Editor's Choice Articles

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessEditor’s ChoiceArticle
Intra-Species and Inter-Species Differences in Cytokine Production by Porcine Antigen-Presenting Cells Stimulated by Mycoplasma hyopneumoniae, M. hyorhinis, and M. flocculare
Pathogens 2019, 8(1), 34; https://doi.org/10.3390/pathogens8010034 - 16 Mar 2019
Cited by 6
Abstract
Mycoplasma hyorhinis and M. flocculare are commonly co-isolated with M. hyopneumoniae (primary agent of swine enzootic pneumonia) in gross pneumonia-like lesions, but their involvement in the disease process remains unknown. T cells play an immuno-pathological role during mycoplasmal infections. Dendritic cells (DCs) are [...] Read more.
Mycoplasma hyorhinis and M. flocculare are commonly co-isolated with M. hyopneumoniae (primary agent of swine enzootic pneumonia) in gross pneumonia-like lesions, but their involvement in the disease process remains unknown. T cells play an immuno-pathological role during mycoplasmal infections. Dendritic cells (DCs) are major antigen-presenting cells involved in T cell activation and differentiation. In this study, we investigated cytokine (IL-6, IL-8, IL-10, IL-12, and TNF-α) production by porcine bone-marrow-derived DCs (BM-DCs) stimulated by M. hyopneumoniae, M. hyorhinis, and/or M. flocculare. Results showed that cytokine production levels were relatively homogenous for all evaluated M. hyopneumoniae strains in contrast to M. hyorhinis and M. flocculare strains. The most noteworthy inter-species differences were the overall (i) lower IL-12 production capacity of M. hyopneumoniae, and (ii) higher TNF-α production capacity of M. flocculare. Co-stimulation of BM-DCs showed that M. hyorhinis dominated the IL-12 production independently of its association with M. hyopneumoniae or M. flocculare. In addition, a decreased BM-DC production of TNF-α was generally observed in the presence of mycoplasma associations. Lastly, M. flocculare association with M. hyopneumoniae increased BM-DC ability to secrete IL-10. A higher cytotoxicity level in BM-DCs stimulated by M. hyorhinis was also observed. Overall, this study demonstrated that the combination of M. hyorhinis or M. flocculare with M. hyopneumoniae may participate to the modulation of the immune response that might affect the final disease outcome. Full article
(This article belongs to the Section Immunological Responses and Immune Defense Mechanisms)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
HIV Replication in Humanized IL-3/GM-CSF-Transgenic NOG Mice
Pathogens 2019, 8(1), 33; https://doi.org/10.3390/pathogens8010033 - 12 Mar 2019
Cited by 3
Abstract
The development of mouse models that mimic the kinetics of Human Immunodeficiency Virus (HIV) infection is critical for the understanding of the pathogenesis of disease and for the design of novel therapeutic strategies. Here, we describe the dynamics of HIV infection in humanized [...] Read more.
The development of mouse models that mimic the kinetics of Human Immunodeficiency Virus (HIV) infection is critical for the understanding of the pathogenesis of disease and for the design of novel therapeutic strategies. Here, we describe the dynamics of HIV infection in humanized NOD/Shi-scid-IL2rγnull (NOG) mice bearing the human genes for interleukin (IL)-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) (NOG-EXL mice). The kinetics of viral load, as well as the frequencies of T-cells, B-cells, Natural killer cells (NK), monocytes, and dendritic cells in blood and secondary lymphoid organs were evaluated throughout the time of infection. In comparison with a non-transgenic humanized mouse (NSG) strain, lymphoid and myeloid populations were more efficiently engrafted in humanized NOG-EXL mice, both in peripheral blood and lymphoid tissues. In addition, HIV actively replicated in humanized NOG-EXL mice, and infection induced a decrease in the percentage of CD4+ T-cells, inversion of the CD4:CD8 ratio, and changes in some cell populations, such as monocytes and dendritic cells, that recapitulated those found in human natural infection. Thus, the humanized IL-3/GM-CSF-transgenic NOG mouse model is suitable for the study of the dynamics of HIV infection and provides a tool for basic and preclinical studies. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Characteristics of Listeria Monocytogenes Strains Persisting in a Meat Processing Facility over a 4-Year Period
Pathogens 2019, 8(1), 32; https://doi.org/10.3390/pathogens8010032 - 07 Mar 2019
Cited by 8
Abstract
Listeria monocytogenes can persist in food production facilities, resulting in serious threats to consumers due to the high mortality associated with listeriosis, especially in the very young, old and pregnant. We subtyped 124 strains of L. monocytogenes isolated from a meat processing facility [...] Read more.
Listeria monocytogenes can persist in food production facilities, resulting in serious threats to consumers due to the high mortality associated with listeriosis, especially in the very young, old and pregnant. We subtyped 124 strains of L. monocytogenes isolated from a meat processing facility in Switzerland by serotyping, multi locus sequence typing (MLST) typing and whole genome sequencing. We then analyzed their ability to form biofilms and their resistance to the disinfectants benzalkonium chloride (BC) and peracetic acid (PAA). The genotyping results of the strains showed that several clonal populations of L. monocytogenes belonging to CC9, CC204 and CC121 had persisted in this meat processing facility for at least four years. All of the strains showed biofilm forming capacity comparable to a known high biofilm forming strain. Known efflux pumps for BC were present in CC204, CC9 (brcABC) and CC121 (qacH) strains, while strains from other CC showed very low minimal inhibitory concentrations (MICs) for BC. For PAA, minimal bactericidal concentrations of 1.2–1.6% for 20 min and minimal inhibitory concentrations between 0.1 and 0.2% were observed. These values were close to or above the recommended concentration for use (0.5–1%), suggesting that PAA might be ineffective at controlling L. monocytogenes in this and potentially other meat processing facilities. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Molecular Epidemiology and Genetic Diversity of Zika Virus from Field-Caught Mosquitoes in Various Regions of Thailand
Pathogens 2019, 8(1), 30; https://doi.org/10.3390/pathogens8010030 - 06 Mar 2019
Cited by 7
Abstract
Zika virus (ZIKV) infection is an emerging and re-emerging arbovirus disease that is transmitted to humans through the bite of infected mosquitoes. ZIKV infections were first described in Thailand in 1954 from the sera of indigenous residents and several travelers returning from Thailand [...] Read more.
Zika virus (ZIKV) infection is an emerging and re-emerging arbovirus disease that is transmitted to humans through the bite of infected mosquitoes. ZIKV infections were first described in Thailand in 1954 from the sera of indigenous residents and several travelers returning from Thailand in 2014. However, reported cases in Thailand have been increasing since 2015 and 2016, and epidemiological information about the vectors of ZIKV is unclear. We investigated the molecular epidemiology and genetic diversity of ZIKV from mosquitoes collected from different geographic regions experiencing ZIKV outbreaks in Thailand. Polymerase chain reaction was used to amplify the non-structural protein (NS5) gene of ZIKV, which was then sequenced. A total of 1026 mosquito samples (626 females, 367 males, and 33 larvae) were collected from active ZIKV patients’ houses. ZIKV was detected in 79 samples (7.7%), including Aedes aegypti (2.24% female, 1.27% male, and 0.19% larvae), Culex quinquefasciatus (1.85% female, 1.66% male, and 0.29% larvae), and Armigeres subalbatus (0.1% female and 0.1% male), whereas no ZIKV was detected in Aedes albopictus. Phylogenetic analysis of the 79 positive samples were classified into two clades: Those closely related to a previous report in Thailand, and those related to ZIKV found in the Americas. This is the first report of the detection of ZIKV in Ae. aegypti, Cx. quinquefasciatus, and Ar. subalbatus mosquitoes, and genetic variations of ZIKV in the mosquitoes collected from several geographic regions of Thailand were examined. Detection of ZIKV in male and larval mosquitoes suggests that vertical transmission of ZIKV occurred in these mosquito species. This study provides a more in-depth understanding of the patterns and epidemiologic data of ZIKV in Thailand; the data could be used for future development of more effective prevention and control strategies of ZIKV in Thailand. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
The 3′ Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems
Pathogens 2019, 8(1), 28; https://doi.org/10.3390/pathogens8010028 - 28 Feb 2019
Cited by 5
Abstract
Many plant viral RNA genomes lack a 5′ cap, and instead are translated via a cap-independent translation element (CITE) in the 3′ untranslated region (UTR). The panicum mosaic virus-like CITE (PTE), found in many plant viral RNAs, binds and requires the cap-binding translation [...] Read more.
Many plant viral RNA genomes lack a 5′ cap, and instead are translated via a cap-independent translation element (CITE) in the 3′ untranslated region (UTR). The panicum mosaic virus-like CITE (PTE), found in many plant viral RNAs, binds and requires the cap-binding translation initiation factor eIF4E to facilitate translation. eIF4E is structurally conserved between plants and animals, so we tested cap-independent translation efficiency of PTEs of nine plant viruses in plant and mammalian systems. The PTE from thin paspalum asymptomatic virus (TPAV) facilitated efficient cap-independent translation in wheat germ extract, rabbit reticulocyte lysate, HeLa cell lysate, and in oat and mammalian (BHK) cells. Human eIF4E bound the TPAV PTE but not a PTE that did not stimulate cap-independent translation in mammalian extracts or cells. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting revealed that both human and wheat eIF4E protected the conserved guanosine (G)-rich domain in the TPAV PTE pseudoknot. The central G plays a key role, as it was found to be required for translation and protection from SHAPE modification by eIF4E. These results provide insight on how plant viruses gain access to the host’s translational machinery, an essential step in infection, and raise the possibility that similar PTE-like mechanisms may exist in mRNAs of mammals or their viruses. Full article
(This article belongs to the Special Issue Plant-Pathogen Interactions)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
In silico Identification of Novel Toxin Homologs and Associated Mobile Genetic Elements in Clostridium perfringens
Pathogens 2019, 8(1), 16; https://doi.org/10.3390/pathogens8010016 - 29 Jan 2019
Cited by 1
Abstract
Clostridium perfringens causes a wide range of diseases in a variety of hosts, due to the production of a diverse set of toxins and extracellular enzymes. The C. perfringens toxins play an important role in pathogenesis, such that the presence and absence of [...] Read more.
Clostridium perfringens causes a wide range of diseases in a variety of hosts, due to the production of a diverse set of toxins and extracellular enzymes. The C. perfringens toxins play an important role in pathogenesis, such that the presence and absence of the toxins is used as a typing scheme for the species. In recent years, several new toxins have been discovered that have been shown to be essential or highly correlated to diseases; these include binary enterotoxin (BecAB), NetB and NetF. In the current study, genome sequence analysis of C. perfringens isolates from diverse sources revealed several putative novel toxin homologs, some of which appeared to be associated with potential mobile genetic elements, including transposons and plasmids. Four novel toxin homologs encoding proteins related to the pore-forming Leukocidin/Hemolysin family were found in type A and G isolates. Two novel toxin homologs encoding proteins related to the epsilon aerolysin-like toxin family were identified in Type A and F isolates from humans, contaminated food and turkeys. A novel set of proteins related to clostridial binary toxins was also identified. While phenotypic characterisation is required before any of these homologs can be established as functional toxins, the in silico identification of these novel homologs on mobile genetic elements suggests the potential toxin reservoir of C. perfringens may be much larger than previously thought. Full article
(This article belongs to the Section Animal Pathogens)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Molecular Characterisation of Equine Herpesvirus 1 Isolates from Cases of Abortion, Respiratory and Neurological Disease in Ireland between 1990 and 2017
Pathogens 2019, 8(1), 7; https://doi.org/10.3390/pathogens8010007 - 15 Jan 2019
Cited by 5
Abstract
Multiple locus typing based on sequencing heterologous regions in 26 open reading frames (ORFs) of equine herpesvirus 1 (EHV-1) strains Ab4 and V592 was used to characterise 272 EHV-1 isolates from 238 outbreaks of abortion, respiratory or neurological disease over a 28-year period. [...] Read more.
Multiple locus typing based on sequencing heterologous regions in 26 open reading frames (ORFs) of equine herpesvirus 1 (EHV-1) strains Ab4 and V592 was used to characterise 272 EHV-1 isolates from 238 outbreaks of abortion, respiratory or neurological disease over a 28-year period. The analysis grouped the 272 viruses into at least 10 of the 13 unique long region (UL) clades previously recognised. Viruses from the same outbreak had identical multi-locus profiles. Sequencing of the ORF68 region of EHV-1 isolates from 222 outbreaks established a divergence into seven groups and network analysis demonstrated that Irish genotypes were not geographically restricted but clustered with viruses from all over the world. Multi-locus analysis proved a more comprehensive method of strain typing than ORF68 sequencing. It was demonstrated that when interpreted in combination with epidemiological data, this type of analysis has a potential role in tracking virus between premises and therefore in the implementation of targeted control measures. Viruses from 31 of 238 outbreaks analysed had the proposed ORF30 G2254/D752 neuropathogenic marker. There was a statistically significant association between viruses of the G2254/D752 genotype and both neurological disease and hypervirulence as defined by outbreaks involving multiple abortion or neurological cases. The association of neurological disease in those with the G2254/D752 genotype was estimated as 27 times greater than in those with the A2254/N752 genotype. Full article
(This article belongs to the Section Animal Pathogens)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Attenuated Replication of Lassa Virus Vaccine Candidate ML29 in STAT-1-/- Mice
Pathogens 2019, 8(1), 9; https://doi.org/10.3390/pathogens8010009 - 15 Jan 2019
Cited by 5
Abstract
Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor [...] Read more.
Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development. ML29 demonstrated complete protection in validated animal models against a Nigerian strain from clade II, which was responsible for the worst outbreak on record in 2018. This study demonstrated that ML29 was more attenuated than MOPV in STAT1-/- mice, a small animal model of human LF and its sequelae. ML29 infection of these mice resulted in more than a thousand-fold reduction in viremia and viral load in tissues and strong LASV-specific adaptive T cell responses compared to MOPV-infected mice. Persistent infection of Vero cells with ML29 resulted in generation of interfering particles (IPs), which strongly interfered with the replication of LASV, MOPV and LCMV, the prototype of the Arenaviridae. ML29 IPs induced potent cell-mediated immunity and were fully attenuated in STAT1-/- mice. Formulation of ML29 with IPs will improve the breadth of the host’s immune responses and further contribute to development of a pan-LASV vaccine with full coverage meeting the WHO requirements. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Staphylococcus aureus Superantigen-Like Protein SSL1: A Toxic Protease
Pathogens 2019, 8(1), 2; https://doi.org/10.3390/pathogens8010002 - 01 Jan 2019
Cited by 2
Abstract
Staphylococcus aureus is a major cause of corneal infections that can cause reduced vision, even blindness. Secreted toxins cause tissue damage and inflammation resulting in scars that lead to vision loss. Identifying tissue damaging proteins is a prerequisite to limiting these harmful reactions. [...] Read more.
Staphylococcus aureus is a major cause of corneal infections that can cause reduced vision, even blindness. Secreted toxins cause tissue damage and inflammation resulting in scars that lead to vision loss. Identifying tissue damaging proteins is a prerequisite to limiting these harmful reactions. The present study characterized a previously unrecognized S. aureus toxin. This secreted toxin was purified from strain Newman ΔhlaΔhlg, the N-terminal sequence determined, the gene cloned, and the purified recombinant protein was tested in the rabbit cornea. The virulence of a toxin deletion mutant was compared to its parent and the mutant after gene restoration (rescue strain). The toxin (23 kDa) had an N-terminal sequence matching the Newman superantigen-like protein SSL1. An SSL1 homodimer (46 kDa) had proteolytic activity as demonstrated by zymography and cleavage of a synthetic substrate, collagens, and cytokines (IL-17A, IFN-γ, and IL-8); the protease was susceptible to serine protease inhibitors. As compared to the parent and rescue strains, the ssl1 mutant had significantly reduced virulence, but not reduced bacterial growth, in vivo. The ocular isolates tested had the ssl1 gene, with allele type 2 being the predominant type. SSL1 is a protease with corneal virulence and activity on host defense and structural proteins. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Identification of Residues in Lassa Virus Glycoprotein Subunit 2 That Are Critical for Protein Function
Pathogens 2019, 8(1), 1; https://doi.org/10.3390/pathogens8010001 - 26 Dec 2018
Cited by 5
Abstract
Lassa virus (LASV) is an Old World arenavirus, endemic to West Africa, capable of causing hemorrhagic fever. Currently, there are no approved vaccines or effective antivirals for LASV. However, thorough understanding of the LASV glycoprotein and entry into host cells could accelerate therapeutic [...] Read more.
Lassa virus (LASV) is an Old World arenavirus, endemic to West Africa, capable of causing hemorrhagic fever. Currently, there are no approved vaccines or effective antivirals for LASV. However, thorough understanding of the LASV glycoprotein and entry into host cells could accelerate therapeutic design. LASV entry is a two-step process involving the viral glycoprotein (GP). First, the GP subunit 1 (GP1) binds to the cell surface receptor and the viral particle is engulfed into an endosome. Next, the drop in pH triggers GP rearrangements, which ultimately leads to the GP subunit 2 (GP2) forming a six-helix-bundle (6HB). The process of GP2 forming 6HB fuses the lysosomal membrane with the LASV envelope, allowing the LASV genome to enter the host cell. The aim of this study was to identify residues in GP2 that are crucial for LASV entry. To achieve this, we performed alanine scanning mutagenesis on GP2 residues. We tested these mutant GPs for efficient GP1-GP2 cleavage, cell-to-cell membrane fusion, and transduction into cells expressing α-dystroglycan and secondary LASV receptors. In total, we identified seven GP2 mutants that were cleaved efficiently but were unable to effectively transduce cells: GP-L280A, GP-L285A/I286A, GP-I323A, GP-L394A, GP-I403A, GP-L415A, and GP-R422A. Therefore, the data suggest these residues are critical for GP2 function in LASV entry. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceCommunication
Host-Driven Phosphorylation Appears to Regulate the Budding Activity of the Lassa Virus Matrix Protein
Pathogens 2018, 7(4), 97; https://doi.org/10.3390/pathogens7040097 - 09 Dec 2018
Cited by 3
Abstract
Lassa mammarenavirus (LASV) is an enveloped RNA virus that can cause Lassa fever, an acute hemorrhagic fever syndrome associated with significant morbidity and high rates of fatality in endemic regions of western Africa. The arenavirus matrix protein Z has several functions during the [...] Read more.
Lassa mammarenavirus (LASV) is an enveloped RNA virus that can cause Lassa fever, an acute hemorrhagic fever syndrome associated with significant morbidity and high rates of fatality in endemic regions of western Africa. The arenavirus matrix protein Z has several functions during the virus life cycle, including coordinating viral assembly, driving the release of new virus particles, regulating viral polymerase activity, and antagonizing the host antiviral response. There is limited knowledge regarding how the various functions of Z are regulated. To investigate possible means of regulation, mass spectrometry was used to identify potential sites of phosphorylation in the LASV Z protein. This analysis revealed that two serines (S18, S98) and one tyrosine (Y97) are phosphorylated in the flexible N- and C-terminal regions of the protein. Notably, two of these sites, Y97 and S98, are located in (Y97) or directly adjacent to (S98) the PPXY late domain, an important motif for virus release. Studies with non-phosphorylatable and phosphomimetic Z proteins revealed that these sites are important regulators of the release of LASV particles and that host-driven, reversible phosphorylation may play an important role in the regulation of LASV Z protein function. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Stimulating Respiratory Activity Primes Anaerobically Grown Listeria monocytogenes for Subsequent Intracellular Infections
Pathogens 2018, 7(4), 96; https://doi.org/10.3390/pathogens7040096 - 08 Dec 2018
Cited by 1
Abstract
Listeria monocytogenes (L. monocytogenes) is a Gram-positive, enteric pathogen and the causative agent of listeriosis. During transition through the gastrointestinal tract, L. monocytogenes routinely encounters suboxic conditions. However, how the exposure to the low oxygen environment affects subsequent pathogenesis is not completely understood. [...] Read more.
Listeria monocytogenes (L. monocytogenes) is a Gram-positive, enteric pathogen and the causative agent of listeriosis. During transition through the gastrointestinal tract, L. monocytogenes routinely encounters suboxic conditions. However, how the exposure to the low oxygen environment affects subsequent pathogenesis is not completely understood. Our lab previously reported that anaerobically grown L. monocytogenes exhibited an intracellular growth defect in macrophages even though the infection took place under aerobic conditions. This phenotype suggests that prior growth conditions have a prolonged effect on the outcome of subsequent intracellular infection. In this study, to further investigate the mechanisms that contribute to the compromised intracellular growth after anaerobic exposure, we hypothesized that the lack of respiratory activity under anaerobic conditions prevented anaerobically grown L. monocytogenes to establish subsequent intracellular growth under aerobic conditions. To test this hypothesis, respiratory activity in anaerobically grown L. monocytogenes was stimulated by exogenous fumarate and subsequent intracellular pathogenesis was assessed. The results showed that fumarate supplementation significantly increased the respiratory activity of anaerobically grown L. monocytogenes and rescued the subsequent intracellular growth defect, likely through promoting the production of listeriolysin O, phagosomal escape, and cell-cell spread. This study highlights the importance of respiratory activity in L. monocytogenes in modulating the outcome of subsequent intracellular infections. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Epigallocatechin Gallate Remodelling of Hfq Amyloid-Like Region Affects Escherichia coli Survival
Pathogens 2018, 7(4), 95; https://doi.org/10.3390/pathogens7040095 - 01 Dec 2018
Cited by 2
Abstract
Hfq is a pleiotropic regulator that has key roles in the control of genetic expression. The protein noticeably regulates translation efficiency and RNA decay in Gram-negative bacteria, due to the Hfq-mediated interaction between small regulatory noncoding RNA and mRNA. This property is of [...] Read more.
Hfq is a pleiotropic regulator that has key roles in the control of genetic expression. The protein noticeably regulates translation efficiency and RNA decay in Gram-negative bacteria, due to the Hfq-mediated interaction between small regulatory noncoding RNA and mRNA. This property is of primary importance for bacterial adaptation and virulence. We have previously shown that the Hfq E. coli protein, and more precisely its C-terminal region (CTR), self-assembles into an amyloid-like structure. In the present work, we demonstrate that epigallocatechin gallate (EGCG), a major green tea polyphenol compound, targets the Hfq amyloid region and can be used as a potential antibacterial agent. We analysed the effect of this compound on Hfq amyloid fibril stability and show that EGCG both disrupts Hfq-CTR fibrils and inhibits their formation. We show that, even if EGCG affects other bacterial amyloids, it also specifically targets Hfq-CTR in vivo. Our results provide an alternative approach for the utilisation of EGCG that may be used synergistically with conventional antibiotics to block bacterial adaptation and treat infections. Full article
(This article belongs to the Special Issue Inactivate Bacterial Resistance Mechanisms)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Relation between Biofilm and Virulence in Vibrio tapetis: A Transcriptomic Study
Pathogens 2018, 7(4), 92; https://doi.org/10.3390/pathogens7040092 - 26 Nov 2018
Cited by 3
Abstract
Marine pathogenic bacteria are able to form biofilms on many surfaces, such as mollusc shells, and they can wait for the appropriate opportunity to induce their virulence. Vibrio tapetis can develop such biofilms on the inner surface of shells of the Ruditapes philippinarum [...] Read more.
Marine pathogenic bacteria are able to form biofilms on many surfaces, such as mollusc shells, and they can wait for the appropriate opportunity to induce their virulence. Vibrio tapetis can develop such biofilms on the inner surface of shells of the Ruditapes philippinarum clam, leading to the formation of a brown conchiolin deposit in the form of a ring, hence the name of the disease: Brown Ring Disease. The virulence of V. tapetis is presumed to be related to its capacity to form biofilms, but the link has never been clearly established at the physiological or genetic level. In the present study, we used RNA-seq analysis to identify biofilm- and virulence-related genes displaying altered expression in biofilms compared to the planktonic condition. A flow cell system was employed to grow biofilms to obtain both structural and transcriptomic views of the biofilms. We found that 3615 genes were differentially expressed, confirming that biofilm and planktonic lifestyles are very different. As expected, the differentially expressed genes included those involved in biofilm formation, such as motility- and polysaccharide synthesis-related genes. The data show that quorum sensing is probably mediated by the AI-2/LuxO system in V. tapetis biofilms. The expression of genes encoding the Type VI Secretion System and associated exported proteins are strongly induced, suggesting that V. tapetis activates this virulence factor when living in biofilm. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Kupffer Cells Survive Plasmodium berghei Sporozoite Exposure and Respond with a Rapid Cytokine Release
Pathogens 2018, 7(4), 91; https://doi.org/10.3390/pathogens7040091 - 24 Nov 2018
Cited by 5
Abstract
The liver stage of the Plasmodium life cycle features sporozoite traversal of the liver sinusoidal barrier through Kupffer cells (KCs) followed by invasion of hepatocytes. Little is known about the interaction of Plasmodium sporozoites with KCs, the liver-resident macrophages. Previous reports suggest KCs [...] Read more.
The liver stage of the Plasmodium life cycle features sporozoite traversal of the liver sinusoidal barrier through Kupffer cells (KCs) followed by invasion of hepatocytes. Little is known about the interaction of Plasmodium sporozoites with KCs, the liver-resident macrophages. Previous reports suggest KCs do not mount a pro-inflammatory response and undergo cell death following this interaction. Our work explores this interaction using primary rat KCs (PRKCs) and Plasmodium berghei sporozoites. We analyzed PRKC culture supernatants for markers of an immunological response through cytokine arrays. Additionally, cell wounding and death were assessed by monitoring lactate dehydrogenase (LDH) levels in these supernatants and by live/dead cell imaging. We found that PRKCs mount an immunological response to P. berghei sporozoites by releasing a diverse set of both pro- and anti-inflammatory cytokines, including IFNγ, IL-12p70, Mip-3α, IL-2, RANTES, IL-1α, IL-4, IL-5, IL-13, EPO, VEGF, IL-7, and IL-17α. We also observed no difference in LDH level or live/dead staining upon sporozoite exposure, suggesting that the KCs are not deeply wounded or dying. Overall, our data suggest that sporozoites may be actively modulating the KC’s reaction to their presence and altering the way the innate immune system is triggered by KCs. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Hsp90 Interacts with the Bacterial Effector NleH1
Pathogens 2018, 7(4), 87; https://doi.org/10.3390/pathogens7040087 - 13 Nov 2018
Cited by 1
Abstract
Enterohemorrhagic Escherichia coli (EHEC) utilizes a type III secretion system (T3SS) to inject effector proteins into host cells. The EHEC NleH1 effector inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by reducing the nuclear translocation of the ribosomal protein S3 [...] Read more.
Enterohemorrhagic Escherichia coli (EHEC) utilizes a type III secretion system (T3SS) to inject effector proteins into host cells. The EHEC NleH1 effector inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by reducing the nuclear translocation of the ribosomal protein S3 (RPS3). NleH1 prevents RPS3 phosphorylation by the IκB kinase-β (IKKβ). IKKβ is a central kinase in the NF-κB pathway, yet NleH1 only restricts the phosphorylation of a subset of the IKKβ substrates. We hypothesized that a protein cofactor might dictate this inhibitory specificity. We determined that heat shock protein 90 (Hsp90) interacts with both IKKβ and NleH1 and that inhibiting Hsp90 activity reduces RPS3 nuclear translocation. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
SseL Deubiquitinates RPS3 to Inhibit Its Nuclear Translocation
Pathogens 2018, 7(4), 86; https://doi.org/10.3390/pathogens7040086 - 07 Nov 2018
Cited by 2
Abstract
Many Gram-negative bacterial pathogens use type III secretion systems to deliver virulence proteins (effectors) into host cells to counteract innate immunity. The ribosomal protein S3 (RPS3) guides NF-κB subunits to specific κB sites and plays an important role in the innate response to [...] Read more.
Many Gram-negative bacterial pathogens use type III secretion systems to deliver virulence proteins (effectors) into host cells to counteract innate immunity. The ribosomal protein S3 (RPS3) guides NF-κB subunits to specific κB sites and plays an important role in the innate response to bacterial infection. Two E. coli effectors inhibit RPS3 nuclear translocation. NleH1 inhibits RPS3 phosphorylation by IKK-β, an essential aspect of the RPS3 nuclear translocation process. NleC proteolysis of p65 generates an N-terminal p65 fragment that competes for full-length p65 binding to RPS3, thus also inhibiting RPS3 nuclear translocation. Thus, E. coli has multiple mechanisms by which to block RPS3-mediated transcriptional activation. With this in mind, we considered whether other enteric pathogens also encode T3SS effectors that impact this important host regulatory pathway. Here we report that the Salmonella Secreted Effector L (SseL), which was previously shown to function as a deubiquitinase and inhibit NF-κB signaling, also inhibits RPS3 nuclear translocation by deubiquitinating this important host transcriptional co-factor. RPS3 deubiquitination by SseL was restricted to K63-linkages and mutating the active-site cysteine of SseL abolished its ability to deubiquitinate and subsequently inhibit RPS3 nuclear translocation. Thus, Salmonella also encodes at least one T3SS effector that alters RPS3 activities in the host nucleus. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Preliminary Studies on Immune Response and Viral Pathogenesis of Zika Virus in Rhesus Macaques
Pathogens 2018, 7(3), 70; https://doi.org/10.3390/pathogens7030070 - 20 Aug 2018
Cited by 6
Abstract
Zika Virus (ZIKV) is primarily transmitted through mosquito bites. It can also be transmitted during sexual intercourse and in utero from mother to fetus. To gain preliminary insight into ZIKV pathology and immune responses on route of transmission, rhesus macaques (RMs) were inoculated [...] Read more.
Zika Virus (ZIKV) is primarily transmitted through mosquito bites. It can also be transmitted during sexual intercourse and in utero from mother to fetus. To gain preliminary insight into ZIKV pathology and immune responses on route of transmission, rhesus macaques (RMs) were inoculated with ZIKV (PRVABC59) via intravaginal (IVAG) (n = 3) or subcutaneous (sub Q) (n = 2) routes. Systemic ZIKV infection was observed in all RMs, regardless of the route of inoculation. After 9 days postinfection (dpi), ZIKV was not detected in the plasma of IVAG- and sub-Q-inoculated RMs. Importantly, RMs harbored ZIKV up to 60 dpi in various anatomical locations. Of note, ZIKV was also present in several regions of the brain, including the caudate nucleus, parietal lobe, cortex, and amygdala. These observations appear to indicate that ZIKV infection may be systemic and persistent regardless of route of inoculation. In addition, we observed changes in key immune cell populations in response to ZIKV infection. Importantly, IVAG ZIKV infection of RMs is associated with increased depletion of CD11C hi myeloid cells, reduced PD-1 expression in NK cells, and elevated frequencies of Ki67+ CD8+ central memory cells as compared to sub Q ZIKV-infected RMs. These results need to interpreted with caution due to the small number of animals utilized in this study. Future studies involving large groups of animals that have been inoculated through both routes of transmission are needed to confirm our findings. Full article
(This article belongs to the Special Issue Virus-Host Interactions of Zika Virus)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Impact of Mosquito Age and Insecticide Exposure on Susceptibility of Aedes albopictus (Diptera: Culicidae) to Infection with Zika Virus
Pathogens 2018, 7(3), 67; https://doi.org/10.3390/pathogens7030067 - 12 Aug 2018
Cited by 5
Abstract
Zika virus (ZIKV) is primarily transmitted to humans by Aedes aegypti and Ae. albopictus. Vector–virus interactions influencing vector competence vary and depend on biological and environmental factors. A mosquito’s chronological age may impact its immune response against virus infection. Insecticides, source reduction, [...] Read more.
Zika virus (ZIKV) is primarily transmitted to humans by Aedes aegypti and Ae. albopictus. Vector–virus interactions influencing vector competence vary and depend on biological and environmental factors. A mosquito’s chronological age may impact its immune response against virus infection. Insecticides, source reduction, and/or public education are currently the best defense against mosquitoes that transmit ZIKV. This study assessed the effects of a mosquito’s chronological age at time of infection on its response to ZIKV infection. We exposed young (6–7 d post-emergence) and old (11–12 d post-emergence) Ae. albopictus to a sublethal dose of bifenthrin prior to oral exposure to blood meals containing ZIKV (7-day incubation period). Old mosquitoes experienced a significantly (p < 0.01) higher rate of mortality than young mosquitoes. Significantly higher ZIKV body titers (p < 0.01) were observed in the old control group compared to the young control group. Significantly higher (p < 0.01) ZIKV dissemination rates and leg titers (p < 0.01) were observed in old bifenthrin-exposed mosquitoes compared to old control mosquitoes or young bifenthrin-exposed or control mosquitoes. Hence, bifenthrin exposure may increase the potential for virus transmission; however, the degree of these impacts varies with mosquito age. Impacts of insecticides should be considered in risk assessments of potential vector populations. Full article
(This article belongs to the Special Issue Virus-Host Interactions of Zika Virus)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Staphylococcus aureus Lipoprotein Induces Skin Inflammation, Accompanied with IFN-γ-Producing T Cell Accumulation through Dermal Dendritic Cells
Pathogens 2018, 7(3), 64; https://doi.org/10.3390/pathogens7030064 - 29 Jul 2018
Cited by 3
Abstract
Staphylococcus aureus (S. aureus) is a commensal bacteria on the human skin, which causes serious skin inflammation. Several immune cells, especially effector T cells (Teff), have been identified as key players in S. aureus-derived skin inflammation. However, the bacterial component [...] Read more.
Staphylococcus aureus (S. aureus) is a commensal bacteria on the human skin, which causes serious skin inflammation. Several immune cells, especially effector T cells (Teff), have been identified as key players in S. aureus-derived skin inflammation. However, the bacterial component that induces dramatic host immune responses on the skin has not been well characterized. Here, we report that S. aureus lipoprotein (SA-LP) was recognized by the host immune system as a strong antigen, so this response induced severe skin inflammation. SA-LP activated dendritic cells (DCs), and this activation led to Teff accumulation on the inflamed skin in the murine intradermal (ID) injection model. The skin-accumulated Teff pool was established by IFN-ɤ-producing CD4+ and CD8+T (Th1 and Tc1). SA-LP activated dermal DC (DDC) in a dominant manner, so that these DCs were presumed to possess the strong responsibility of SA-LP-specific Teff generation in the skin-draining lymph nodes (dLN). SA-LP activated DC transfer into the mice ear, which showed similar inflammation, accompanied with Th1 and Tc1 accumulation on the skin. Thus, we revealed that SA-LP has a strong potential ability to establish skin inflammation through the DC-Teff axis. This finding provides novel insights not only for therapy, but also for the prevention of S. aureus-derived skin inflammation. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Preparation of Poly (dl-Lactide-co-Glycolide) Nanoparticles Encapsulated with Periglaucine A and Betulinic Acid for In Vitro Anti-Acanthamoeba and Cytotoxicity Activities
Pathogens 2018, 7(3), 62; https://doi.org/10.3390/pathogens7030062 - 16 Jul 2018
Cited by 9
Abstract
Poly (dl-lactide-co-glycolide) (PLGA) microspheres were synthesized as delivery system for the natural anti-parasitic compounds, Periglaucine A (PGA) and Betulinic acid (BA). Periglaucine A and Betulinic acid were encapsulated in PLGA nanoparticles by single emulsion method with an average particle size of [...] Read more.
Poly (dl-lactide-co-glycolide) (PLGA) microspheres were synthesized as delivery system for the natural anti-parasitic compounds, Periglaucine A (PGA) and Betulinic acid (BA). Periglaucine A and Betulinic acid were encapsulated in PLGA nanoparticles by single emulsion method with an average particle size of approximately 100–500 nm. Periglaucine A and Betulinic acid encapsulation efficiency was observed to be 90% and 35% respectively. Anti-Acanthamoeba property of Periglaucine A and Betulinic acid remained intact after encapsulation. PGA-PLGA and BA-PLGA nanoparticles demonstrated inhibition in viability of Acanthamoeba triangularis trophozoites by 74.9%, 59.9%, 49.9% and 71.2%, 52.2%, 88% respectively at concentration of 100 µg/mL, 50 µg/mL and 25 µg/mL. Cytotoxicity of PGA-PLGA and BA-PLGA nanoparticles has been evaluated against lung epithelial cell line and showed dose dependent cytotoxicity value of IC50 2 µg/mL and 20 µg/mL respectively. Futher, increased viability was observed in lung epithelial cell line in higher doses of synthesized polymeric nanoparticles. Results indicate that poly (dl-lactide-co-glycolide) (PLGA) nanoparticles could be exploratory delivery systems for natural products to improve their therapeutic efficacy. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
A Quantitative Proteomics View on the Function of Qfhb1, a Major QTL for Fusarium Head Blight Resistance in Wheat
Pathogens 2018, 7(3), 58; https://doi.org/10.3390/pathogens7030058 - 22 Jun 2018
Cited by 5
Abstract
Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we [...] Read more.
Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection. Full article
(This article belongs to the Special Issue Wheat Diseases)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Whole Genome Classification and Phylogenetic Analyses of Rotavirus B strains from the United States
Pathogens 2018, 7(2), 44; https://doi.org/10.3390/pathogens7020044 - 18 Apr 2018
Cited by 3
Abstract
Rotaviruses (RVs) are a major etiological agent of acute viral gastroenteritis in humans and young animals, with rotavirus B (RVB) often detected in suckling and weaned pigs. Group A rotavirus classification is currently based on the two outer capsid proteins, VP7 and VP4, [...] Read more.
Rotaviruses (RVs) are a major etiological agent of acute viral gastroenteritis in humans and young animals, with rotavirus B (RVB) often detected in suckling and weaned pigs. Group A rotavirus classification is currently based on the two outer capsid proteins, VP7 and VP4, and the middle layer protein, VP6. Using RVB strains generated in this study and reference sequences from GenBank, pairwise identity frequency graphs and phylogenetic trees were constructed for the eleven gene segments of RVB to estimate the nucleotide identity cutoff values for different genotypes and determine the genotype diversity per gene segment. Phylogenetic analysis of VP7, VP4, VP6, VP1–VP3, and NSP1–NSP5 identified 26G, 5P, 13I, 5R, 5C, 5M, 8A, 10N, 6T, 4E, and 7H genotypes, respectively. The analysis supports the previously proposed cutoff values for the VP7, VP6, NSP1, and NSP3 gene segments (80%, 81%, 76% and 78%, respectively) and suggests new cutoff values for the VP4, VP1, VP2, VP3, NSP2, NSP4, and NSP5 (80%, 78%, 79%, 77% 83%, 76%, and 79%, respectively). Reassortment events were detected between the porcine RVB strains from our study. This research describes the genome constellations for the complete genome of Group B rotaviruses in different host species. Full article
(This article belongs to the Special Issue Rotavirus Epidemiology: Host, Climate and Vaccine Influences)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Multifocal Equine Influenza Outbreak with Vaccination Breakdown in Thoroughbred Racehorses
Pathogens 2018, 7(2), 43; https://doi.org/10.3390/pathogens7020043 - 17 Apr 2018
Cited by 8
Abstract
Equine influenza (EI) outbreaks occurred on 19 premises in Ireland during 2014. Disease affected thoroughbred (TB) and non-TB horses/ponies on a variety of premises including four racing yards. Initial clinical signs presented on 16 premises within a two-month period. Extensive field investigations were [...] Read more.
Equine influenza (EI) outbreaks occurred on 19 premises in Ireland during 2014. Disease affected thoroughbred (TB) and non-TB horses/ponies on a variety of premises including four racing yards. Initial clinical signs presented on 16 premises within a two-month period. Extensive field investigations were undertaken, and the diagnostic effectiveness of a TaqMan RT-PCR assay was demonstrated in regularly-vaccinated and sub-clinically-affected horses. Epidemiological data and repeat clinical samples were collected from 305 horses, of which 40% were reported as clinically affected, 39% were identified as confirmed cases and 11% were sub-clinically affected. Multivariable analysis demonstrated a significant association between clinical signs and age, vaccination status and number of vaccine doses received. Vaccine breakdown was identified in 31% of horses with up to date vaccination records. This included 27 horses in four different racing yards. Genetic and antigenic analysis identified causal viruses as belonging to Clade 2 of the Florida sublineage (FCL2). At the time of this study, no commercially available EI vaccine in Ireland had been updated in line with World Organisation for Animal Health (OIE) recommendations to include a FCL2 virus. The findings of this study highlight the potential ease with which EI can spread among partially immune equine populations. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Presence of Human Enteric Viruses, Protozoa, and Indicators of Pathogens in the Bagmati River, Nepal
Pathogens 2018, 7(2), 38; https://doi.org/10.3390/pathogens7020038 - 06 Apr 2018
Cited by 16
Abstract
Quantification of waterborne pathogens in water sources is essential for alerting the community about health hazards. This study determined the presence of human enteric viruses and protozoa in the Bagmati River, Nepal, and detected fecal indicator bacteria (total coliforms, Escherichia coli, and [...] Read more.
Quantification of waterborne pathogens in water sources is essential for alerting the community about health hazards. This study determined the presence of human enteric viruses and protozoa in the Bagmati River, Nepal, and detected fecal indicator bacteria (total coliforms, Escherichia coli, and Enterococcus spp.), human-fecal markers (human Bacteroidales and JC and BK polyomaviruses), and index viruses (tobacco mosaic virus and pepper mild mottle virus). During a one-year period between October 2015 and September 2016, a total of 18 surface water samples were collected periodically from three sites along the river. Using quantitative polymerase chain reaction, all eight types of human enteric viruses tested—including adenoviruses, noroviruses, and enteroviruses, were detected frequently at the midstream and downstream sites, with concentrations of 4.4–8.3 log copies/L. Enteroviruses and saliviruses were the most frequently detected enteric viruses, which were present in 72% (13/18) of the tested samples. Giardia spp. were detected by fluorescence microscopy in 78% (14/18) of the samples, with a lower detection ratio at the upstream site. Cryptosporidium spp. were detected only at the midstream and downstream sites, with a positive ratio of 39% (7/18). The high concentrations of enteric viruses suggest that the midstream and downstream regions are heavily contaminated with human feces and that there are alarming possibilities of waterborne diseases. The concentrations of enteric viruses were significantly higher in the dry season than the wet season (p < 0.05). There was a significant positive correlation between the concentrations of human enteric viruses and the tested indicators for the presence of pathogens (IPP) (p < 0.05), suggesting that these IPP can be used to estimate the presence of enteric viruses in the Bagmati River water. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Acidocalcisome-Mitochondrion Membrane Contact Sites in Trypanosoma brucei
Pathogens 2018, 7(2), 33; https://doi.org/10.3390/pathogens7020033 - 22 Mar 2018
Cited by 7
Abstract
Membrane contact sites are regions of close apposition between two organelles, typically less than 30 nanometers apart, that facilitate transfer of biomolecules. The presence of contact sites has been demonstrated in yeast, plants, and mammalian cells. Here, we investigated the presence of such [...] Read more.
Membrane contact sites are regions of close apposition between two organelles, typically less than 30 nanometers apart, that facilitate transfer of biomolecules. The presence of contact sites has been demonstrated in yeast, plants, and mammalian cells. Here, we investigated the presence of such contact sites in Trypanosoma brucei. In mammalian cells, endoplasmic reticulum-mitochondria contact sites facilitate mitochondrial uptake of Ca2+ released by the ER-located inositol 1,4,5-trisphosphate receptor (InsP3R). However, the InsP3R in trypanosomes localizes to acidocalcisomes, which serve as major Ca2+ stores in these parasites. In this work, we have used super-resolution structured illumination microscopy and electron microscopy to identify membrane contact sites that exist between acidocalcisomes and mitochondria. Furthermore, we have confirmed the close association of these organelles using proximity ligation assays. Characterization of these contact sites may be a necessary starting point towards unraveling the role of Ca2+ in regulating trypanosome bioenergetics. Full article
(This article belongs to the Special Issue Trypanosoma brucei)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

Open AccessEditor’s ChoiceReview
Candida albicans at Host Barrier Sites: Pattern Recognition Receptors and Beyond
Pathogens 2019, 8(1), 40; https://doi.org/10.3390/pathogens8010040 - 25 Mar 2019
Cited by 6
Abstract
Over the last decades, fungal infections have emerged as a growing threat to human health. Although the human body is at potential risk, various body sites host several commensal fungal species, including Candida albicans. In healthy individuals, C. albicans colonizes different mucosal [...] Read more.
Over the last decades, fungal infections have emerged as a growing threat to human health. Although the human body is at potential risk, various body sites host several commensal fungal species, including Candida albicans. In healthy individuals, C. albicans colonizes different mucosal surfaces without causing harm, while under diverse circumstances the fungus can proliferate and cause disease. In this context, the understanding of host–C. albicans interactions in health and during infection may lead to novel therapeutic approaches. Importantly, host cells express pattern recognition receptors (PRRs), which sense conserved fungal structures and orchestrate innate immune responses. Herein, important findings on the topic of the recognition of C. albicans at host barrier sites are discussed. This review briefly summarizes the importance and functions of myeloid PRRs, reviews the fungal recognition and biology of stromal cells, and highlights important C. albicans virulence attributes during site-specific proliferation and invasion. Full article
(This article belongs to the Special Issue Immunology of Fungal Infections)
Open AccessEditor’s ChoiceReview
Fusarium, an Entomopathogen—A Myth or Reality?
Pathogens 2018, 7(4), 93; https://doi.org/10.3390/pathogens7040093 - 28 Nov 2018
Cited by 11
Abstract
The Fusarium species has diverse ecological functions ranging from saprophytes, endophytes, and animal and plant pathogens. Occasionally, they are isolated from dead and alive insects. However, research on fusaria-insect associations is very limited as fusaria are generalized as opportunistic insect-pathogens. Additionally, their phytopathogenicity [...] Read more.
The Fusarium species has diverse ecological functions ranging from saprophytes, endophytes, and animal and plant pathogens. Occasionally, they are isolated from dead and alive insects. However, research on fusaria-insect associations is very limited as fusaria are generalized as opportunistic insect-pathogens. Additionally, their phytopathogenicity raises concerns in their use as commercial biopesticides. Insect biocontrol potential of Fusarium is favored by their excellent soil survivability as saprophytes, and sometimes, insect-pathogenic strains do not exhibit phytopathogenicity. In addition, a small group of fusaria, those belonging to the Fusarium solani species complex, act as insect mutualists assisting in host growth and fecundity. In this review, we summarize mutualism and pathogenicity among fusaria and insects. Furthermore, we assert on Fusarium entomopathogenicity by analyzing previous studies clearly demonstrating their natural insect-pathogenicity in fields, and their presence in soils. We also review the presence and/or production of a well-known insecticidal metabolite beauvericin by different Fusarium species. Lastly, some proof-of-concept studies are also summarized, which demonstrate the histological as well as immunological changes that a larva undergoes during Fusarium oxysporum pathogenesis. These reports highlight the insecticidal properties of some Fusarium spp., and emphasize the need of robust techniques, which can distinguish phytopathogenic, mutualistic and entomopathogenic fusaria. Full article
(This article belongs to the Special Issue Fusarium)
Open AccessEditor’s ChoiceReview
Modelling a Silent Epidemic: A Review of the In Vitro Models of Latent Tuberculosis
Pathogens 2018, 7(4), 88; https://doi.org/10.3390/pathogens7040088 - 15 Nov 2018
Cited by 6
Abstract
Tuberculosis (TB) is the primary cause of death by a single infectious agent; responsible for around two million deaths in 2016. A major virulence factor of TB is the ability to enter a latent or Non-Replicating Persistent (NRP) state which is presumed untreatable. [...] Read more.
Tuberculosis (TB) is the primary cause of death by a single infectious agent; responsible for around two million deaths in 2016. A major virulence factor of TB is the ability to enter a latent or Non-Replicating Persistent (NRP) state which is presumed untreatable. Approximately 1.7 billion people are latently infected with TB and on reactivation many of these infections are drug resistant. As the current treatment is ineffective and diagnosis remains poor, millions of people have the potential to reactivate into active TB disease. The immune system seeks to control the TB infection by containing the bacteria in a granuloma, where it is exposed to stressful anaerobic and nutrient deprived conditions. It is thought to be these environmental conditions that trigger the NRP state. A number of in vitro models have been developed that mimic conditions within the granuloma to a lesser or greater extent. These different models have all been utilised for the research of different characteristics of NRP Mycobacterium tuberculosis, however their disparity in approach and physiological relevance often results in inconsistencies and a lack of consensus between studies. This review provides a summation of the different NRP models and a critical analysis of their respective advantages and disadvantages relating to their physiological relevance. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Improving the Breadth of the Host’s Immune Response to Lassa Virus
Pathogens 2018, 7(4), 84; https://doi.org/10.3390/pathogens7040084 - 28 Oct 2018
Cited by 8
Abstract
In 2017, the global Coalition for Epidemic Preparedness (CEPI) declared Lassa virus disease to be one of the world’s foremost biothreats. In January 2018, World Health Organization experts met to address the Lassa biothreat. It was commonly recognized that the diversity of Lassa [...] Read more.
In 2017, the global Coalition for Epidemic Preparedness (CEPI) declared Lassa virus disease to be one of the world’s foremost biothreats. In January 2018, World Health Organization experts met to address the Lassa biothreat. It was commonly recognized that the diversity of Lassa virus (LASV) isolated from West African patient samples was far greater than that of the Ebola isolates from the West African epidemic of 2013–2016. Thus, vaccines produced against Lassa virus disease face the added challenge that they must be broadly-protective against a wide variety of LASV. In this review, we discuss what is known about the immune response to Lassa infection. We also discuss the approaches used to make broadly-protective influenza vaccines and how they could be applied to developing broad vaccine coverage against LASV disease. Recent advances in AIDS research are also potentially applicable to the design of broadly-protective medical countermeasures against LASV disease. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Armillaria Root-Rot Pathogens: Species Boundaries and Global Distribution
Pathogens 2018, 7(4), 83; https://doi.org/10.3390/pathogens7040083 - 24 Oct 2018
Cited by 6
Abstract
This review considers current knowledge surrounding species boundaries of the Armillaria root-rot pathogens and their distribution. In addition, a phylogenetic tree using translation elongation factor subunit 1-alpha (tef-1α) from isolates across the globe are used to present a global phylogenetic framework [...] Read more.
This review considers current knowledge surrounding species boundaries of the Armillaria root-rot pathogens and their distribution. In addition, a phylogenetic tree using translation elongation factor subunit 1-alpha (tef-1α) from isolates across the globe are used to present a global phylogenetic framework for the genus. Defining species boundaries based on DNA sequence-inferred phylogenies has been a central focus of contemporary mycology. The results of such studies have in many cases resolved the biogeographic history of species, mechanisms involved in dispersal, the taxonomy of species and how certain phenotypic characteristics have evolved throughout lineage diversification. Such advances have also occurred in the case of Armillaria spp. that include important causal agents of tree root rots. This commenced with the first phylogeny for Armillaria that was based on IGS-1 (intergenic spacer region one) DNA sequence data, published in 1992. Since then phylogenies were produced using alternative loci, either as single gene phylogenies or based on concatenated data. Collectively these phylogenies revealed species clusters in Armillaria linked to their geographic distributions and importantly species complexes that warrant further research. Full article
(This article belongs to the Special Issue Fungal Pathogens of Forest Trees)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road
Pathogens 2018, 7(4), 81; https://doi.org/10.3390/pathogens7040081 - 11 Oct 2018
Cited by 5
Abstract
Silks are the long threads at the tips of maize ears onto which pollen land and sperm nuclei travel long distances to fertilize egg cells, giving rise to embryos and seeds; however fungal pathogens also use this route to invade developing grain, causing [...] Read more.
Silks are the long threads at the tips of maize ears onto which pollen land and sperm nuclei travel long distances to fertilize egg cells, giving rise to embryos and seeds; however fungal pathogens also use this route to invade developing grain, causing damaging ear rots with dangerous mycotoxins. This review highlights the importance of silks as the direct highways by which globally important fungal pathogens enter maize kernels. First, the most important silk-entering fungal pathogens in maize are reviewed, including Fusarium graminearum, Fusarium verticillioides, and Aspergillus flavus, and their mycotoxins. Next, we compare the different modes used by each fungal pathogen to invade the silks, including susceptible time intervals and the effects of pollination. Innate silk defences and current strategies to protect silks from ear rot pathogens are reviewed, and future protective strategies and silk-based research are proposed. There is a particular gap in knowledge of how to improve silk health and defences around the time of pollination, and a need for protective silk sprays or other technologies. It is hoped that this review will stimulate innovations in breeding, inputs, and techniques to help growers protect silks, which are expected to become more vulnerable to pathogens due to climate change. Full article
(This article belongs to the Special Issue Fusarium)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
New Insights on the Pathogenesis of Takayasu Arteritis: Revisiting the Microbial Theory
Pathogens 2018, 7(3), 73; https://doi.org/10.3390/pathogens7030073 - 06 Sep 2018
Cited by 10
Abstract
Takayasu arteritis (TAK) is a chronic vasculitis that mainly affects the aorta, its major branches, and the pulmonary arteries. Since the description of the first case by Mikito Takayasu in 1908, several aspects of this rare disease, including the epidemiology, diagnosis, and the [...] Read more.
Takayasu arteritis (TAK) is a chronic vasculitis that mainly affects the aorta, its major branches, and the pulmonary arteries. Since the description of the first case by Mikito Takayasu in 1908, several aspects of this rare disease, including the epidemiology, diagnosis, and the appropriate clinical assessment, have been substantially defined. Nevertheless, while it is well-known that TAK is associated with a profound inflammatory process, possibly rooted to an autoimmune disorder, its precise etiology has remained largely unknown. Efforts to identify the antigen(s) that trigger autoimmunity in this disease have been unsuccessful, however, it is likely that viruses or bacteria, by a molecular mimicry mechanism, initiate or propagate the auto-immune process in this disease. In this article, we summarize recent advances in the understanding of TAK, with emphasis on new insights related to the pathogenesis of this entity that may contribute to the design of novel therapeutic approaches. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
A Window to Toxoplasma gondii Egress
Pathogens 2018, 7(3), 69; https://doi.org/10.3390/pathogens7030069 - 14 Aug 2018
Cited by 3
Abstract
The Toxoplasma gondii cellular cycle has been widely studied in many lifecycle stages; however, the egress event still is poorly understood even though different types of molecules were shown to be involved. Assuming that there is no purpose or intentionality in biological phenomena, [...] Read more.
The Toxoplasma gondii cellular cycle has been widely studied in many lifecycle stages; however, the egress event still is poorly understood even though different types of molecules were shown to be involved. Assuming that there is no purpose or intentionality in biological phenomena, there is no such question as “Why does the parasite leaves the host cell”, but “Under what conditions and how?”. In this review we aimed to summarize current knowledge concerning T. gondii egress physiology (signalling pathways), structures, and route. Full article
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
Early Events in Japanese Encephalitis Virus Infection: Viral Entry
Pathogens 2018, 7(3), 68; https://doi.org/10.3390/pathogens7030068 - 13 Aug 2018
Cited by 8
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic flavivirus, is an enveloped positive-strand RNA virus that can cause a spectrum of clinical manifestations, ranging from mild febrile illness to severe neuroinvasive disease. Today, several killed and live vaccines are available in different parts of [...] Read more.
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic flavivirus, is an enveloped positive-strand RNA virus that can cause a spectrum of clinical manifestations, ranging from mild febrile illness to severe neuroinvasive disease. Today, several killed and live vaccines are available in different parts of the globe for use in humans to prevent JEV-induced diseases, yet no antivirals are available to treat JEV-associated diseases. Despite the progress made in vaccine research and development, JEV is still a major public health problem in southern, eastern, and southeastern Asia, as well as northern Oceania, with the potential to become an emerging global pathogen. In viral replication, the entry of JEV into the cell is the first step in a cascade of complex interactions between the virus and target cells that is required for the initiation, dissemination, and maintenance of infection. Because this step determines cell/tissue tropism and pathogenesis, it is a promising target for antiviral therapy. JEV entry is mediated by the viral glycoprotein E, which binds virions to the cell surface (attachment), delivers them to endosomes (endocytosis), and catalyzes the fusion between the viral and endosomal membranes (membrane fusion), followed by the release of the viral genome into the cytoplasm (uncoating). In this multistep process, a collection of host factors are involved. In this review, we summarize the current knowledge on the viral and cellular components involved in JEV entry into host cells, with an emphasis on the initial virus-host cell interactions on the cell surface. Full article
(This article belongs to the Special Issue Japanese Encephalitis Virus (JEV))
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
An Update on Sexual Transmission of Zika Virus
Pathogens 2018, 7(3), 66; https://doi.org/10.3390/pathogens7030066 - 03 Aug 2018
Cited by 15
Abstract
Zika virus (ZIKV) is a single-stranded RNA virus belonging to the arthropod-borne flaviviruses (arboviruses) which are mainly transmitted by blood-sucking mosquitoes of the genus Aedes. ZIKV infection has been known to be rather asymptomatic or presented as febrile self-limited disease; however, during the [...] Read more.
Zika virus (ZIKV) is a single-stranded RNA virus belonging to the arthropod-borne flaviviruses (arboviruses) which are mainly transmitted by blood-sucking mosquitoes of the genus Aedes. ZIKV infection has been known to be rather asymptomatic or presented as febrile self-limited disease; however, during the last decade the manifestation of ZIKV infection has been associated with a variety of neuroimmunological disorders including Guillain–Barré syndrome, microcephaly and other central nervous system abnormalities. More recently, there is accumulating evidence about sexual transmission of ZIKV, a trait that has never been observed in any other mosquito-borne flavivirus before. This article reviews the latest information regarding the latter and emerging role of ZIKV, focusing on the consequences of ZIKV infection on the male reproductive system and the epidemiology of human-to-human sexual transmission. Full article
(This article belongs to the Special Issue Virus-Host Interactions of Zika Virus)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Solid Organ Transplant and Parasitic Diseases: A Review of the Clinical Cases in the Last Two Decades
Pathogens 2018, 7(3), 65; https://doi.org/10.3390/pathogens7030065 - 31 Jul 2018
Cited by 6
Abstract
The aim of this study was to evaluate the occurrence of parasitic infections in solid organ transplant (SOT) recipients. We conducted a systematic review of literature records on post-transplant parasitic infections, published from 1996 to 2016 and available on PubMed database, focusing only [...] Read more.
The aim of this study was to evaluate the occurrence of parasitic infections in solid organ transplant (SOT) recipients. We conducted a systematic review of literature records on post-transplant parasitic infections, published from 1996 to 2016 and available on PubMed database, focusing only on parasitic infections acquired after SOT. The methods and findings of the present review have been presented based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist. From data published in the literature, the real burden of parasitic infections among SOT recipients cannot really be estimated. Nevertheless, publications on the matter are on the increase, probably due to more than one reason: (i) the increasing number of patients transplanted and then treated with immunosuppressive agents; (ii) the “population shift” resulting from immigration and travels to endemic areas, and (iii) the increased attention directed to diagnosis/notification/publication of cases. Considering parasitic infections as emerging and potentially serious in their evolution, additional strategies for the prevention, careful screening and follow-up, with a high level of awareness, identification, and pre-emptive therapy are needed in transplant recipients. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Epstein-Barr Virus-Induced Epigenetic Pathogenesis of Viral-Associated Lymphoepithelioma-Like Carcinomas and Natural Killer/T-Cell Lymphomas
Pathogens 2018, 7(3), 63; https://doi.org/10.3390/pathogens7030063 - 18 Jul 2018
Cited by 5
Abstract
Cancer genome studies of Epstein-Barr virus (EBV)-associated tumors, including lymphoepithelioma-like carcinomas (LELC) of nasopharyngeal (NPC), gastric (EBVaGC) and lung tissues, and natural killer (NK)/T-cell lymphoma (NKTCL), reveal a unique feature of genomic alterations with fewer gene mutations detected than other common cancers. It [...] Read more.
Cancer genome studies of Epstein-Barr virus (EBV)-associated tumors, including lymphoepithelioma-like carcinomas (LELC) of nasopharyngeal (NPC), gastric (EBVaGC) and lung tissues, and natural killer (NK)/T-cell lymphoma (NKTCL), reveal a unique feature of genomic alterations with fewer gene mutations detected than other common cancers. It is known now that epigenetic alterations play a critical role in the pathogenesis of EBV-associated tumors. As an oncogenic virus, EBV establishes its latent and lytic infections in B-lymphoid and epithelial cells, utilizing hijacked cellular epigenetic machinery. EBV-encoded oncoproteins modulate cellular epigenetic machinery to reprogram viral and host epigenomes, especially in the early stage of infection, using host epigenetic regulators. The genome-wide epigenetic alterations further inactivate a series of tumor suppressor genes (TSG) and disrupt key cellular signaling pathways, contributing to EBV-associated cancer initiation and progression. Profiling of genome-wide CpG methylation changes (CpG methylome) have revealed a unique epigenotype of global high-grade methylation of TSGs in EBV-associated tumors. Here, we have summarized recent advances of epigenetic alterations in EBV-associated tumors (LELCs and NKTCL), highlighting the importance of epigenetic etiology in EBV-associated tumorigenesis. Epigenetic study of these EBV-associated tumors will discover valuable biomarkers for their early detection and prognosis prediction, and also develop effective epigenetic therapeutics for these cancers. Full article
(This article belongs to the Special Issue Emerging Topics in Epstein-Barr virus-Associated Diseases)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Contribution of Epstein–Barr Virus Latent Proteins to the Pathogenesis of Classical Hodgkin Lymphoma
Pathogens 2018, 7(3), 59; https://doi.org/10.3390/pathogens7030059 - 27 Jun 2018
Cited by 7
Abstract
Pathogenic viruses have evolved to manipulate the host cell utilising a variety of strategies including expression of viral proteins to hijack or mimic the activity of cellular functions. DNA tumour viruses often establish latent infection in which no new virions are produced, characterized [...] Read more.
Pathogenic viruses have evolved to manipulate the host cell utilising a variety of strategies including expression of viral proteins to hijack or mimic the activity of cellular functions. DNA tumour viruses often establish latent infection in which no new virions are produced, characterized by the expression of a restricted repertoire of so-called latent viral genes. These latent genes serve to remodel cellular functions to ensure survival of the virus within host cells, often for the lifetime of the infected individual. However, under certain circumstances, virus infection may contribute to transformation of the host cell; this event is not a usual outcome of infection. Here, we review how the Epstein–Barr virus (EBV), the prototypic oncogenic human virus, modulates host cell functions, with a focus on the role of the EBV latent genes in classical Hodgkin lymphoma. Full article
(This article belongs to the Special Issue Emerging Topics in Epstein-Barr virus-Associated Diseases)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
The Mammalian Intestinal Microbiome: Composition, Interaction with the Immune System, Significance for Vaccine Efficacy, and Potential for Disease Therapy
Pathogens 2018, 7(3), 57; https://doi.org/10.3390/pathogens7030057 - 21 Jun 2018
Cited by 9
Abstract
The mammalian gut is colonized by a large variety of microbes, collectively termed ‘the microbiome’. The gut microbiome undergoes rapid changes during the first few years of life and is highly variable in adulthood depending on various factors. With the gut being the [...] Read more.
The mammalian gut is colonized by a large variety of microbes, collectively termed ‘the microbiome’. The gut microbiome undergoes rapid changes during the first few years of life and is highly variable in adulthood depending on various factors. With the gut being the largest organ of immune responses, the composition of the microbiome of the gut has been found to be correlated with qualitative and quantitative differences of mucosal and systemic immune responses. Animal models have been very useful to unravel the relationship between gut microbiome and immune responses and for the understanding of variations of immune responses to vaccination in different childhood populations. However, the molecular mechanisms underlying optimal immune responses to infection or vaccination are not fully understood. The gut virome and gut bacteria can interact, with bacteria facilitating viral infectivity by different mechanisms. Some gut bacteria, which have a beneficial effect on increasing immune responses or by overgrowing intestinal pathogens, are considered to act as probiotics and can be used for therapeutic purposes (as in the case of fecal microbiome transplantation). Full article
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
Listeria Monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response
Pathogens 2018, 7(2), 55; https://doi.org/10.3390/pathogens7020055 - 16 Jun 2018
Cited by 9
Abstract
Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm [...] Read more.
Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design. Full article
(This article belongs to the Special Issue Listeria monocytogenes and Its Interactions with the Host)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens
Pathogens 2018, 7(2), 53; https://doi.org/10.3390/pathogens7020053 - 29 May 2018
Cited by 27
Abstract
Staphylococcal superantigens (SAgs) constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC) class II molecules with T cell receptors (TCRs) to stimulate the uncontrolled activation of T lymphocytes, potentially [...] Read more.
Staphylococcal superantigens (SAgs) constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC) class II molecules with T cell receptors (TCRs) to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence. Full article
(This article belongs to the Special Issue Molecular Pathogenesis of Staphylococcal Infections)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Vertical Transmission of Listeria monocytogenes: Probing the Balance between Protection from Pathogens and Fetal Tolerance
Pathogens 2018, 7(2), 52; https://doi.org/10.3390/pathogens7020052 - 25 May 2018
Cited by 8
Abstract
Protection of the developing fetus from pathogens is one of the many critical roles of the placenta. Listeria monocytogenes is one of a select number of pathogens that can cross the placental barrier and cause significant harm to the fetus, leading to spontaneous [...] Read more.
Protection of the developing fetus from pathogens is one of the many critical roles of the placenta. Listeria monocytogenes is one of a select number of pathogens that can cross the placental barrier and cause significant harm to the fetus, leading to spontaneous abortion, stillbirth, preterm labor, and disseminated neonate infection despite antibiotic treatment. Such severe outcomes serve to highlight the importance of understanding how L. monocytogenes mediates infiltration of the placental barrier. Here, we review what is currently known regarding vertical transmission of L. monocytogenes as a result of cell culture and animal models of infection. In vitro cell culture and organ models have been useful for the identification of L. monocytogenes virulence factors that contribute to placental invasion. Examples include members of the Internalin family of bacterial surface proteins such as Interalin (Inl)A, InlB, and InlP that promote invasion of cells at the maternal-fetal interface. A number of animal models have been used to interrogate L. monocytogenes vertical transmission, including mice, guinea pigs, gerbils, and non-human primates; each of these models has advantages while still not providing a comprehensive understanding of L. monocytogenes invasion of the human placenta and/or fetus. These models do, however, allow for the molecular investigation of the balance between fetal tolerance and immune protection from L. monocytogenes during pregnancy. Full article
(This article belongs to the Special Issue Listeria monocytogenes and Its Interactions with the Host)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Zika Virus Trafficking and Interactions in the Human Male Reproductive Tract
Pathogens 2018, 7(2), 51; https://doi.org/10.3390/pathogens7020051 - 11 May 2018
Cited by 6
Abstract
Sexual transmission of Zika virus (ZIKV) is a matter of great concern. Infectious viral particles can be shed in semen for as long as six months after infection and can be transferred to male and female sexual partners during unprotected sexual intercourse. The [...] Read more.
Sexual transmission of Zika virus (ZIKV) is a matter of great concern. Infectious viral particles can be shed in semen for as long as six months after infection and can be transferred to male and female sexual partners during unprotected sexual intercourse. The virus can be found inside spermatozoa and could be directly transferred to the oocyte during fertilization. Sexual transmission of ZIKV can contribute to the rise in number of infected individuals in endemic areas as well as in countries where the mosquito vector does not thrive. There is also the possibility, as has been demonstrated in mouse models, that the vaginal deposition of ZIKV particles present in semen could lead to congenital syndrome. In this paper, we review the current literature to understand ZIKV trafficking from the bloodstream to the human male reproductive tract and viral interactions with host cells in interstitial spaces, tubule walls, annexed glands and semen. We hope to highlight gaps to be filled by future research and potential routes for vaccine and antiviral development. Full article
(This article belongs to the Special Issue Virus-Host Interactions of Zika Virus)
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
Comparing the Folds of Prions and Other Pathogenic Amyloids
Pathogens 2018, 7(2), 50; https://doi.org/10.3390/pathogens7020050 - 04 May 2018
Cited by 2
Abstract
Pathogenic amyloids are the main feature of several neurodegenerative disorders, such as Creutzfeldt–Jakob disease, Alzheimer’s disease, and Parkinson’s disease. High resolution structures of tau paired helical filaments (PHFs), amyloid-β(1-42) (Aβ(1-42)) fibrils, and α-synuclein fibrils were recently reported using cryo-electron microscopy. A high-resolution structure [...] Read more.
Pathogenic amyloids are the main feature of several neurodegenerative disorders, such as Creutzfeldt–Jakob disease, Alzheimer’s disease, and Parkinson’s disease. High resolution structures of tau paired helical filaments (PHFs), amyloid-β(1-42) (Aβ(1-42)) fibrils, and α-synuclein fibrils were recently reported using cryo-electron microscopy. A high-resolution structure for the infectious prion protein, PrPSc, is not yet available due to its insolubility and its propensity to aggregate, but cryo-electron microscopy, X-ray fiber diffraction, and other approaches have defined the overall architecture of PrPSc as a 4-rung β-solenoid. Thus, the structure of PrPSc must have a high similarity to that of the fungal prion HET-s, which is part of the fungal heterokaryon incompatibility system and contains a 2-rung β-solenoid. This review compares the structures of tau PHFs, Aβ(1-42), and α-synuclein fibrils, where the β-strands of each molecule stack on top of each other in a parallel in-register arrangement, with the β-solenoid folds of HET-s and PrPSc. Full article
(This article belongs to the Special Issue PrPSc prions: state of the art) Printed Edition available
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
Molecular Responses to the Zika Virus in Mosquitoes
Pathogens 2018, 7(2), 49; https://doi.org/10.3390/pathogens7020049 - 03 May 2018
Cited by 5
Abstract
The Zika virus (ZIKV), originally discovered in 1947, did not become a major concern until the virus swept across the Pacific and into the Americas in the last decade, bringing with it news of neurological complications and birth defects in ZIKV affected areas. [...] Read more.
The Zika virus (ZIKV), originally discovered in 1947, did not become a major concern until the virus swept across the Pacific and into the Americas in the last decade, bringing with it news of neurological complications and birth defects in ZIKV affected areas. This prompted researchers to dissect the molecular interactions between ZIKV and the mosquito vector in an attempt to better understand not only the changes that occur upon infection, but to also identify molecules that may potentially enhance or suppress a mosquito’s ability to become infected and/or transmit the virus. Here, we review what is currently known regarding ZIKV-mosquito molecular interactions, focusing on ZIKV infection of Aedes aegypti and Aedes albopictus, the primary species implicated in transmitting ZIKV during the recent outbreaks. Full article
(This article belongs to the Special Issue Virus-Host Interactions of Zika Virus)
Open AccessEditor’s ChoiceReview
The Microenvironment in Epstein–Barr Virus-Associated Malignancies
Pathogens 2018, 7(2), 40; https://doi.org/10.3390/pathogens7020040 - 13 Apr 2018
Cited by 15
Abstract
The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an [...] Read more.
The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy. Full article
(This article belongs to the Special Issue Emerging Topics in Epstein-Barr virus-Associated Diseases)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids
Pathogens 2018, 7(2), 36; https://doi.org/10.3390/pathogens7020036 - 01 Apr 2018
Cited by 21
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This [...] Read more.
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts. Full article
(This article belongs to the Special Issue Trypanosoma brucei)
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
The Cooperative Functions of the EBNA3 Proteins Are Central to EBV Persistence and Latency
Pathogens 2018, 7(1), 31; https://doi.org/10.3390/pathogens7010031 - 17 Mar 2018
Cited by 6
Abstract
The Epstein–Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein–Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in [...] Read more.
The Epstein–Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein–Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in vitro B cell transformation and EBV persistence in vivo. Despite structural and sequence similarities, and evidence of substantial cooperative activity between the EBNA3 proteins, they perform quite different, often opposing functions. Both EBNA3A and EBNA3C are involved in the repression of important tumour suppressive pathways and are considered oncogenic. In contrast, EBNA3B exhibits tumour suppressive functions. This review focuses on how the EBNA3 proteins achieve the delicate balance required to support EBV persistence and latency, with emphasis on the contribution of the Allday laboratory to the field of EBNA3 biology. Full article
(This article belongs to the Special Issue Emerging Topics in Epstein-Barr virus-Associated Diseases)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Navigating the Host Cell Response during Entry into Sites of Latent Cytomegalovirus Infection
Pathogens 2018, 7(1), 30; https://doi.org/10.3390/pathogens7010030 - 16 Mar 2018
Cited by 9
Abstract
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very [...] Read more.
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very early stages of infection the virus relies on the outcome of interactions between virion components, cell surface receptors and host signalling pathways to promote an environment that supports infection. In the context of latent infection—where the virus establishes an infection in an absence of many gene products specific for lytic infection—these initial interactions are crucial events. In this review, we will discuss key host responses triggered by viral infection and how, in turn, the virus ameliorates the impact on the establishment of non-lytic infections of cells. We will focus on strategies to evade intrinsic antiviral and innate immune responses and consider their impact on viral infection. Finally, we will consider the hypothesis that the very early events upon viral infection are important for dictating the outcome of infection and consider the possibility that events that occur during entry into non-permissive cells are unique and thus contribute to the establishment of latency. Full article
(This article belongs to the Special Issue Cytomegalovirus Infection)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Control of Bovine Viral Diarrhea
Pathogens 2018, 7(1), 29; https://doi.org/10.3390/pathogens7010029 - 08 Mar 2018
Cited by 15
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious diseases of cattle with respect to animal health and economic impact. Its stealthy nature, prolonged transient infections, and the presence of persistently infected (PI) animals as efficient reservoirs were responsible for its [...] Read more.
Bovine viral diarrhea (BVD) is one of the most important infectious diseases of cattle with respect to animal health and economic impact. Its stealthy nature, prolonged transient infections, and the presence of persistently infected (PI) animals as efficient reservoirs were responsible for its ubiquitous presence in cattle populations worldwide. Whereas it was initially thought that the infection was impossible to control, effective systematic control strategies have emerged over the last 25 years. The common denominators of all successful control programs were systematic control, removal of PI animals, movement controls for infected herds, strict biosecurity, and surveillance. Scandinavian countries, Austria, and Switzerland successfully implemented these control programs without using vaccination. Vaccination as an optional and additional control tool was used by e.g., Germany, Belgium, Ireland, and Scotland. The economic benefits of BVD control programs had been assessed in different studies. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea virus)
Open AccessFeature PaperEditor’s ChoiceReview
Pharmacological Agents Targeting the Cellular Prion Protein
Pathogens 2018, 7(1), 27; https://doi.org/10.3390/pathogens7010027 - 07 Mar 2018
Cited by 16
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates [...] Read more.
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class. Full article
(This article belongs to the Special Issue PrPSc prions: state of the art) Printed Edition available
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
EBV-Positive Lymphoproliferations of B- T- and NK-Cell Derivation in Non-Immunocompromised Hosts
Pathogens 2018, 7(1), 28; https://doi.org/10.3390/pathogens7010028 - 07 Mar 2018
Cited by 28
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders [...] Read more.
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored. Full article
(This article belongs to the Special Issue Emerging Topics in Epstein-Barr virus-Associated Diseases)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery
Pathogens 2018, 7(1), 24; https://doi.org/10.3390/pathogens7010024 - 23 Feb 2018
Cited by 13
Abstract
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable [...] Read more.
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail. Full article
(This article belongs to the Special Issue Mechanisms of Mycobacterium tuberculosis Pathogenesis)
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
The Structure of PrPSc Prions
Pathogens 2018, 7(1), 20; https://doi.org/10.3390/pathogens7010020 - 07 Feb 2018
Cited by 30
Abstract
PrPSc (scrapie isoform of the prion protein) prions are the infectious agent behind diseases such as Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (deer, elk, moose, and reindeer), as well as goat and sheep scrapie. [...] Read more.
PrPSc (scrapie isoform of the prion protein) prions are the infectious agent behind diseases such as Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (deer, elk, moose, and reindeer), as well as goat and sheep scrapie. PrPSc is an alternatively folded variant of the cellular prion protein, PrPC, which is a regular, GPI-anchored protein that is present on the cell surface of neurons and other cell types. While the structure of PrPC is well studied, the structure of PrPSc resisted high-resolution determination due to its general insolubility and propensity to aggregate. Cryo-electron microscopy, X-ray fiber diffraction, and a variety of other approaches defined the structure of PrPSc as a four-rung β-solenoid. A high-resolution structure of PrPSc still remains to be solved, but the four-rung β-solenoid architecture provides a molecular framework for the autocatalytic propagation mechanism that gives rise to the alternative conformation of PrPSc. Here, we summarize the current knowledge regarding the structure of PrPSc and speculate about the molecular conversion mechanisms that leads from PrPC to PrPSc. Full article
(This article belongs to the Special Issue PrPSc prions: state of the art) Printed Edition available
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Pathogenesis and Animal Models of Post-Primary (Bronchogenic) Tuberculosis, A Review
Pathogens 2018, 7(1), 19; https://doi.org/10.3390/pathogens7010019 - 06 Feb 2018
Cited by 10
Abstract
Primary and post-primary tuberculosis (TB) are different diseases caused by the same organism. Primary TB produces systemic immunity. Post-primary TB produces cavities to support massive proliferation of organisms for transmission of infection to new hosts from a person with sufficient immunity to prevent [...] Read more.
Primary and post-primary tuberculosis (TB) are different diseases caused by the same organism. Primary TB produces systemic immunity. Post-primary TB produces cavities to support massive proliferation of organisms for transmission of infection to new hosts from a person with sufficient immunity to prevent systemic infection. Post-primary, also known as bronchogenic, TB begins in humans as asymptomatic bronchial spread of obstructive lobular pneumonia, not as expanding granulomas. Most lesions regress spontaneously. However, some undergo caseation necrosis that is coughed out through the necrotic bronchi to form cavities. Caseous pneumonia that is not expelled through the bronchi is retained to become the focus of fibrocaseous disease. No animal reproduces this entire process. However, it appears that many mammals utilize similar mechanisms, but fail to coordinate them as do humans. Understanding this makes it possible to use human tuberculous lung sections to guide manipulation of animals to produce models of particular human lesions. For example, slowly progressive and reactivation TB in mice resemble developing human bronchogenic TB. Similarly, bronchogenic TB and cavities resembling those in humans can be induced by bronchial infection of sensitized rabbits. Granulomas in guinea pigs have characteristics of both primary and post primary TB. Mice can be induced to produce a spectrum of human like caseating granulomas. There is evidence that primates can develop bronchogenic TB. We are optimistic that such models developed by coordinated study of human and animal tissues can be used with modern technologies to finally address long-standing questions about host/parasite relationships in TB, and support development of targeted therapeutics and vaccines. Full article
(This article belongs to the Special Issue Mechanisms of Mycobacterium tuberculosis Pathogenesis)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Mycobacterium tuberculosis Molecular Determinants of Infection, Survival Strategies, and Vulnerable Targets
Pathogens 2018, 7(1), 17; https://doi.org/10.3390/pathogens7010017 - 01 Feb 2018
Cited by 22
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, an ancient disease which, still today, represents a major threat for the world population. Despite the advances in medicine and the development of effective antitubercular drugs, the cure of tuberculosis involves prolonged therapies which complicate [...] Read more.
Mycobacterium tuberculosis is the causative agent of tuberculosis, an ancient disease which, still today, represents a major threat for the world population. Despite the advances in medicine and the development of effective antitubercular drugs, the cure of tuberculosis involves prolonged therapies which complicate the compliance and monitoring of drug administration and treatment. Moreover, the only available antitubercular vaccine fails to provide an effective shield against adult lung tuberculosis, which is the most prevalent form. Hence, there is a pressing need for effective antitubercular drugs and vaccines. This review highlights recent advances in the study of selected M. tuberculosis key molecular determinants of infection and vulnerable targets whose structures could be exploited for the development of new antitubercular agents. Full article
(This article belongs to the Special Issue Mechanisms of Mycobacterium tuberculosis Pathogenesis)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
On the Demographic and Selective Forces Shaping Patterns of Human Cytomegalovirus Variation within Hosts
Pathogens 2018, 7(1), 16; https://doi.org/10.3390/pathogens7010016 - 28 Jan 2018
Cited by 7
Abstract
Human cytomegalovirus (HCMV) is a member of the β -herpesvirus subfamily within Herpesviridae that is nearly ubiquitous in human populations, and infection generally results only in mild symptoms. However, symptoms can be severe in immunonaive individuals, and transplacental congenital infection of HCMV can [...] Read more.
Human cytomegalovirus (HCMV) is a member of the β -herpesvirus subfamily within Herpesviridae that is nearly ubiquitous in human populations, and infection generally results only in mild symptoms. However, symptoms can be severe in immunonaive individuals, and transplacental congenital infection of HCMV can result in serious neurological sequelae. Recent work has revealed much about the demographic and selective forces shaping the evolution of congenitally transmitted HCMV both on the level of hosts and within host compartments, providing insight into the dynamics of congenital infection, reinfection, and evolution of HCMV with important implications for the development of effective treatments and vaccines. Full article
(This article belongs to the Special Issue Cytomegalovirus Infection)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
A Comparison of Oral and Intravenous Mouse Models of Listeriosis
Pathogens 2018, 7(1), 13; https://doi.org/10.3390/pathogens7010013 - 20 Jan 2018
Cited by 4
Abstract
Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal [...] Read more.
Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well as the development of a foodborne route of transmission has reignited interest in studying oral models of listeriosis. In this review, we analyze previously published reports to highlight both the similarities and differences in tissue colonization and host response to infection using either oral or i.v. inoculation. Full article
(This article belongs to the Special Issue Listeria monocytogenes and Its Interactions with the Host)
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans
Pathogens 2018, 7(1), 11; https://doi.org/10.3390/pathogens7010011 - 17 Jan 2018
Cited by 5
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well [...] Read more.
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease. Full article
(This article belongs to the Special Issue Pathogenesis and Virulence of Candida albicans and Candida glabrata)
Open AccessEditor’s ChoiceReview
Listeria monocytogenes: The Impact of Cell Death on Infection and Immunity
Pathogens 2018, 7(1), 8; https://doi.org/10.3390/pathogens7010008 - 11 Jan 2018
Cited by 9
Abstract
Listeria monocytogenes has evolved exquisite mechanisms for invading host cells and spreading from cell-to-cell to ensure maintenance of its intracellular lifecycle. As such, it is not surprising that loss of the intracellular replication niche through induction of host cell death has significant implications [...] Read more.
Listeria monocytogenes has evolved exquisite mechanisms for invading host cells and spreading from cell-to-cell to ensure maintenance of its intracellular lifecycle. As such, it is not surprising that loss of the intracellular replication niche through induction of host cell death has significant implications on the development of disease and the subsequent immune response. Although L. monocytogenes can activate multiple pathways of host cell death, including necrosis, apoptosis, and pyroptosis, like most intracellular pathogens L. monocytogenes has evolved a series of adaptations that minimize host cell death to promote its virulence. Understanding how L. monocytogenes modulates cell death during infection could lead to novel therapeutic approaches. In addition, as L. monocytogenes is currently being developed as a tumor immunotherapy platform, understanding how cell death pathways influence the priming and quality of cell-mediated immunity is critical. This review will focus on the mechanisms by which L. monocytogenes modulates cell death, as well as the implications of cell death on acute infection and the generation of adaptive immunity. Full article
(This article belongs to the Special Issue Listeria monocytogenes and Its Interactions with the Host)
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
Prion Strains and Transmission Barrier Phenomena
Pathogens 2018, 7(1), 5; https://doi.org/10.3390/pathogens7010005 - 01 Jan 2018
Cited by 11
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary [...] Read more.
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing. Full article
(This article belongs to the Special Issue PrPSc prions: state of the art) Printed Edition available
Show Figures

Figure 1

Other

Jump to: Research, Review

Open AccessEditor’s ChoiceOpinion
Maternal and Congenital Toxoplasmosis: Diagnosis and Treatment Recommendations of a French Multidisciplinary Working Group
Pathogens 2019, 8(1), 24; https://doi.org/10.3390/pathogens8010024 - 18 Feb 2019
Cited by 11
Abstract
Women infected with toxoplasmosis during pregnancy do not present symptoms in most cases, but the consequences of the congenital infection may be severe for the unborn child. Fetal damage can range from asymptomatic to severe neurological alterations to retinal lesions prone to potential [...] Read more.
Women infected with toxoplasmosis during pregnancy do not present symptoms in most cases, but the consequences of the congenital infection may be severe for the unborn child. Fetal damage can range from asymptomatic to severe neurological alterations to retinal lesions prone to potential flare up and relapses lifelong. Despite the possible severity of outcome, congenital toxoplasmosis (CT) is a neglected disease. There is no consensus regarding screening during pregnancy, prenatal/postnatal treatment or short or medium term follow-up. Since 1992, France has offered systematic serological testing to non-immune pregnant women, monthly until delivery. Any maternal infection is thus detected; moreover, diagnosis of congenital infection can be made at birth and follow-up can be provided. “Guidelines” drawn up by a multidisciplinary group are presented here, concerning treatment, before and after birth. The recommendations are based on the regular analysis of the literature and the results of the working group. The evaluation of the recommendations takes into account the robustness of the recommendation and the quality of the evidence. Full article
(This article belongs to the Section Human Pathogens)
Open AccessEditor’s ChoiceCase Report
Disease Manifestation and Viral Sequences in a Bonobo More Than 30 Years after Papillomavirus Infection
Pathogens 2019, 8(1), 13; https://doi.org/10.3390/pathogens8010013 - 26 Jan 2019
Abstract
Pan paniscus Papillomavirus 1 (PpPV1) causes focal epithelial hyperplasia (FEH) in infected animals. Here, we analyzed the present disease manifestation and PpPV1 genomic sequence of an animal that was afflicted by an FEH epizootic outbreak in 1987 for which the sequence of the [...] Read more.
Pan paniscus Papillomavirus 1 (PpPV1) causes focal epithelial hyperplasia (FEH) in infected animals. Here, we analyzed the present disease manifestation and PpPV1 genomic sequence of an animal that was afflicted by an FEH epizootic outbreak in 1987 for which the sequence of the responsible PpPV1 was determined. The animal displayed FEH more than 30 years after the initial diagnosis, indicating persistence or recurrence of the disease, and evidence for active PpPV1 infection was obtained. Moreover, the sequences of the viral genomes present in the late 1980s and in 2018 differed at 23 nucleotide positions, resulting in 11 amino acid exchanges within coding regions. These findings suggest that PpPV1-induced FEH might not undergo complete and/or permanent remission in a subset of afflicted animals. Full article
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceOpinion
Congenital Toxoplasmosis: A Plea for a Neglected Disease
Pathogens 2018, 7(1), 25; https://doi.org/10.3390/pathogens7010025 - 23 Feb 2018
Cited by 22
Abstract
Maternal infection by Toxoplasma gondii during pregnancy may have serious consequences for the fetus, ranging from miscarriage, central nervous system involvement, retinochoroiditis, or subclinical infection at birth with a risk of late onset of ocular diseases. As infection in pregnant women is usually [...] Read more.
Maternal infection by Toxoplasma gondii during pregnancy may have serious consequences for the fetus, ranging from miscarriage, central nervous system involvement, retinochoroiditis, or subclinical infection at birth with a risk of late onset of ocular diseases. As infection in pregnant women is usually symptomless, the diagnosis relies only on serological tests. Some countries like France and Austria have organized a regular serological testing of pregnant women, some others have no prenatal program of surveillance. Reasons for these discrepant attitudes are many and debatable. Among them are the efficacy of antenatal treatment and cost-effectiveness of such a program. A significant body of data demonstrated that rapid onset of treatment after maternal infection reduces the risk and severity of fetal infection. Recent cost-effectiveness studies support regular screening. This lack of consensus put both pregnant women and care providers in a difficult situation. Another reason why congenital toxoplasmosis is disregarded in some countries is the lack of precise information about its impact on the population. Precise estimations on the burden of the disease can be achieved by systematic screening that will avoid bias or underreporting of cases and provide a clear view of its outcome. Full article
(This article belongs to the Special Issue Toxoplasma gondii Infection)
Back to TopTop