Wastewater Surveillance and Public Health Strategies

A special issue of Pathogens (ISSN 2076-0817).

Deadline for manuscript submissions: 31 May 2026 | Viewed by 818

Special Issue Editors


E-Mail Website
Guest Editor
Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece
Interests: maritime health; infectious disease epidemiology; cross-border health threats

E-Mail Website
Guest Editor
Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece
Interests: environmental health; environmental epidemiology; exposure assessment

Special Issue Information

Dear Colleagues,

Wastewater-based surveillance (WBS) is a rapidly expanding and evolving public health practice that offers a powerful, non-invasive method for tracking the spread of infectious diseases. The successful implementation of WBS in many countries has prompted the need to explore and expand its application to a wide range of pathogens, including respiratory viruses, enteroviruses, antimicrobial resistance, and emerging pathogens, in various settings and diverse epidemiological contexts. This Special Issue seeks original research and review articles that present novel methodologies and highlight interdisciplinary collaborations on the use of wastewater-based epidemiology for pathogen monitoring. We are particularly interested in case studies that provide insights into the integration of WBS into public health decision-making processes.

Dr. Varvara A. Mouchtouri
Dr. Michalis Koureas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pathogens is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wastewater-based surveillance
  • public health
  • pathogen monitoring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1072 KiB  
Article
Wastewater Surveillance for Group A Streptococcus pyogenes in a Small City
by Olivia N. Birch, Frankie M. Garza and Justin C. Greaves
Pathogens 2025, 14(7), 658; https://doi.org/10.3390/pathogens14070658 - 3 Jul 2025
Viewed by 1
Abstract
Streptococcus pyogenes is a bacterial pathogen known to be the causative agent in many different illnesses, with Group A Streptococcus (GAS) pharyngitis (strep throat), being one of the more prevalent. The spread and severity of GAS pharyngitis can grow exponentially if individuals are [...] Read more.
Streptococcus pyogenes is a bacterial pathogen known to be the causative agent in many different illnesses, with Group A Streptococcus (GAS) pharyngitis (strep throat), being one of the more prevalent. The spread and severity of GAS pharyngitis can grow exponentially if individuals are not taking the proper precautions. Wastewater surveillance has been used to test for numerous different pathogens that humans spread throughout a community and in this study, we utilized wastewater surveillance to monitor GAS pharyngitis in a small city. Over a year, 57 wastewater influent samples were tested for S. pyogenes and three commonly tested respiratory viruses (Respiratory Syncytial Virus (RSV), SARS-CoV-2, Influenza A). Three microbial indicators and population normalizers (CrAssphage, Pepper mild mottle virus (PMMoV), and Mycobacterium) were tested as well to compare and contrast each indicator’s value and range over time. Wastewater data was then compared to publicly available search term data as clinical data was not readily available. There was a high correlation between the collected molecular data and the publicly available search term data for Streptococcus pyogenes. Additionally, this study provided more information about the seasonal trend of S. pyogenes throughout the year through molecular data and allowed for the ability to track peak infection months in this small city. Overall, these results highlight the substantial benefits of using wastewater surveillance for the monitoring of GAS pharyngitis. This study also provides helpful insights into future studies about the prevalence of respiratory bacteria and their seasonal trends in wastewater, allowing for public health systems to provide mitigation strategies. Full article
(This article belongs to the Special Issue Wastewater Surveillance and Public Health Strategies)
Show Figures

Figure 1

11 pages, 1115 KiB  
Article
Monitoring Multiple Sexually Transmitted Pathogens Through Wastewater Surveillance
by Balghsim Alshehri, Olivia N. Birch and Justin C. Greaves
Pathogens 2025, 14(6), 562; https://doi.org/10.3390/pathogens14060562 - 5 Jun 2025
Cited by 1 | Viewed by 532
Abstract
Wastewater-based epidemiology (WBE) offers a promising tool for sexually transmitted infection (STI) surveillance, especially in settings where underdiagnosis or social stigma complicates conventional reporting. To assess its utility, we conducted a year-long study examining six STIs, Chlamydia trachomatis, Treponema pallidum, Neisseria [...] Read more.
Wastewater-based epidemiology (WBE) offers a promising tool for sexually transmitted infection (STI) surveillance, especially in settings where underdiagnosis or social stigma complicates conventional reporting. To assess its utility, we conducted a year-long study examining six STIs, Chlamydia trachomatis, Treponema pallidum, Neisseria gonorrhoeae, human immunodeficiency virus (HIV), hepatitis C virus (HCV), and herpes simplex virus (HSV), in weekly composite samples from the primary influent of a small-sized Midwestern wastewater treatment plant. Pathogen detection and quantification were performed via digital PCR. Among the tested targets, Gonorrhea, HIV, HCV, and HSV were detected at the highest frequencies, often in 40–50% of the samples, while Chlamydia and Syphilis appeared less frequently. Despite the variability in detection patterns, this study demonstrates that even infrequent signals can reveal community-level shedding of poorly reported or asymptomatic infections. Although month-to-month wastewater data were not strongly correlated with corresponding clinical records, which could potentially reflect delayed healthcare seeking and pathogen-specific shedding dynamics, the overall findings underscore WBE’s ability to complement existing surveillance by capturing infections outside traditional healthcare channels. These results not only advance our understanding of STI prevalence and population shedding but also highlight the practical benefits of WBE as an early warning and targeted intervention tool. Full article
(This article belongs to the Special Issue Wastewater Surveillance and Public Health Strategies)
Show Figures

Figure 1

Back to TopTop