 5.78

C20 5n3 Eicosapentaenoic 1.23 ± 0.16 1.28 ± 0.17 0.29 ± 0.04 1.15 ± 0.15 1.12 ± 0.15

C22 4n6 Docosatetraenoic 1.67 ± 0.22 1.71 ± 0.22 0.91 ± 0.1 1.66 ± 0.22 1.98 ± 0.26

Unknown compound 0.89 ± 0.12 0.44 ± 0.06 1.71 ± 0.22 1.07 ± 0.14 1.06 ± 0.14

Total SFA 5.34 ± 0.70 5.01 ± 0.65 5.50 ± 0.72 5.39 ± 0.70 5.70 ± 0.75

Total unsaturated 93.77 ± 12.26 94.55 ± 12.36 92.79 ± 12.13 93.54 ± 12.23 93.24 ± 12.19

Total MUFA 61.21 ± 8.0 61.64 ± 8.08 55.88 ± 7.30 62.00 ± 8.10 61.69 ± 8.06

Total PUFA 32.56 ± 4.26 32.91 ± 4.03 36.91 ± 4.82 31.54 ± 4.12 31.55 ± 4.12

ω-6/ω-3 1.12 ± 0.15 1.12 ± 0.15 1.58 ± 0.21 1.35 ± 0.18 1.38 ± 0.18

PUFA/SFA 6.10 ± 0.80 6.57 ± 0.86 6.71 ± 0.88 5.85 ± 0.76 5.54 ± 0.72

SFA/UnSFA 0.06 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01

SFA/PUFA 0.16 ± 0.02 0.15 ± 0.02 0.15 ± 0.02 0.17 ± 0.02 0.18 ± 0.02

Oleic/linoleic 0.50 ± 0.07 0.45 ± 0.06 1.06 ± 0.14 0.50 ± 0.07 0.61 ± 0.08

* Results are expressed as percentage of the total fatty acids. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA:
polyunsaturated fatty acids, UnSFA: unsaturated fatty acids.



Plants 2021, 10, 1431 7 of 13

Plants 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

C22 4n6 Docosatetraenoic 1.67 ± 0.22 1.71 ± 0.22 0.91 ± 0.1 1.66 ± 0.22 1.98 ± 0.26 

Unknown compound 0.89 ± 0.12 0.44 ± 0.06 1.71 ± 0.22 1.07 ± 0.14 1.06 ± 0.14 

Total SFA 5.34 ± 0.70 5.01 ± 0.65 5.50 ± 0.72 5.39 ± 0.70 5.70 ± 0.75 

Total unsaturated 93.77 ± 12.26 94.55 ± 12.36 92.79 ± 12.13 93.54 ± 12.23 93.24 ± 12.19 

Total MUFA 61.21 ± 8.0 61.64 ± 8.08 55.88 ± 7.30 62.00 ± 8.10 61.69 ± 8.06 

Total PUFA 32.56 ± 4.26 32.91 ± 4.03 36.91 ± 4.82 31.54 ± 4.12 31.55 ± 4.12 

ω-6/ω-3 1.12 ± 0.15 1.12 ± 0.15 1.58 ± 0.21 1.35 ± 0.18 1.38 ± 0.18 

PUFA/SFA 6.10 ± 0.80 6.57 ± 0.86 6.71 ± 0.88 5.85 ± 0.76 5.54 ± 0.72 

SFA/UnSFA 0.06 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 

SFA/PUFA 0.16 ± 0.02 0.15 ± 0.02 0.15 ± 0.02 0.17 ± 0.02 0.18 ± 0.02 

Oleic/linoleic 0.50 ± 0.07 0.45 ± 0.06 1.06 ± 0.14 0.50 ± 0.07 0.61 ± 0.08 

* Results are expressed as percentage of the total fatty acids. SFA: saturated fatty acids, MUFA: monounsaturated fatty 

acids, PUFA: polyunsaturated fatty acids, UnSFA: unsaturated fatty acids. 

3.4. Path Analysis 

The path analysis approach was used to assess the relationships between seed yield 

per plant (SYP) as the dependent variable and plant height (PH), number of primary 

branches per plant (NPB), average pod length (PL), and number of pods per plant (NPP) 

as independent variables. Relationships between the dependent and independent varia-

bles are shown in Figure 1. 

 

Figure 1. The path analysis for direct and indirect effects and Pearson correlation (r) of plant height (PH), number of 

primary branches (NPB), pods length (PL) and number of pods/plant (NPP) on seed yield/plant (SYP). ‘*’ means significant 

at p ≤ 0.05 and ‘**’ means significant at p ≤ 0.01. 

The positive direct effects between plant height (PH), number of primary branches 

per plant (NPB), number of pods per plant (NPP) with seed yield per plant (SYP), respec-

tively, were 0.37, 0.48, and 0.48, whereas the negative direct coefficient was −0.26 for av-

erage pod length (PL). NPB and NPP have had the highest direct effect on SYP, while the 

lowest direct effect was for PH. Likewise, the NPB and PL showed indirect positive effects 

on SYP through the NPP. 

Figure 1 shows the Pearson correlation between SYP and its components. SYP was 

significantly positive and closely correlated with NPB (0.85), NPP (0.84) and PL (0.77). PH 

showed a moderate and significant positive correlation with SYP (0.67) and a weak sig-

nificant positive correlation with NPP (0.38). The direct and indirect effects, Pearson cor-

relation, and coefficient of determination (R2) of different agronomic and quality charac-

teristics on the oil percentages of five landraces of Brassica are shown in Table 3. The re-

sulting data indicated that, in general, all traits had a negative direct effect on oil content 

except protein content (0.23). Height to first branch (HFB) contributed the highest positive 
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0.05 and ‘**’ means significant at p ≤ 0.01.

Table 3. Direct and indirect effects, pearson correlation and coefficient of determination (R2) of different agronomic traits
and quality characteristics on oil content (%) of five genotypes of Brassica spp.

Characters Direct
Effect

Indirect Effect Via

PH HFB NPB NPP SYP Protein PL NSP TIE

PH −0.16 0.82 −0.08 −0.62 −0.32 0.13 −0.11 −0.11 −0.29

HFB −1.95 0.07 0.19 1.58 0.42 −0.11 0.31 0.27 2.73

NPB −0.20 −0.07 1.87 −1.54 −0.41 0.12 −0.31 −0.26 −0.6

NPP −0.19 −0.06 1.92 −1.61 −0.41 0.10 −0.31 −0.27 −0.64

SYP 0.48 −0.11 1.69 −0.17 −1.36 0.15 −0.25 −0.23 −0.28

Protein −0.23 −0.10 0.97 −0.10 −0.73 −0.32 −0.18 −0.14 −0.6

PL −0.33 −0.06 1.84 −0.18 −1.50 −0.37 0.13 −0.26 −0.4

NSP −0.28 −0.06 1.90 −0.18 −1.56 −0.40 0.11 −0.30 −0.49

Person correlation with oil
percent (r) −0.46 0.77 −0.79 −0.82 −0.76 −0.37 −0.74 −0.78

coefficient of
determination (R2) 21.16% 59.29% 62.41% 67.24% 57.76% 13.69% 54.76% 60.84%

p−value 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.04 * 0.00 ** 0.00 **

Note: Total indirect effect (TIE), plant height (PH), height to first branches (HFB), number of pods per plant (NPP), seed yield per plant
(SYP), protein (%), pods length (PL), number of primary branches (NPB), simple linear correlation (r), coefficient of determination (R2) and
**, p < 0.01; *, p < 0.05.

Multiple sequence alignments of the ITS regions were conducted to identify individ-
ual ITS types, with the others presented in NCBI (Figure 3). The accession numbers in
GeneBank for the selected plant accessions were MT396106.1 for Fay1, MT396107.1 for Fay2,
MT396102.1 for Fay3, MT497984.1 for Fay4, and MT396105.1 for Fay6. Mega X software
was used to construct a phylogenetic tree (Figure 3), which revealed that Fay1, Fay2, Fay3,
and Fay4 were more closely related to B. rapa, while Fay6 had individual branches in the
tree that were more closely related to B. carinata. These observations indicated a variety of
origins. Guanine–Cytosine (GC) material was found to be very similar in ITS sequences.
The GC-content of a DNA or RNA fragment or a whole genome may be determined. It
can refer to the GC content of a specific gene or segment of a gene (domain), a collection
of genes or gene clusters, a non-coding area, or a synthetic oligonucleotide, such as a
primer, when referring to a fragment. The GC content in all accessions was found to be
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around 49% using the ITS sequence in the current study. The G + C contents (%) of the five
Brassica isolates were as follows: Fay3 (48.78), Fay6 (48.78), Fay1 (48.56), Fay2 (48.78), and
Fay 4 (48.91). The Mol (%) of nucleotides A, C, G, and T, and the differentiation between
nucleotides through selected isolates and data, are presented in Figure 4.

All Brassica isolates under investigation contain a single restriction site for Eco RI, Nco
I, and Bam HI, as presented in Figure 5; these enzymes have the same restriction site in the
five Brassica isolates. On the other hand, Tfi I, AgsI, Eco 571, and Cfr10I have a different
restriction site, as displayed in the restriction map (Figure 6).
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ITS sequences of the Brassica accessions under investigation.
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4. Discussion

Morphological traits are functioned to evaluate the relationships between yield, oil
content, and attributing traits in oilseed plants, as well as to describe and identify promising
landraces based on those observations [2,3]. In this regard, in different reports, significant
variations of agronomic traits and seed yield in Carthamus tinctorius and B. carinata, re-
spectively, were noted [32–34]. Tiwari et al. [10] separated varieties of B. juncea based on
morphological characterization, indicating the variability between varieties.

Brassica accession oil has a relatively high content of erucic acid, which limits the
use of oil for human and animal consumption as it can cause heart damage. Fatty acid
profile analysis is very important in nutritional information and helps to understand the
availability of various fatty acids between edible oils and food commodities. Fatty acids
are the primary component of lipids and can exist as free and bound forms. They can be
categorized by hydrocarbon chain into long-chain fatty acids (C13–C21), very long-chain
fatty acids (>C22), medium-chain fatty acids (C6–C12), and short-chain fatty acids (<C6).
GC is among the most effective methods available in a variety of oil and food products for
analyzing the total fatty acids. Oil, which is the most important component of oilseeds and
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their major source of economic return, is primarily associated with seed oil content and is
considered one of the most important factors affecting the success of rapeseed breeding
programs [35]. Higher oil content would make the crop more profitable in the context of any
proposed end-use. To meet the high demand for oil for large-scale industrial production,
increasing oil content or output in rapeseeds is required. Seed oil content in rapeseeds
has thus been examined via various genotypes. These findings are consistent with those
of [36] who found that the oil contents (%) of different varieties of rapeseed oil from Roma,
Italy ranged from 25% to 41%, with an average value of 33.1%, which are exaggerated by
environmental surroundings and genotypes. In another study, it was reported that the
total oil contents of rapeseed cultivars ranged from 21.0% to 47.3% [37,38].

The higher polyunsaturated fatty acid ratios (PUFA) to SFA (also known as the Polyene
index) indicate a more marked susceptibility to autoxidation through fatty acid composition.
According to [39,40], UFA has a more favorable impact and effect, and provides greater
health benefits, than SFA. The ratio of omega-6/omega-3 of the oil genotypes varied
between 1.09 and 1.58 depending on their fatty acid composition. In terms of the presence
and number of double bonds in the carbon chain, fatty acids can be divided into four
categories: saturated, monounsaturated, polyunsaturated, and trans fats. Kumar et al. [40]
reported that erucic acid content (C22:1) ranged from 40.7% to 42.9% over the entire seed
base. The linoleic (omega-6) and α-linolenic (omega-3) fatty acids appear to be the most
important because they have many beneficial characteristics, such as possessing anti-
inflammatory properties, reducing oxidative stress, and presenting neuroprotection and
cardiovascular protection; however, there is no definite biochemical pathway for the body
to produce these molecules on its own, and thus, they must be obtained from food [41].
The World Health Organization (WHO) estimated that CHD causes 500,000 premature
deaths worldwide per year [30].

Overall, our findings are in agreement with those presented in [42], where yield is
directly and strongly associated with the number of seeds (0.93 and 0.97), which was related
to the number of pods and seeds per pod; selection for these traits may be effective to
improve the yield. Despite the exception of protein content (0.23), all traits had a negative
direct effect on oil percent. According to [43], similar findings were observed insofar as
the day to maturity and the seed yield harmed the oil content; the remainder (0.2311)
indicates that characteristics used in the genotypic path analysis clarified 26.99% of the
overall oil content variance. A significantly low and negative correlation was observed
between oil content and both plant height (−0.46) and protein percent (−0.37). It has been
found in [42,44] that Brassica seeds trade in terms of oil and protein.

The use of phylogenetic tools has permitted many genera and species to be grouped
according to conventional taxonomic techniques. A phylogenetic tree was created using
the Mega X program and the findings suggested that the origin was diverse [20,45,46].
Sequences from a gene bank of different species were a dominant method of classifica-
tion [47]. ITS sequences are widely applied in different field crop plants to study the
phylogenetic relationship between plant genera [17,18,48]. In the present findings, using
the ITS sequence, the GC content was about 49% in all accessions. ITS sequences showed
high similarity to the Guanine–Cytosine (GC) content. The results were congruent with
those in [48], which identified and characterized eight species of Cuscuta genes based on
molecular (ITS) and morphological data and used the analysis of phylogeny to confirm the
diversity among Cuscuta species. Information about genetic distance among the accessions
is helpful in a breeding program [49,50].

5. Conclusions

The molecular observations suggest that the Fay1, Fay3, Fay4, and Fay6 accessions are
related to Brassica rapa, while Fay2 is related to B. carinata. Based on the current findings,
genotype Fay3, which contains higher oil content and lower erucic acid content than other
genotypes, may be used as the source for future oil production and quality breeding
programs. The Fay1 accession can be used as a seed donor to increase seed yield per
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plant. The study’s results can be used to focus potential breeding programs on the genetic
improvement of Brassica.
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