Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

11 pages, 2798 KiB  
Article
A BTO/PVDF/PDMS Piezoelectric Tangential and Normal Force Sensor Inspired by a Wind Chime
by Chunyan Zhang, Xiaotian Zhang, Qiang Zhang, Shengbo Sang, Jianlong Ji, Runfang Hao and Yan Liu
Micromachines 2023, 14(10), 1848; https://doi.org/10.3390/mi14101848 - 27 Sep 2023
Viewed by 1150
Abstract
There is a growing demand for flexible pressure sensors in environmental monitoring and human–robot interaction robotics. A flexible and susceptible sensor can discriminate multidirectional pressure, thus effectively detecting signals of small environmental changes and providing solutions for personalized medicine. This paper proposes a [...] Read more.
There is a growing demand for flexible pressure sensors in environmental monitoring and human–robot interaction robotics. A flexible and susceptible sensor can discriminate multidirectional pressure, thus effectively detecting signals of small environmental changes and providing solutions for personalized medicine. This paper proposes a multidimensional force detection sensor inspired by a wind chime structure with a three-dimensional force structure to detect and analyze normal and shear forces in real time. The force-sensing structure of the sensor consists of an upper and lower membrane on a polydimethylsiloxane substrate and four surrounding cylinders. A piezoelectric hemisphere is made of BTO/PVDF/PDMS composite material. The sensor columns in the wind chime structure surround the piezoelectric layer in the middle. When pressure is applied externally, the sensor columns are connected to the piezoelectric layer with a light touch. The piezoelectric hemisphere generates a voltage signal. Due to the particular structure of the sensor, it can accurately capture multidimensional forces and identify the direction of the external force by analyzing the position of the sensor and the output voltage amplitude. The development of such sensors shows excellent potential for self-powered wearable sensors, human–computer interaction, electronic skin, and soft robotics applications. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 2nd Edition)
Show Figures

Figure 1

17 pages, 2046 KiB  
Article
Rapid Production of Nanoscale Liposomes Using a 3D-Printed Reactor-In-A-Centrifuge: Formulation, Characterisation, and Super-Resolution Imaging
by Yongqing He, Davide De Grandi, Stanley Chandradoss, Gareth LuTheryn, Gianluca Cidonio, Ricardo Nunes Bastos, Valerio Pereno and Dario Carugo
Micromachines 2023, 14(9), 1763; https://doi.org/10.3390/mi14091763 - 12 Sep 2023
Cited by 3 | Viewed by 1792
Abstract
Nanoscale liposomes have been extensively researched and employed clinically for the delivery of biologically active compounds, including chemotherapy drugs and vaccines, offering improved pharmacokinetic behaviour and therapeutic outcomes. Traditional laboratory-scale production methods often suffer from limited control over liposome properties (e.g., size and [...] Read more.
Nanoscale liposomes have been extensively researched and employed clinically for the delivery of biologically active compounds, including chemotherapy drugs and vaccines, offering improved pharmacokinetic behaviour and therapeutic outcomes. Traditional laboratory-scale production methods often suffer from limited control over liposome properties (e.g., size and lamellarity) and rely on laborious multistep procedures, which may limit pre-clinical research developments and innovation in this area. The widespread adoption of alternative, more controllable microfluidic-based methods is often hindered by complexities and costs associated with device manufacturing and operation, as well as the short device lifetime and the relatively low liposome production rates in some cases. In this study, we demonstrated the production of liposomes comprising therapeutically relevant lipid formulations, using a cost-effective 3D-printed reactor-in-a-centrifuge (RIAC) device. By adjusting formulation- and production-related parameters, including the concentration of polyethylene glycol (PEG), temperature, centrifugation time and speed, and lipid concentration, the mean size of the produced liposomes could be tuned in the range of 140 to 200 nm. By combining selected experimental parameters, the method was capable of producing liposomes with a therapeutically relevant mean size of ~174 nm with narrow size distribution (polydispersity index, PDI ~0.1) at a production rate of >8 mg/min. The flow-through method proposed in this study has potential to become an effective and versatile laboratory-scale approach to simplify the synthesis of therapeutic liposomal formulations. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Biology and Biomedicine 2022)
Show Figures

Figure 1

13 pages, 1422 KiB  
Article
High-Frequency Dielectrophoresis Reveals That Distinct Bio-Electric Signatures of Colorectal Cancer Cells Depend on Ploidy and Nuclear Volume
by Josie L. Duncan, Mathew Bloomfield, Nathan Swami, Daniela Cimini and Rafael V. Davalos
Micromachines 2023, 14(9), 1723; https://doi.org/10.3390/mi14091723 - 1 Sep 2023
Viewed by 1166
Abstract
Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The [...] Read more.
Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression. Full article
(This article belongs to the Special Issue Micromachines for Dielectrophoresis, 3rd Edition)
Show Figures

Figure 1

20 pages, 7459 KiB  
Article
Virtual Coriolis-Force-Based Mode-Matching Micromachine-Optimized Tuning Fork Gyroscope without a Quadrature-Nulling Loop
by Yixuan Wu, Weizheng Yuan, Yanjun Xue, Honglong Chang and Qiang Shen
Micromachines 2023, 14(9), 1704; https://doi.org/10.3390/mi14091704 - 31 Aug 2023
Cited by 1 | Viewed by 1016
Abstract
A VCF-based mode-matching micromachine-optimized tuning fork gyroscope is proposed to not only maximize the scale factor of the device, but also avoid use of an additional quadrature-nulling loop to prevent structure complexity, pick-up electrode occupation, and coupling with a mode-matching loop. In detail, [...] Read more.
A VCF-based mode-matching micromachine-optimized tuning fork gyroscope is proposed to not only maximize the scale factor of the device, but also avoid use of an additional quadrature-nulling loop to prevent structure complexity, pick-up electrode occupation, and coupling with a mode-matching loop. In detail, a mode-matching, closed-loop system without a quadrature-nulling loop is established, and the corresponding convergence and matching error are quantitatively analyzed. The optimal straight beam of the gyro structure is then modeled to significantly reduce the quadrature coupling. The test results show that the frequency split is narrowed from 20 Hz to 0.014 Hz. The scale factor is improved 20.6 times and the bias instability (BI) is suppressed 3.28 times. The observed matching accuracy demonstrates that a mode matching system without a quadrature suppression loop is feasible and that the proposed device represents a competitive design for a mode-matching gyroscope. Full article
(This article belongs to the Special Issue MEMS Inertial Device)
Show Figures

Figure 1

10 pages, 9758 KiB  
Article
Nano Groove and Prism-Structured Triboelectric Nanogenerators
by Resul Saritas, Majed Al-Ghamdi, Taylan Memik Das, Omar Rasheed, Samed Kocer, Ahmet Gulsaran, Asif Abdullah Khan, Md Masud Rana, Mahmoud Khater, Muhammed Kayaharman, Dayan Ban, Mustafa Yavuz and Eihab Abdel-Rahman
Micromachines 2023, 14(9), 1707; https://doi.org/10.3390/mi14091707 - 31 Aug 2023
Viewed by 1590
Abstract
Enhancing the output power of triboelectric nanogenerators (TENGs) requires the creation of micro or nano-features on polymeric triboelectric surfaces to increase the TENGs’ effective contact area and, therefore, output power. We deploy a novel bench-top fabrication method called dynamic Scanning Probe Lithography (d-SPL) [...] Read more.
Enhancing the output power of triboelectric nanogenerators (TENGs) requires the creation of micro or nano-features on polymeric triboelectric surfaces to increase the TENGs’ effective contact area and, therefore, output power. We deploy a novel bench-top fabrication method called dynamic Scanning Probe Lithography (d-SPL) to fabricate massive arrays of uniform 1 cm long and 2.5 µm wide nano-features comprising a 600 nm deep groove (NG) and a 600 nm high triangular prism (NTP). The method creates both features simultaneously in the polymeric surface, thereby doubling the structured surface area. Six thousand pairs of NGs and NTPs were patterned on a 6×5 cm2 PMMA substrate. It was then used as a mold to structure the surface of a 200 µm thick Polydimethylsiloxane (PDMS) layer. We show that the output power of the nano-structured TENG is significantly more than that of a TENG using flat PDMS films, at 12.2 mW compared to 2.2 mW, under the same operating conditions (a base acceleration amplitude of 0.8 g). Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

19 pages, 11308 KiB  
Article
A High-Precision Quartz Resonant Ultra-High Pressure Sensor with Integrated Pressure Conversion Structure
by Quanwei Zhang, Cun Li, Huafeng Li, Yan Liu, Jue Wang, Xiaolong Wang, Yuan Wang, Fabin Cheng, Haijun Han and Peng Zhang
Micromachines 2023, 14(9), 1657; https://doi.org/10.3390/mi14091657 - 25 Aug 2023
Cited by 3 | Viewed by 1440
Abstract
A quartz resonant pressure sensor is proposed for high-precision measurement of ultra-high pressure. The resonant unit realizes a push–pull differential layout, which restrains the common-mode interference factor, and the resonator is only subject to axial force. The pressure conversion unit is made in [...] Read more.
A quartz resonant pressure sensor is proposed for high-precision measurement of ultra-high pressure. The resonant unit realizes a push–pull differential layout, which restrains the common-mode interference factor, and the resonator is only subject to axial force. The pressure conversion unit is made in an integrated manner, avoiding output drift problems caused by residual stress and small gaps during assembly, welding, and other processes in sensor preparation. Theoretical and simulation analysis was conducted on the overall design scheme of the sensor in this paper, verifying the feasibility. Sensor prototypes were created and performance experiments were conducted. The experimental results show that the sensitivity of the ultra-high pressure sensor is 46.32 Hz/MPa at room temperature within the pressure range of 120 MPa, and the comprehensive accuracy is 0.0266%. The comprehensive accuracy of the sensor is better than 0.0288% FS in the full temperature range environment. This proves that the sensor scheme is suitable for high-precision and high-stability detection of ultra-high pressure, providing new solutions in special pressure measurement fields such as deep-sea and oil exploration. Full article
Show Figures

Figure 1

15 pages, 2915 KiB  
Article
Simultaneous Hydrostatic and Compressive Loading System for Mimicking the Mechanical Environment of Living Cartilage Tissue
by Minki Chang, Yosuke Takahashi, Kyosuke Miyahira, Yuma Omuro, Kevin Montagne, Ryusei Yamada, Junki Gondo, Yu Kambe, Masashi Yasuno, Noriyasu Masumoto, Takashi Ushida and Katsuko S. Furukawa
Micromachines 2023, 14(8), 1632; https://doi.org/10.3390/mi14081632 - 18 Aug 2023
Viewed by 1003
Abstract
In vivo, articular cartilage tissue is surrounded by a cartilage membrane, and hydrostatic pressure (HP) and compressive strain increase simultaneously with the compressive stress. However, it has been impossible to investigate the effects of simultaneous loading in vitro. In this study, a bioreactor [...] Read more.
In vivo, articular cartilage tissue is surrounded by a cartilage membrane, and hydrostatic pressure (HP) and compressive strain increase simultaneously with the compressive stress. However, it has been impossible to investigate the effects of simultaneous loading in vitro. In this study, a bioreactor capable of applying compressive stress under HP was developed to reproduce ex vivo the same physical loading environment found in cartilage. First, a HP stimulation unit was constructed to apply a cyclic HP pressure-resistant chamber by controlling a pump and valve. A compression-loading mechanism that can apply compressive stress using an electromagnetic force was implemented in the chamber. The synchronization between the compression and HP units was evaluated, and the stimulation parameters were quantitatively evaluated. Physiological HP and compressive strain were applied to the chondrocytes encapsulated in alginate and gelatin gels after applying high HP at 25 MPa, which induced damage to the chondrocytes. It was found that compressive stimulation increased the expression of genes related to osteoarthritis. Furthermore, the simultaneous application of compressive strain and HP, which is similar to the physiological environment in cartilage, had an inhibitory effect on the expression of genes related to osteoarthritis. HP alone also suppressed the expression of osteoarthritis-related genes. Therefore, the simultaneous hydrostatic and compressive stress-loading device developed to simulate the mechanical environment in vivo may be an important tool for elucidating the mechanisms of disease onset and homeostasis in cartilage. Full article
Show Figures

Figure 1

18 pages, 15136 KiB  
Article
Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration
by Mawla Boaks, Connor Roper, Matthew Viglione, Kent Hooper, Adam T. Woolley, Kenneth A. Christensen and Gregory P. Nordin
Micromachines 2023, 14(8), 1589; https://doi.org/10.3390/mi14081589 - 12 Aug 2023
Cited by 5 | Viewed by 1597
Abstract
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone’s [...] Read more.
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone’s absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 μm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 μm and are printed with 5 μm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min. Full article
(This article belongs to the Special Issue 3D Printing of MEMS Technology, 3rd Edition)
Show Figures

Figure 1

10 pages, 2367 KiB  
Article
Double-Glued Multi-Focal Bionic Compound Eye Camera
by Xin Feng, Xiao Lv, Junyu Dong, Yongshun Liu, Fengfeng Shu and Yihui Wu
Micromachines 2023, 14(8), 1548; https://doi.org/10.3390/mi14081548 - 31 Jul 2023
Viewed by 1062
Abstract
Compound eye cameras are a vital component of bionics. Compound eye lenses are currently used in light field cameras, monitoring imaging, medical endoscopes, and other fields. However, the resolution of the compound eye lens is still low at the moment, which has an [...] Read more.
Compound eye cameras are a vital component of bionics. Compound eye lenses are currently used in light field cameras, monitoring imaging, medical endoscopes, and other fields. However, the resolution of the compound eye lens is still low at the moment, which has an impact on the application scene. Photolithography and negative pressure molding were used to create a double-glued multi-focal bionic compound eye camera in this study. The compound eye camera has 83 microlenses, with ommatidium diameters ranging from 400 μm to 660 μm, and a 92.3 degree field-of-view angle. The double-gluing structure significantly improves the optical performance of the compound eye lens, and the spatial resolution of the ommatidium is 57.00 lp mm−1. Additionally, the measurement of speed is investigated. This double-glue compound eye camera has numerous potential applications in the military, machine vision, and other fields. Full article
Show Figures

Figure 1

10 pages, 9365 KiB  
Article
Non-Buffer Epi-AlGaN/GaN on SiC for High-Performance Depletion-Mode MIS-HEMTs Fabrication
by Penghao Zhang, Luyu Wang, Kaiyue Zhu, Qiang Wang, Maolin Pan, Ziqiang Huang, Yannan Yang, Xinling Xie, Hai Huang, Xin Hu, Saisheng Xu, Min Xu, Chen Wang, Chunlei Wu and David Wei Zhang
Micromachines 2023, 14(8), 1523; https://doi.org/10.3390/mi14081523 - 29 Jul 2023
Viewed by 1059
Abstract
A systematic study of epi-AlGaN/GaN on a SiC substrate was conducted through a comprehensive analysis of material properties and device performance. In this novel epitaxial design, an AlGaN/GaN channel layer was grown directly on the AlN nucleation layer, without the conventional doped thick [...] Read more.
A systematic study of epi-AlGaN/GaN on a SiC substrate was conducted through a comprehensive analysis of material properties and device performance. In this novel epitaxial design, an AlGaN/GaN channel layer was grown directly on the AlN nucleation layer, without the conventional doped thick buffer layer. Compared to the conventional epi-structures on the SiC and Si substrates, the non-buffer epi-AlGaN/GaN structure had a better crystalline quality and surface morphology, with reliable control of growth stress. Hall measurements showed that the novel structure exhibited comparable transport properties to the conventional epi-structure on the SiC substrate, regardless of the buffer layer. Furthermore, almost unchanged carrier distribution from room temperature to 150 °C indicated excellent two-dimensional electron gas (2DEG) confinement due to the pulling effect of the conduction band from the nucleation layer as a back-barrier. High-performance depletion-mode MIS-HEMTs were demonstrated with on-resistance of 5.84 Ω·mm and an output current of 1002 mA/mm. The dynamic characteristics showed a much smaller decrease in the saturation current (only ~7%), with a quiescent drain bias of 40 V, which was strong evidence of less electron trapping owing to the high-quality non-buffer AlGaN/GaN epitaxial growth. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

13 pages, 9055 KiB  
Article
Investigation on Wire Electrochemical Discharge Micro-Machining
by Weijing Kong, Ziyu Liu, Rudong Zhang and Yongbin Zeng
Micromachines 2023, 14(8), 1505; https://doi.org/10.3390/mi14081505 - 27 Jul 2023
Cited by 2 | Viewed by 1160
Abstract
With the development of MEMS, the machining demand and requirements for difficult-to-machine metal micro parts are getting higher. Microelectric discharge machining is an effective method to process difficult-to-machine metals. However, the recast layer caused by high temperatures in microelectric discharge machining affects the [...] Read more.
With the development of MEMS, the machining demand and requirements for difficult-to-machine metal micro parts are getting higher. Microelectric discharge machining is an effective method to process difficult-to-machine metals. However, the recast layer caused by high temperatures in microelectric discharge machining affects the properties of machined materials. Here, we propose the wire electrochemical discharge micro-machining (WECDMM) and develop a new electrolyte system, which removes the recast layer. In this study, the mechanism of WECDMM was elucidated. The electrolyte was optimized through a comparison experiment, and NaNO3-glycol solution was determined as the best electrolyte. The influences of key process parameters including the conductivity of the electrolyte, pulse voltage, pulse-on time and wire feed rate were analyzed on the slit width, standard deviation, the radius of fillet at the entrance of the slit and roughness. Typical microstructures were machined, which verified the machining ability of WECDMM. Full article
Show Figures

Figure 1

16 pages, 13506 KiB  
Article
Experimental Investigations upon Ultrasound Influence on Calefaction of AdBlue in Selective Catalytic Reduction Systems (SCR)
by Claudiu Marian Picus, Ioan Mihai and Cornel Suciu
Micromachines 2023, 14(8), 1488; https://doi.org/10.3390/mi14081488 - 25 Jul 2023
Viewed by 866
Abstract
The present paper intends to provide an analysis of how the process of calefaction occurs in a selective catalytic reduction (SCR) system and the mechanisms by which the deposition of AdBlue crystals on a hot surface evolve. Experimentally, two aluminium samples heated to [...] Read more.
The present paper intends to provide an analysis of how the process of calefaction occurs in a selective catalytic reduction (SCR) system and the mechanisms by which the deposition of AdBlue crystals on a hot surface evolve. Experimentally, two aluminium samples heated to 200 °C were used, over which AdBlue droplets with different atomisation rates were dropped, maintaining the same dynamic flow parameters, in order to observe the influence of temperature effects on the degree of deposition of crystallised sediment on the surface. The authors proposed the use of calefaction in an ultrasonic environment to prevent deposition and to increase droplet fragmentation by a break-up process. To prove the performance of this method one sample was subjected to a normal flow regime while a second sample was exposed to ultrasound. Both samples were assembled on a magneto-strictive concentrator operating at a frequency of 20 kHz. The obtained results indicated that the sample exposed to ultrasound demonstrated lower urea crystallisation compared to the sample that was not exposed to this treatment. Thus, it can be seen that the proposed method of injecting AdBlue into an ultrasonic zone gives the desired results. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flow in Microstructures)
Show Figures

Figure 1

12 pages, 3389 KiB  
Article
Silicon Micromachined TSVs for Backside Interconnection of Ultra-Small Pressure Sensors
by Weiwen Feng, Peng Li, Haozhi Zhang, Ke Sun, Wei Li, Jiachou Wang, Heng Yang and Xinxin Li
Micromachines 2023, 14(7), 1448; https://doi.org/10.3390/mi14071448 - 19 Jul 2023
Cited by 3 | Viewed by 1347
Abstract
This paper presents an ultra-small absolute pressure sensor with a silicon-micromachined TSV backside interconnection for high-performance, high spatial resolution contact pressure sensing, including flexible-substrate applications. By exploiting silicon-micromachined TSVs that are compatibly fabricated with the pressure sensor, the sensing signals are emitted from [...] Read more.
This paper presents an ultra-small absolute pressure sensor with a silicon-micromachined TSV backside interconnection for high-performance, high spatial resolution contact pressure sensing, including flexible-substrate applications. By exploiting silicon-micromachined TSVs that are compatibly fabricated with the pressure sensor, the sensing signals are emitted from the chip backside, thereby eliminating the fragile leads on the front-side. Such a design achieves a flat and fully passivated top surface to protect the sensor from mechanical damage, for reliable direct-contact pressure sensing. A single-crystal silicon beam–island structure is designed to reduce the deflection of the pressure-sensing diaphragm and improve output linearity. Using our group-developed microholes interetch and sealing (MIS) micromachining technique, we fabricated ultra-small piezoresistive pressure sensors with the chip size as small as 0.4 mm × 0.6 mm, in which the polysilicon-micromachined TSVs transfer the signal interconnection from the front-side to the backside of the wafer, and the sensor chips can be densely packaged on the flexible substrate via the TSVs. The ultra-small pressure sensor has high sensitivity of 0.84 mV/kPa under 3.3 V of supply voltage and low nonlinearity of ±0.09% full scale (FS) in the measurement range of 120 kPa. The proposed pressure sensors with backside-interconnection TSVs hold promise for tactile sensing applications, including flexible sensing of wearable wristwatches. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

14 pages, 2985 KiB  
Article
High-Performance Low-Voltage Transparent Metal-Semiconductor-Metal Ultraviolet Photodetectors Based on Ultrathin Gold Asymmetric Interdigitated Electrodes
by Jianfeng Huang, Liu Yang and Sailing He
Micromachines 2023, 14(7), 1447; https://doi.org/10.3390/mi14071447 - 19 Jul 2023
Cited by 2 | Viewed by 1202
Abstract
A high-performance, low-voltage, transparent, metal-semiconductor-metal ultraviolet (UV) photodetector (PD) is proposed and experimentally demonstrated, based on gold (Au) asymmetric interdigitated (aIDT) electrodes with thicknesses well below 10 nm. A 7-nm-thick Au film, with a visible transmittance of 80.4% and a sheet resistance of [...] Read more.
A high-performance, low-voltage, transparent, metal-semiconductor-metal ultraviolet (UV) photodetector (PD) is proposed and experimentally demonstrated, based on gold (Au) asymmetric interdigitated (aIDT) electrodes with thicknesses well below 10 nm. A 7-nm-thick Au film, with a visible transmittance of 80.4% and a sheet resistance of 11.55 Ω/sq, is patterned into aIDT electrodes on a ZnO active layer, whose average visible transmittance is up to 74.3%. Meshing the pads further improves the overall transmittance of the device. Among all fabricated devices, the PD with the aIDT finger width ratio of 1:4 performs the best. Very low dark currents are achieved at 0, 0.5 and 1 V, allowing for high responsivities and specific detectivities to the UV light. It is also a fast device, especially under the biases of 0.5 and 1 V. The comprehensive performances are comparable and even superior to those of the reported devices. The asymmetric Schottky junctions induced by the aIDT electrodes under UV illumination are the main mechanism for the low-voltage operation of our transparent PD, which is promising to be applied widely. Full article
(This article belongs to the Special Issue Transparent Flexible Optoelectronic Devices)
Show Figures

Figure 1

12 pages, 13543 KiB  
Article
A Magnetic Millirobot Walks on Slippery Biological Surfaces for Targeted Cargo Delivery
by Moonkwang Jeong, Xiangzhou Tan, Felix Fischer and Tian Qiu
Micromachines 2023, 14(7), 1439; https://doi.org/10.3390/mi14071439 - 18 Jul 2023
Cited by 3 | Viewed by 1562
Abstract
Small-scale robots hold great potential for targeted cargo delivery in minimally invasive medicine. However, current robots often face challenges in locomoting efficiently on slippery biological tissue surfaces, especially when loaded with heavy cargo. Here, we report a magnetic millirobot that can walk on [...] Read more.
Small-scale robots hold great potential for targeted cargo delivery in minimally invasive medicine. However, current robots often face challenges in locomoting efficiently on slippery biological tissue surfaces, especially when loaded with heavy cargo. Here, we report a magnetic millirobot that can walk on rough and slippery biological tissues by anchoring itself on the soft tissue surface alternatingly with two feet and reciprocally rotating the body to move forward. We experimentally studied the locomotion, validated it with numerical simulations, and optimized the actuation parameters to fit various terrains and loading conditions. Furthermore, we developed a permanent magnet set-up to enable wireless actuation within a human-scale volume that allows precise control of the millirobot to follow complex trajectories, climb vertical walls, and carry cargo up to four times its own weight. Upon reaching the target location, it performs a deployment sequence to release the liquid drug into tissues. The robust gait of our millirobot on rough biological terrains, combined with its heavy load capacity, makes it a versatile and effective miniaturized vehicle for targeted cargo delivery. Full article
(This article belongs to the Special Issue Recent Advances in Microrobotics)
Show Figures

Figure 1

11 pages, 3940 KiB  
Article
Red Blood Cell Partitioning Using a Microfluidic Channel with Ladder Structure
by Toru Hyakutake, Yuya Tsutsumi, Yohei Miyoshi, Manabu Yasui, Tomoki Mizuno and Mizuki Tateno
Micromachines 2023, 14(7), 1421; https://doi.org/10.3390/mi14071421 - 14 Jul 2023
Viewed by 939
Abstract
This study investigated the partitioning characteristics of red blood cells (RBCs) within capillaries, with a specific focus on ladder structures observed near the end of the capillaries. In vitro experiments were conducted using microfluidic channels with a ladder structure model comprising six bifurcating [...] Read more.
This study investigated the partitioning characteristics of red blood cells (RBCs) within capillaries, with a specific focus on ladder structures observed near the end of the capillaries. In vitro experiments were conducted using microfluidic channels with a ladder structure model comprising six bifurcating channels that exhibited an anti-parallel flow configuration. The effects of various factors, such as the parent channel width, distance between branches, and hematocrit, on RBC partitioning in bifurcating channels were evaluated. A decrease in the parent channel width resulted in an increase in the heterogeneity in the hematocrit distribution and a bias in the fractional RBC flux. Additionally, variations in the distance between branches affected the RBC distribution, with smaller distances resulting in greater heterogeneity. The bias of the RBC distribution in the microchannel cross section had a major effect on the RBC partitioning characteristics. The influence of hematocrit variations on the RBC distribution was also investigated, with lower hematocrit values leading to a more pronounced bias in the RBC distribution. Overall, this study provides valuable insights into RBC distribution characteristics in capillary networks, contributing to our understanding of the physiological mechanisms of RBC phase separation in the microcirculatory system. These findings have implications for predicting oxygen heterogeneity in tissues and could aid in the study of diseases associated with impaired microcirculation. Full article
(This article belongs to the Special Issue Microfluidic Device Fabrication and Cell Manipulation)
Show Figures

Figure 1

16 pages, 6623 KiB  
Article
Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing
by Hao Wang, Gang Li, Jun-Hui Yuan, Jiafu Wang, Pan Zhang and Yahui Shan
Micromachines 2023, 14(7), 1407; https://doi.org/10.3390/mi14071407 - 12 Jul 2023
Viewed by 1154
Abstract
Two−dimensional (2D) materials with novel structures and electronic properties are promising candidates for the next generation of micro− and nano−electronic devices. Herein, inspired by the recent experimental synthesis of penta−NiN2 (ACS Nano, 2021, 15, 13539–13546), we propose for the first [...] Read more.
Two−dimensional (2D) materials with novel structures and electronic properties are promising candidates for the next generation of micro− and nano−electronic devices. Herein, inspired by the recent experimental synthesis of penta−NiN2 (ACS Nano, 2021, 15, 13539–13546), we propose for the first time a novel ternary penta−NiPN monolayer with high stability by partial element substitution. Our predicted penta−NiPN monolayer is a quasi−direct bandgap (1.237 eV) semiconductor with ultrahigh carrier mobilities (103–105 cm2V−1s−1). Furthermore, we systematically studied the adsorption properties of common gas molecules (CO, CO2, CH4, H2, H2O, H2S, N2, NO, NO2, NH3, and SO2) on the penta−NiPN monolayer and its effects on electronic properties. According to the energetic, geometric, and electronic analyses, the penta−NiPN monolayer is predicted to be a promising candidate for NO and NO2 molecules. The excellent electronic properties of and the unique selectivity of the penta−NiPN monolayer for NO and NO2 adsorption suggest that it has high potential in advanced electronics and gas sensing applications. Full article
(This article belongs to the Special Issue Recent Progress of Lab-on-a-Chip Assays)
Show Figures

Figure 1

16 pages, 6127 KiB  
Article
Ultra-Wideband and Narrowband Switchable, Bi-Functional Metamaterial Absorber Based on Vanadium Dioxide
by Xiaoyan Wang, Yanfei Liu, Yilin Jia, Ningning Su and Qiannan Wu
Micromachines 2023, 14(7), 1381; https://doi.org/10.3390/mi14071381 - 6 Jul 2023
Cited by 2 | Viewed by 1273
Abstract
A switchable ultra-wideband THz absorber based on vanadium dioxide was proposed, which consists of a lowermost gold layer, a PMI dielectric layer, and an insulating and surface vanadium dioxide layer. Based on the phase transition properties of vanadium dioxide, switching performance between ultra-broadband [...] Read more.
A switchable ultra-wideband THz absorber based on vanadium dioxide was proposed, which consists of a lowermost gold layer, a PMI dielectric layer, and an insulating and surface vanadium dioxide layer. Based on the phase transition properties of vanadium dioxide, switching performance between ultra-broadband and narrowband can achieve a near-perfect absorption. The constructed model was simulated and analyzed using finite element analysis. Simulations show that the absorption frequency of vanadium dioxide above 90% is between 3.8 THz and 15.6 THz when the vanadium dioxide is in the metallic state. The broadband absorber has an absorption bandwidth of 11.8 THz, is insensitive to TE and TM polarization, and has universal incidence angle insensitivity. When vanadium dioxide is in the insulating state, the narrowband absorber has a Q value as high as 1111 at a frequency of 13.89 THz when the absorption is more excellent than 99%. The absorber proposed in this paper has favorable symmetry properties, excellent TE and TM wave insensitivity, overall incidence angle stability, and the advantages of its small size, ultra-widebands and narrowbands, and elevated Q values. The designed absorber has promising applications in multifunctional devices, electromagnetic cloaking, and optoelectronic switches. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Devices)
Show Figures

Figure 1

14 pages, 3020 KiB  
Article
Screen Printed Particle-Based Microfluidics: Optimization and Exemplary Application for Heavy Metals Analysis
by Indrek Saar and Hanno Evard
Micromachines 2023, 14(7), 1369; https://doi.org/10.3390/mi14071369 - 4 Jul 2023
Viewed by 1128
Abstract
In this work, a screen-printing method was developed to create porous particle-based materials as layers with specifically designed shape to produce microfluidics systems. Among several tested binding agents, xanthan gum was found to be an excellent choice for a printing mixture thickener as [...] Read more.
In this work, a screen-printing method was developed to create porous particle-based materials as layers with specifically designed shape to produce microfluidics systems. Among several tested binding agents, xanthan gum was found to be an excellent choice for a printing mixture thickener as well as a durable binder for the resulting material. In addition to demonstrating control over the shape of the printed microfluidics chips, control over material thickness, wetting characteristics and general method accuracy were also investigated. The applicability of the introduced method was further demonstrated with a development of an exemplary microfluidics chip for quantitative detection of Fe (III), Ni (II), Cu (II), Cd (II), and Pb (II) from a mixed sample at millimolar levels. The novel approaches demonstrated in this article offer new perspective into creating multiplexed on-site chemical analysis tests. Full article
(This article belongs to the Special Issue Porous-Materials-Based Devices)
Show Figures

Figure 1

17 pages, 10242 KiB  
Article
Improvement of the Airflow Energy Harvester Based on the New Diamagnetic Levitation Structure
by Long Zhang, Hang Shao, Jiaxiang Zhang, Deping Liu, Kean C. Aw and Yufeng Su
Micromachines 2023, 14(7), 1374; https://doi.org/10.3390/mi14071374 - 4 Jul 2023
Cited by 1 | Viewed by 1002
Abstract
This paper presents an improved solution for the airflow energy harvester based on the push–pull diamagnetic levitation structure. A four-notch rotor is adopted to eliminate the offset of the floating rotor and substantially increase the energy conversion rate. The new rotor is a [...] Read more.
This paper presents an improved solution for the airflow energy harvester based on the push–pull diamagnetic levitation structure. A four-notch rotor is adopted to eliminate the offset of the floating rotor and substantially increase the energy conversion rate. The new rotor is a centrally symmetrical-shaped magnet, which ensures that it is not subjected to cyclically varying unbalanced radial forces, thus avoiding the rotor’s offset. Considering the output voltage and power of several types of rotors, the four-notch rotor was found to be optimal. Furthermore, with the four-notch rotor, the overall average increase in axial magnetic spring stiffness is 9.666% and the average increase in maximum monostable levitation space is 1.67%, but the horizontal recovery force is reduced by 3.97%. The experimental results show that at an airflow rate of 3000 sccm, the peak voltage and rotation speed of the four-notch rotor are 2.709 V and 21,367 rpm, respectively, which are 40.80% and 5.99% higher compared to the three-notch rotor. The experimental results were consistent with the analytical simulation. Based on the improvement, the energy conversion factor of the airflow energy harvester increased to 0.127 mV/rpm, the output power increased to 138.47 mW and the energy conversion rate increased to 58.14%, while the trend of the levitation characteristics also matched the simulation results. In summary, the solution proposed in this paper significantly improves the performance of the airflow energy harvester. Full article
Show Figures

Graphical abstract

14 pages, 5466 KiB  
Article
Piezotronic and Piezo-Phototronic Effects-Enhanced Core–Shell Structure-Based Nanowire Field-Effect Transistors
by Xiang Liu, Fangpei Li, Wenbo Peng, Quanzhe Zhu, Yangshan Li, Guodong Zheng, Hongyang Tian and Yongning He
Micromachines 2023, 14(7), 1335; https://doi.org/10.3390/mi14071335 - 29 Jun 2023
Viewed by 986
Abstract
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established [...] Read more.
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established using the finite element method. We performed a sweep analysis of several parameters of the model. The results show that the channel current increases with the channel radial thickness and channel doping concentration, while it decreases with the channel length, gate doping concentration, and gate voltage. Under a tensile strain of 0.39‰, the saturation current change rate can reach 38%. Finally, another core–shell structure-based ZnO/Si nanowire HJFET model with the same parameters was established. The simulation results show that at a compressive strain of −0.39‰, the saturation current change rate is about 18%, which is smaller than that of the Si/ZnO case. Piezoelectric potential and photogenerated electromotive force jointly regulate the carrier distribution in the channel, change the width of the channel depletion layer and the channel conductivity, and thus regulate the channel current. The research results provide a certain degree of reference for the subsequent experimental design of Zn-based HJFETs and are applicable to other kinds of FETs. Full article
(This article belongs to the Special Issue Nanowires for Novel Technological Applications)
Show Figures

Figure 1

19 pages, 11040 KiB  
Article
Design and Modeling of a Miniature Hydraulic Motor for Powering a Cutting Tool for Minimally Invasive Procedures
by Manjeera Vinnakota, Kishan Bellur, Sandra L. Starnes and Mark J. Schulz
Micromachines 2023, 14(7), 1338; https://doi.org/10.3390/mi14071338 - 29 Jun 2023
Cited by 1 | Viewed by 1502
Abstract
Miniaturization of multifunctional instruments is key to evolving less invasive medical procedures. The current work outlines steps towards developing a miniature motor to power a cutting tool of a millimeter-scale robot/device (target outside diameter ~2 mm) for minimally invasive procedures. Multiple motor concepts [...] Read more.
Miniaturization of multifunctional instruments is key to evolving less invasive medical procedures. The current work outlines steps towards developing a miniature motor to power a cutting tool of a millimeter-scale robot/device (target outside diameter ~2 mm) for minimally invasive procedures. Multiple motor concepts were explored and ranked using a Pugh matrix. The single-rotor hydraulic design was deemed most viable for prototyping and scale-down to the target size. Prototypes were manufactured to be progressively smaller using additive manufacturing. The smallest prototype fabricated was 2:1 scale of the desired final size with a 2 mm outside diameter (OD) rotor and a device OD of 4 mm. The scaled prototypes with an 8 mm rotor were lab tested and achieved average speeds of 5000–6000 RPM at a flowrate of 15–18 mL/s and 45 PSI water pressure. Ansys CFX was used as a design tool to explore the parameter space and 3D transient simulations were implemented using the immersed solid method. The predicted rotor RPM from the modeling matched the experimental values within 3% error. The model was then used to develop performance curves for the miniature hydraulic motor. In summary, the single-rotor hydraulic design shows promise for miniaturization to the target 2 mm size. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Micromachines 2023)
Show Figures

Figure 1

13 pages, 1073 KiB  
Article
Ultra-Narrow Bandwidth Microwave Photonic Filter Implemented by Single Longitudinal Mode Parity Time Symmetry Brillouin Fiber Laser
by Jiaxin Hou, Yajun You, Yuan Liu, Kai Jiang, Xuefeng Han, Wenjun He, Wenping Geng, Yi Liu and Xiujian Chou
Micromachines 2023, 14(7), 1322; https://doi.org/10.3390/mi14071322 - 27 Jun 2023
Cited by 1 | Viewed by 1566
Abstract
In this paper, a novel microwave photonic filter (MPF) based on a single longitudinal mode Brillouin laser achieved by parity time (PT) symmetry mode selection is proposed, and its unparalleled ultra-narrow bandwidth as low as to sub-kHz together with simple and agile tuning [...] Read more.
In this paper, a novel microwave photonic filter (MPF) based on a single longitudinal mode Brillouin laser achieved by parity time (PT) symmetry mode selection is proposed, and its unparalleled ultra-narrow bandwidth as low as to sub-kHz together with simple and agile tuning performance is experimentally verified. The Brillouin fiber laser ring resonator is cascaded with a PT symmetric system to achieve this MPF. Wherein, the Brillouin laser resonator is excited by a 5 km single mode fiber to generate Brillouin gain, and the PT symmetric system is configured with Polarization Beam Splitter (PBS) and polarization controller (PC) to achieve PT symmetry. Thanks to the significant enhancement of the gain difference between the main mode and the edge mode when the polarization state PT symmetry system breaks, a single mode oscillating Brillouin laser is generated. Through the selective amplification of sideband modulated signals by ultra-narrow linewidth Brillouin single mode laser gain, the MPF with ultra-narrow single passband performance is obtained. By simply tuning the central wavelength of the stimulated Brillouin scattering (SBS) pumped laser to adjust the Brillouin oscillation frequency, the gain position of the Brillouin laser can be shifted, thereby achieving flexible tunability. The experimental results indicate that the MPF proposed in this paper achieves a single pass band narrow to 72 Hz and the side mode rejection ratio of more than 18 dB, with a center frequency tuning range of 0–20 GHz in the testing range of vector network analysis, which means that the MPF possesses ultra high spectral resolution and enormous potential application value in the domain of ultra fine microwave spectrum filtering such as radar imaging and electronic countermeasures. Full article
(This article belongs to the Special Issue Progress and Application of Ultra-Precision Laser Interferometry)
Show Figures

Figure 1

11 pages, 3447 KiB  
Article
Multi-Layered Bipolar Ionic Diode Working in Broad Range Ion Concentration
by Jaehyun Kim, Cong Wang and Jungyul Park
Micromachines 2023, 14(7), 1311; https://doi.org/10.3390/mi14071311 - 26 Jun 2023
Cited by 1 | Viewed by 1589
Abstract
Ion current rectification (ICR) is the ratio of ion current by forward bias to backward bias and is a critical indicator of diode performance. In previous studies, there have been many attempts to improve the performance of this ICR, but there is the [...] Read more.
Ion current rectification (ICR) is the ratio of ion current by forward bias to backward bias and is a critical indicator of diode performance. In previous studies, there have been many attempts to improve the performance of this ICR, but there is the intrinsic problem for geometric changes that induce ionic rectification due to fabrication problems. Additionally, the high ICR could be achieved in the narrow salt concentration range only. Here, we propose a multi-layered bipolar ionic diode based on an asymmetric nanochannel network membrane (NCNM), which is realized by soft lithography and self-assembly of homogenous-sized nanoparticles. Owing to the freely changeable geometry based on soft lithography, the ICR performance can be explored according to the variation of microchannel shape. The presented diode with multi-layered configuration shows strong ICR performance, and in a broad range of salt concentrations (0.1 mM~100 mM), steady ICR performance. It is interesting to note that when each anion-selective (AS) and cation-selective (CS) NCNM volume was similar to each optimized volume in a single-layered device, the maximum ICR was obtained. Multi-physics simulation, which reveals greater ionic concentration at the bipolar diode junction under forward bias and less depletion under backward in comparison to the single-layer scenario, supports this tendency as well. Additionally, under different frequencies and salt concentrations, a large-area hysteresis loop emerges, which indicates fascinating potential for electroosmotic pumps, memristors, biosensors, etc. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators)
Show Figures

Figure 1

17 pages, 7839 KiB  
Article
Research on Intelligent Wheelchair Attitude-Based Adjustment Method Based on Action Intention Recognition
by Jianwei Cui, Zizheng Huang, Xiang Li, Linwei Cui, Yucheng Shang and Liyan Tong
Micromachines 2023, 14(6), 1265; https://doi.org/10.3390/mi14061265 - 17 Jun 2023
Cited by 3 | Viewed by 1481
Abstract
At present, research on intelligent wheelchairs mostly focuses on motion control, while research on attitude-based adjustment is relatively insufficient. The existing methods for adjusting wheelchair posture generally lack collaborative control and good human–machine collaboration. This article proposes an intelligent wheelchair posture-adjustment method based [...] Read more.
At present, research on intelligent wheelchairs mostly focuses on motion control, while research on attitude-based adjustment is relatively insufficient. The existing methods for adjusting wheelchair posture generally lack collaborative control and good human–machine collaboration. This article proposes an intelligent wheelchair posture-adjustment method based on action intention recognition by studying the relationship between the force changes on the contact surface between the human body and the wheelchair and the action intention. This method is applied to a multi-part adjustable electric wheelchair, which is equipped with multiple force sensors to collect pressure information from various parts of the passenger’s body. The upper level of the system converts the pressure data into the form of a pressure distribution map, extracts the shape features using the VIT deep learning model, identifies and classifies them, and ultimately identifies the action intentions of the passengers. Based on different action intentions, the electric actuator is controlled to adjust the wheelchair posture. After testing, this method can effectively collect the body pressure data of passengers, with an accuracy of over 95% for the three common intentions of lying down, sitting up, and standing up. The wheelchair can adjust its posture based on the recognition results. By adjusting the wheelchair posture through this method, users do not need to wear additional equipment and are less affected by the external environment. The target function can be achieved with simple learning, which has good human–machine collaboration and can solve the problem of some people having difficulty adjusting the wheelchair posture independently during wheelchair use. Full article
(This article belongs to the Special Issue Assistive Robots)
Show Figures

Figure 1

12 pages, 2127 KiB  
Article
Integration of Microfluidic Chip and Probe with a Dual Pump System for Measurement of Single Cells Transient Response
by Xu Du, Shingo Kaneko, Hisataka Maruyama, Hirotaka Sugiura, Masaru Tsujii, Nobuyuki Uozumi and Fumihito Arai
Micromachines 2023, 14(6), 1210; https://doi.org/10.3390/mi14061210 - 7 Jun 2023
Cited by 4 | Viewed by 1665
Abstract
The integration of liquid exchange and microfluidic chips plays a critical role in the biomedical and biophysical fields as it enables the control of the extracellular environment and allows for the simultaneous stimulation and detection of single cells. In this study, we present [...] Read more.
The integration of liquid exchange and microfluidic chips plays a critical role in the biomedical and biophysical fields as it enables the control of the extracellular environment and allows for the simultaneous stimulation and detection of single cells. In this study, we present a novel approach for measuring the transient response of single cells using a system integrated with a microfluidic chip and a probe with a dual pump. The system was composed of a probe with a dual pump system, a microfluidic chip, optical tweezers, an external manipulator, an external piezo actuator, etc. Particularly, we incorporated the probe with the dual pump to allow for high-speed liquid change, and the localized flow control enabled a low disturbance contact force detection of single cells on the chip. Using this system, we measured the transient response of the cell swelling against the osmotic shock with a very fine time resolution. To demonstrate the concept, we first designed the double-barreled pipette, which was assembled with two piezo pumps to achieve a probe with the dual pump system, allowing for simultaneous liquid injection and suction. The microfluidic chip with on-chip probes was fabricated, and the integrated force sensor was calibrated. Second, we characterized the performance of the probe with the dual pump system, and the effect of the analysis position and area of the liquid exchange time was investigated. In addition, we optimized the applied injection voltage to achieve a complete concentration change, and the average liquid exchange time was achieved at approximately 3.33 ms. Finally, we demonstrated that the force sensor was only subjected to minor disturbances during the liquid exchange. This system was utilized to measure the deformation and the reactive force of Synechocystis sp. strain PCC 6803 in osmotic shock, with an average response time of approximately 16.33 ms. This system reveals the transient response of compressed single cells under millisecond osmotic shock which has the potential to characterize the accurate physiological function of ion channels. Full article
Show Figures

Figure 1

13 pages, 3078 KiB  
Article
Comparison of Circular and Rectangular-Shaped Electrodes for Electrical Impedance Myography Measurements on Human Upper Arms
by Mohammad A. Ahad, Somen Baidya and Md. Nurul Tarek
Micromachines 2023, 14(6), 1179; https://doi.org/10.3390/mi14061179 - 31 May 2023
Cited by 1 | Viewed by 1321
Abstract
Electrical Impedance Myography (EIM) is a painless, noninvasive approach for assessing muscle conditions through the application of a high-frequency, low-intensity current to the muscle region of interest. However, besides muscle properties, EIM measurements vary significantly with changes in some other anatomical properties such [...] Read more.
Electrical Impedance Myography (EIM) is a painless, noninvasive approach for assessing muscle conditions through the application of a high-frequency, low-intensity current to the muscle region of interest. However, besides muscle properties, EIM measurements vary significantly with changes in some other anatomical properties such as subcutaneous skin-fat (SF) thickness and muscle girth, as well as non-anatomical factors, such as ambient temperature, electrode shape, inter-electrode distance, etc. This study has been conducted to compare the effects of different electrode shapes in EIM experiments, and to propose an acceptable configuration that is less dependent on factors other than the cellular properties of the muscle. Initially, a finite element model with two different kinds of electrode shapes, namely, rectangular (the conventional shape) and circular (the proposed shape) was designed for a subcutaneous fat thickness ranging from 5 mm to 25 mm. The study concludes, based on the FEM study, that replacing the conventional electrodes with our proposed electrodes can decrease the variation in EIM parameters due to changes in skin-fat thickness by 31.92%. EIM experiments on human subjects with these two kinds of electrode shapes validate our finite element simulation results, and show that circular electrodes can improve EIM effectiveness significantly, irrespective of muscle shape variation. Full article
Show Figures

Figure 1

14 pages, 5790 KiB  
Article
Spiral Chiral Metamaterial Structure Shape for Optical Activity Improvements
by Kohei Maruyama, Miyako Mizuna, Takuya Kosuge, Yuki Takeda, Eiji Iwase and Tetsuo Kan
Micromachines 2023, 14(6), 1156; https://doi.org/10.3390/mi14061156 - 30 May 2023
Cited by 1 | Viewed by 1444
Abstract
We report on a spiral structure suitable for obtaining a large optical response. We constructed a structural mechanics model of the shape of the planar spiral structure when deformed and verified the effectiveness of the model. As a verification structure, we fabricated a [...] Read more.
We report on a spiral structure suitable for obtaining a large optical response. We constructed a structural mechanics model of the shape of the planar spiral structure when deformed and verified the effectiveness of the model. As a verification structure, we fabricated a large-scale spiral structure that operates in the GHz band by laser processing. Based on the GHz radio wave experiments, a more uniform deformation structure exhibited a higher cross-polarization component. This result suggests that uniform deformation structures can improve circular dichroism. Since large-scale devices enable speedy prototype verification, the obtained knowledge can be exported to miniaturized-scale devices, such as MEMS terahertz metamaterials. Full article
Show Figures

Figure 1

9 pages, 13440 KiB  
Article
Design of an Intelligent MEMS Safety and Arming Device with a Condition Feedback Function
by Kexin Wang, Tengjiang Hu, Yulong Zhao, Wei Ren and Yifei Wang
Micromachines 2023, 14(6), 1130; https://doi.org/10.3390/mi14061130 - 27 May 2023
Cited by 1 | Viewed by 1456
Abstract
A safety and arming device with a condition feedback function has been designed in this article to improve the intelligence and safety of ignition devices. The device achieves active control and recoverability by virtue of four groups of bistable mechanisms which consist of [...] Read more.
A safety and arming device with a condition feedback function has been designed in this article to improve the intelligence and safety of ignition devices. The device achieves active control and recoverability by virtue of four groups of bistable mechanisms which consist of two electrothermal actuators to drive a semi-circular barrier and a pawl. According to a specific operation sequence, the barrier is engaged by the pawl at the safety or the arming position. The four groups of bistable mechanisms are connected in parallel, and the device detects the contact resistance generated by the engagement of the barrier and pawl by the voltage division of an external resistor to determine the parallel number of the mechanism and give feedback on the device’s condition. The pawl as a safety lock can restrain the in-plane deformation of the barrier in the safety condition to improve the safety function of the device. An igniter (a NiCr bridge foil covered with different thicknesses of Al/CuO films) and boron/potassium nitrate (B/KNO3, BPN) are assembled on both sides of the S&A device to verify the safety of the barrier. The test results show that the S&A device with a safety lock can realize the safety and arming functions when the thickness of the Al/CuO film is set to 80 μm and 100 μm. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

14 pages, 5162 KiB  
Article
Stability Study of Multi-Level Grayscales Based on Driving Waveforms for Electrowetting Displays
by Wanzhen Xu, Zichuan Yi, Zhengxing Long, Hu Zhang, Jiaquan Jiang, Liming Liu, Feng Chi, Ding Tan and Huan Wang
Micromachines 2023, 14(6), 1123; https://doi.org/10.3390/mi14061123 - 26 May 2023
Cited by 1 | Viewed by 1014
Abstract
Electrowetting Display (EWD) is a new reflective display with an outstanding performance of color video playback. However, some problems still exist and affect its performance. For instance, oil backflow, oil splitting, and charge trapping phenomena may occur during the driving process of EWDs, [...] Read more.
Electrowetting Display (EWD) is a new reflective display with an outstanding performance of color video playback. However, some problems still exist and affect its performance. For instance, oil backflow, oil splitting, and charge trapping phenomena may occur during the driving process of EWDs, which would decrease its stability of multi-level grayscales. Therefore, an efficient driving waveform was proposed to solve these disadvantages. It consisted of a driving stage and a stabilizing stage. First, an exponential function waveform was used in the driving stage for driving the EWDs quickly. Then, an alternating current (AC) pulse signal waveform was used in the stabilizing stage to release the trapped positive charges of the insulating layer to improve display stability. A set of four level grayscale driving waveforms were designed by using the proposed method, and it was used in comparative experiments. The experiments showed that the proposed driving waveform could mitigate oil backflow and splitting effects. Compared to a traditional driving waveform, the luminance stability was increased by 8.9%, 5.9%, 10.9%, and 11.6% for the four level grayscales after 12 s, respectively. Full article
(This article belongs to the Special Issue Advances in Optoelectronic Devices, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 4113 KiB  
Article
Laser-Formed Sensors with Electrically Conductive MWCNT Networks for Gesture Recognition Applications
by Natalia A. Nikitina, Dmitry I. Ryabkin, Victoria V. Suchkova, Artem V. Kuksin, Evgeny S. Pyankov, Levan P. Ichkitidze, Aleksey V. Maksimkin, Evgeny P. Kitsyuk, Ekaterina A. Gerasimenko, Dmitry V. Telyshev, Ivan Bobrinetskiy, Sergey V. Selishchev and Alexander Yu. Gerasimenko
Micromachines 2023, 14(6), 1106; https://doi.org/10.3390/mi14061106 - 24 May 2023
Cited by 2 | Viewed by 2025
Abstract
Currently, an urgent need in the field of wearable electronics is the development of flexible sensors that can be attached to the human body to monitor various physiological indicators and movements. In this work, we propose a method for forming an electrically conductive [...] Read more.
Currently, an urgent need in the field of wearable electronics is the development of flexible sensors that can be attached to the human body to monitor various physiological indicators and movements. In this work, we propose a method for forming an electrically conductive network of multi-walled carbon nanotubes (MWCNT) in a matrix of silicone elastomer to make stretchable sensors sensitive to mechanical strain. The electrical conductivity and sensitivity characteristics of the sensor were improved by using laser exposure, through the effect of forming strong carbon nanotube (CNT) networks. The initial electrical resistance of the sensors obtained using laser technology was ~3 kOhm (in the absence of deformation) at a low concentration of nanotubes of 3 wt% in composition. For comparison, in a similar manufacturing process, but without laser exposure, the active material had significantly higher values of electrical resistance, which was ~19 kOhm in this case. The laser-fabricated sensors have a high tensile sensitivity (gauge factor ~10), linearity of >0.97, a low hysteresis of 2.4%, tensile strength of 963 kPa, and a fast strain response of 1 ms. The low Young’s modulus values of ~47 kPa and the high electrical and sensitivity characteristics of the sensors made it possible to fabricate a smart gesture recognition sensor system based on them, with a recognition accuracy of ~94%. Data reading and visualization were performed using the developed electronic unit based on the ATXMEGA8E5-AU microcontroller and software. The obtained results open great prospects for the application of flexible CNT sensors in intelligent wearable devices (IWDs) for medical and industrial applications. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors)
Show Figures

Figure 1

8 pages, 3540 KiB  
Communication
Improving Performance of Al2O3/AlN/GaN MIS HEMTs via In Situ N2 Plasma Annealing
by Mengyuan Sun, Luyu Wang, Penghao Zhang and Kun Chen
Micromachines 2023, 14(6), 1100; https://doi.org/10.3390/mi14061100 - 23 May 2023
Cited by 1 | Viewed by 1536
Abstract
A novel monocrystalline AlN interfacial layer formation method is proposed to improve the device performance of the fully recessed-gate Al2O3/AlN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors (MIS-HEMTs), which is achieved by plasma-enhanced atomic layer deposition (PEALD) and in situ N [...] Read more.
A novel monocrystalline AlN interfacial layer formation method is proposed to improve the device performance of the fully recessed-gate Al2O3/AlN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors (MIS-HEMTs), which is achieved by plasma-enhanced atomic layer deposition (PEALD) and in situ N2 plasma annealing (NPA). Compared with the traditional RTA method, the NPA process not only avoids the device damage caused by high temperatures but also obtains a high-quality AlN monocrystalline film that avoids natural oxidation by in situ growth. As a contrast with the conventional PELAD amorphous AlN, C-V results indicated a significantly lower interface density of states (Dit) in a MIS C-V characterization, which could be attributed to the polarization effect induced by the AlN crystal from the X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) characterizations. The proposed method could reduce the subthreshold swing, and the Al2O3/AlN/GaN MIS-HEMTs were significantly enhanced with ~38% lower on-resistance at Vg = 10 V. What is more, in situ NPA provides a more stable threshold voltage (Vth) after a long gate stress time, and ΔVth is inhibited by about 40 mV under Vg,stress = 10 V for 1000 s, showing great potential for improving Al2O3/AlN/GaN MIS-HEMT gate reliability. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

14 pages, 3640 KiB  
Article
A Wireless, High-Quality, Soft and Portable Wrist-Worn System for sEMG Signal Detection
by Zekai Liang, Xuanqi Wang, Jun Guo, Yuanming Ye, Haoyang Zhang, Liang Xie, Kai Tao, Wen Zeng, Erwei Yin and Bowen Ji
Micromachines 2023, 14(5), 1085; https://doi.org/10.3390/mi14051085 - 21 May 2023
Cited by 1 | Viewed by 1896
Abstract
The study of wearable systems based on surface electromyography (sEMG) signals has attracted widespread attention and plays an important role in human–computer interaction, physiological state monitoring, and other fields. Traditional sEMG signal acquisition systems are primarily targeted at body parts that are not [...] Read more.
The study of wearable systems based on surface electromyography (sEMG) signals has attracted widespread attention and plays an important role in human–computer interaction, physiological state monitoring, and other fields. Traditional sEMG signal acquisition systems are primarily targeted at body parts that are not in line with daily wearing habits, such as the arms, legs, and face. In addition, some systems rely on wired connections, which impacts their flexibility and user-friendliness. This paper presents a novel wrist-worn system with four sEMG acquisition channels and a high common-mode rejection ratio (CMRR) greater than 120 dB. The circuit has an overall gain of 2492 V/V and a bandwidth of 15~500 Hz. It is fabricated using flexible circuit technologies and is encapsulated in a soft skin-friendly silicone gel. The system acquires sEMG signals at a sampling rate of over 2000 Hz with a 16-bit resolution and transmits data to a smart device via low-power Bluetooth. Muscle fatigue detection and four-class gesture recognition experiments (accuracy greater than 95%) were conducted to validate its practicality. The system has potential applications in natural and intuitive human–computer interaction and physiological state monitoring. Full article
(This article belongs to the Special Issue Wearable and Implantable Bio-MEMS Devices and Applications)
Show Figures

Figure 1

13 pages, 8123 KiB  
Article
Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates
by Mengyu Liu, Zhenbao Wang, Ziqin Meng, Xuecheng Sun, Yong Huang, Yongbin Guo and Zhen Yang
Micromachines 2023, 14(5), 1002; https://doi.org/10.3390/mi14051002 - 6 May 2023
Cited by 3 | Viewed by 1600
Abstract
The giant magnetoimpedance effect of multilayered thin films under stress has great application prospects in magnetic sensing, but related studies are rarely reported. Therefore, the giant magnetoimpedance effects in multilayered thin film meanders under different stresses were thoroughly investigated. Firstly, multilayered FeNi/Cu/FeNi thin [...] Read more.
The giant magnetoimpedance effect of multilayered thin films under stress has great application prospects in magnetic sensing, but related studies are rarely reported. Therefore, the giant magnetoimpedance effects in multilayered thin film meanders under different stresses were thoroughly investigated. Firstly, multilayered FeNi/Cu/FeNi thin film meanders with the same thickness were manufactured on polyimide (PI) and polyester (PET) substrates by DC magnetron sputtering and MEMS technology. The characterization of meanders was analyzed by SEM, AFM, XRD, and VSM. The results show that multilayered thin film meanders on flexible substrates also have the advantages of good density, high crystallinity, and excellent soft magnetic properties. Then, we observed the giant magnetoimpedance effect under tensile and compressive stresses. The results show that the application of longitudinal compressive stress increases the transverse anisotropy and enhances the GMI effect of multilayered thin film meanders, while the application of longitudinal tensile stress yields the opposite result. The results provide novel solutions for the fabrication of more stable and flexible giant magnetoimpedance sensors, as well as for the development of stress sensors. Full article
(This article belongs to the Special Issue NEMS/MEMS Devices and Applications)
Show Figures

Figure 1

14 pages, 3494 KiB  
Article
Neurotoxicity of Silver Nanoparticles and Non-Linear Development of Adaptive Homeostasis with Age
by Anna A. Antsiferova, Marina Yu. Kopaeva, Vyacheslav N. Kochkin, Alexander A. Reshetnikov and Pavel K. Kashkarov
Micromachines 2023, 14(5), 984; https://doi.org/10.3390/mi14050984 - 30 Apr 2023
Cited by 5 | Viewed by 1191
Abstract
For the first time in the world, the behavioral functions of laboratory mammals exposed to silver nanoparticles were studied with regard to age. Silver nanoparticles coated with polyvinylpyrrolidone with a size of 8.7 nm were used in the present research as a potential [...] Read more.
For the first time in the world, the behavioral functions of laboratory mammals exposed to silver nanoparticles were studied with regard to age. Silver nanoparticles coated with polyvinylpyrrolidone with a size of 8.7 nm were used in the present research as a potential xenobiotic. Elder mice adapted to the xenobiotic better than the younger animals. Younger animals demonstrated more drastic anxiety than the elder ones. A hormetic effect of the xenobiotic in elder animals was observed. Thus, it is concluded that adaptive homeostasis non-linearly changes with age increase. Presumably, it may improve during the prime of life and start to decline just after a certain stage. This work demonstrates that age growth is not directly conjugated with the organism fading and pathology development. Oppositely, vitality and resistance to xenobiotics may even improve with age at least until the prime of life. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

13 pages, 3698 KiB  
Article
Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters
by Tasso von Windheim, Kristin H. Gilchrist, Charles B. Parker, Stephen Hall, James B. Carlson, David Stokes, Nicholas G. Baldasaro, Charles T. Hess, Leif Scheick, Bernard Rax, Brian Stoner, Jeffrey T. Glass and Jason J. Amsden
Micromachines 2023, 14(5), 973; https://doi.org/10.3390/mi14050973 - 29 Apr 2023
Viewed by 1417
Abstract
This paper demonstrates a fully integrated vacuum microelectronic NOR logic gate fabricated using microfabricated polysilicon panels oriented perpendicular to the device substrate with integrated carbon nanotube (CNT) field emission cathodes. The vacuum microelectronic NOR logic gate consists of two parallel vacuum tetrodes fabricated [...] Read more.
This paper demonstrates a fully integrated vacuum microelectronic NOR logic gate fabricated using microfabricated polysilicon panels oriented perpendicular to the device substrate with integrated carbon nanotube (CNT) field emission cathodes. The vacuum microelectronic NOR logic gate consists of two parallel vacuum tetrodes fabricated using the polysilicon Multi-User MEMS Processes (polyMUMPs). Each tetrode of the vacuum microelectronic NOR gate demonstrated transistor-like performance but with a low transconductance of 7.6 × 10−9 S as current saturation was not achieved due to a coupling effect between the anode voltage and cathode current. With both tetrodes working in parallel, the NOR logic capabilities were demonstrated. However, the device exhibited asymmetric performance due to differences in the CNT emitter performance in each tetrode. Because vacuum microelectronic devices are attractive for use in high radiation environments, to test the radiation survivability of this device platform, we demonstrated the function of a simplified diode device structure during exposure to gamma radiation at a rate of 45.6 rad(Si)/second. These devices represent a proof-of-concept for a platform that can be used to build intricate vacuum microelectronic logic devices for use in high-radiation environments. Full article
(This article belongs to the Special Issue On-Chip Electron Emission and Related Devices)
Show Figures

Figure 1

11 pages, 2013 KiB  
Article
Designing Versatile Superhydrophilic Structures via an Alginate-Based Hydrophilic Plasticene
by Wenbo Shi, Haoyu Bai, Yaru Tian, Xinsheng Wang, Zhe Li, Xuanbo Zhu, Ye Tian and Moyuan Cao
Micromachines 2023, 14(5), 962; https://doi.org/10.3390/mi14050962 - 28 Apr 2023
Viewed by 1412
Abstract
The rational design of superhydrophilic materials with a controllable structure is a critical component in various applications, including solar steam generation, liquid spontaneous transport, etc. The arbitrary manipulation of the 2D, 3D, and hierarchical structures of superhydrophilic substrates is highly desirable for smart [...] Read more.
The rational design of superhydrophilic materials with a controllable structure is a critical component in various applications, including solar steam generation, liquid spontaneous transport, etc. The arbitrary manipulation of the 2D, 3D, and hierarchical structures of superhydrophilic substrates is highly desirable for smart liquid manipulation in both research and application fields. To design versatile superhydrophilic interfaces with various structures, here we introduce a hydrophilic plasticene that possesses high flexibility, deformability, water absorption, and crosslinking capabilities. Through a pattern-pressing process with a specific template, 2D prior fast spreading of liquids at speeds up to 600 mm/s was achieved on the superhydrophilic surface with designed channels. Additionally, 3D superhydrophilic structures can be facilely designed by combining the hydrophilic plasticene with a 3D-printed template. The assembly of 3D superhydrophilic microstructure arrays were explored, providing a promising route to facilitate the continuous and spontaneous liquid transport. The further modification of superhydrophilic 3D structures with pyrrole can promote the applications of solar steam generation. The optimal evaporation rate of an as-prepared superhydrophilic evaporator reached ~1.60 kg·m−2·h−1 with a conversion efficiency of approximately 92.96%. Overall, we envision that the hydrophilic plasticene should satisfy a wide range of requirements for superhydrophilic structures and update our understanding of superhydrophilic materials in both fabrication and application. Full article
(This article belongs to the Special Issue Fluid Manipulation: From Fundamentals to Applications)
Show Figures

Figure 1

16 pages, 9459 KiB  
Article
The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station
by Kamfai Chan, Arunkumar Arumugam, Cole Markham, Ryan Jenson, Hao-Wei Wu and Season Wong
Micromachines 2023, 14(5), 937; https://doi.org/10.3390/mi14050937 - 26 Apr 2023
Cited by 1 | Viewed by 2046
Abstract
Biological testing on the International Space Station (ISS) is necessary in order to monitor the microbial burden and identify risks to crew health. With support from a NASA Phase I Small Business Innovative Research contract, we have developed a compact prototype of a [...] Read more.
Biological testing on the International Space Station (ISS) is necessary in order to monitor the microbial burden and identify risks to crew health. With support from a NASA Phase I Small Business Innovative Research contract, we have developed a compact prototype of a microgravity-compatible, automated versatile sample preparation platform (VSPP). The VSPP was built by modifying entry-level 3D printers that cost USD 200–USD 800. In addition, 3D printing was also used to prototype microgravity-compatible reagent wells and cartridges. The VSPP’s primary function would enable NASA to rapidly identify microorganisms that could affect crew safety. It has the potential to process samples from various sample matrices (swab, potable water, blood, urine, etc.), thus yielding high-quality nucleic acids for downstream molecular detection and identification in a closed-cartridge system. When fully developed and validated in microgravity environments, this highly automated system will allow labor-intensive and time-consuming processes to be carried out via a turnkey, closed system using prefilled cartridges and magnetic particle-based chemistries. This manuscript demonstrates that the VSPP can extract high-quality nucleic acids from urine (Zika viral RNA) and whole blood (human RNase P gene) in a ground-level laboratory setting using nucleic acid-binding magnetic particles. The viral RNA detection data showed that the VSPP can process contrived urine samples at clinically relevant levels (as low as 50 PFU/extraction). The extraction of human DNA from eight replicate samples showed that the DNA extraction yield is highly consistent (there was a standard deviation of 0.4 threshold cycle when the extracted and purified DNA was tested via real-time polymerase chain reaction). Additionally, the VSPP underwent 2.1 s drop tower microgravity tests to determine if its components are compatible for use in microgravity. Our findings will aid future research in adapting extraction well geometry for 1 g and low g working environments operated by the VSPP. Future microgravity testing of the VSPP in the parabolic flights and in the ISS is planned. Full article
(This article belongs to the Special Issue 3D-Printed Microdevices: From Design to Applications)
Show Figures

Figure 1

15 pages, 15204 KiB  
Article
A Fast Soft Continuum Catheter Robot Manufacturing Strategy Based on Heterogeneous Modular Magnetic Units
by Tieshan Zhang, Gen Li, Xiong Yang, Hao Ren, Dong Guo, Hong Wang, Ki Chan, Zhou Ye, Tianshuo Zhao, Chengfei Zhang, Wanfeng Shang and Yajing Shen
Micromachines 2023, 14(5), 911; https://doi.org/10.3390/mi14050911 - 23 Apr 2023
Viewed by 2019
Abstract
Developing small-scale continuum catheter robots with inherent soft bodies and high adaptability to different environments holds great promise for biomedical engineering applications. However, current reports indicate that these robots meet challenges when it comes to quick and flexible fabrication with simpler processing components. [...] Read more.
Developing small-scale continuum catheter robots with inherent soft bodies and high adaptability to different environments holds great promise for biomedical engineering applications. However, current reports indicate that these robots meet challenges when it comes to quick and flexible fabrication with simpler processing components. Herein, we report a millimeter-scale magnetic-polymer-based modular continuum catheter robot (MMCCR) that is capable of performing multifarious bending through a fast and general modular fabrication strategy. By preprogramming the magnetization directions of two types of simple magnetic units, the assembled MMCCR with three discrete magnetic sections could be transformed from a single curvature pose with a large tender angle to a multicurvature S shape in the applied magnetic field. Through static and dynamic deformation analyses for MMCCRs, high adaptability to varied confined spaces can be predicted. By employing a bronchial tree phantom, the proposed MMCCRs demonstrated their capability to adaptively access different channels, even those with challenging geometries that require large bending angles and unique S-shaped contours. The proposed MMCCRs and the fabrication strategy shine new light on the design and development of magnetic continuum robots with versatile deformation styles, which would further enrich broad potential applications in biomedical engineering. Full article
(This article belongs to the Special Issue Magnetic Microrobots for Biomedical Applications)
Show Figures

Figure 1

11 pages, 7409 KiB  
Article
Creating Stretchable Electronics from Dual Layer Flex-PCB for Soft Robotic Cardiac Mapping Catheters
by Abdellatif Ait Lahcen, Alexandre Caprio, Weihow Hsue, Cory Tschabrunn, Christopher Liu, Bobak Mosadegh and Simon Dunham
Micromachines 2023, 14(4), 884; https://doi.org/10.3390/mi14040884 - 20 Apr 2023
Cited by 3 | Viewed by 2143
Abstract
The authors present in this study the development of a novel method for creating stretchable electronics from dual-layer flex printed circuit boards (flex-PCBs) as a platform for soft robotic sensor arrays (SRSAs) for cardiac voltage mapping applications. There is a crucial need for [...] Read more.
The authors present in this study the development of a novel method for creating stretchable electronics from dual-layer flex printed circuit boards (flex-PCBs) as a platform for soft robotic sensor arrays (SRSAs) for cardiac voltage mapping applications. There is a crucial need for devices that utilize multiple sensors and provide high performance signal acquisition for cardiac mapping. Previously, our group demonstrated how single-layer flex-PCB can be postprocessed to create a stretchable electronic sensing array. In this work, a detailed fabrication process for creating a dual-layer multielectrode flex-PCB SRSA is presented, along with relevant parameters to achieve optimal postprocessing with a laser cutter. The dual-layer flex-PCB SRSA’s ability to acquire electrical signals is demonstrated both in vitro as well as in vivo on a Leporine cardiac surface. These SRSAs could be extended into full-chamber cardiac mapping catheter applications. Our results show a significant contribution towards the scalable use of dual-layer flex-PCB for stretchable electronics. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in 'Engineering and Technology' 2023)
Show Figures

Graphical abstract

19 pages, 2528 KiB  
Article
Importance of Spatial Arrangement of Cardiomyocyte Network for Precise and Stable On-Chip Predictive Cardiotoxicity Measurement
by Kazufumi Sakamoto, Suguru Matsumoto, Nanami Abe, Mitsuru Sentoku and Kenji Yasuda
Micromachines 2023, 14(4), 854; https://doi.org/10.3390/mi14040854 - 14 Apr 2023
Cited by 1 | Viewed by 1474
Abstract
One of the advantages of human stem cell-derived cell-based preclinical screening is the reduction of the false negative/positive misjudgment of lead compounds for predicting their effectiveness and risks during the early stage of development. However, as the community effect of cells was neglected [...] Read more.
One of the advantages of human stem cell-derived cell-based preclinical screening is the reduction of the false negative/positive misjudgment of lead compounds for predicting their effectiveness and risks during the early stage of development. However, as the community effect of cells was neglected in the conventional single cell-based in vitro screening, the potential difference in results caused by the cell number and their spatial arrangement differences has not yet been sufficiently evaluated. Here, we have investigated the effect of the community size and spatial arrangement difference for cardiomyocyte network response against the proarrhythmic compounds from the viewpoint of in vitro cardiotoxicity. Using three different typical types of cell networks of cardiomyocytes, small cluster, large square sheet, and large closed-loop sheet were formed in shaped agarose microchambers fabricated on a multielectrode array chip simultaneously, and their responses were compared against the proarrhythmic compound, E-4031. The interspike intervals (ISIs) in large square sheets and closed-loop sheets were durable and maintained stable against E-4031 even at a high dose of 100 nM. In contrast, those in the small cluster, which fluctuated even without E-4031, acquired stable beating reflecting the antiarrhythmic efficacy of E-4031 from a 10 nM medium dose administration. The repolarization index, field potential duration (FPD), was prolonged in closed-loop sheets with 10 nM E-4031, even though small clusters and large sheets remained normal at this concentration. Moreover, FPDs of large sheets were the most durable against E-4031 among the three geometries of cardiomyocyte networks. The results showed the apparent spatial arrangement dependence on the stability of their interspike intervals, and FPD prolongation, indicating the importance of the geometry control of cell networks for representing the appropriate response of cardiomyocytes against the adequate amount of compounds for in vitro ion channel measurement. Full article
Show Figures

Figure 1

11 pages, 3577 KiB  
Article
Pulse-on-Demand Operation for Precise High-Speed UV Laser Microstructuring
by Jernej Jan Kočica, Jaka Mur, Julien Didierjean, Arnaud Guillossou, Julien Saby, Jaka Petelin, Girolamo Mincuzzi and Rok Petkovšek
Micromachines 2023, 14(4), 843; https://doi.org/10.3390/mi14040843 - 13 Apr 2023
Cited by 1 | Viewed by 1891
Abstract
Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser [...] Read more.
Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser powers, with scanner movement fundamentally limited by laws of inertia. In this work, we apply a nanosecond UV laser working in an intrinsic pulse-on-demand mode, ensuring maximal utilization of the fastest commercially available galvanometric scanners at scanning speeds from 0 to 20 m/s. The effects of high-frequency pulse-on-demand operation were analyzed in terms of processing speeds, ablation efficiency, resulting surface quality, repeatability, and precision of the approach. Additionally, laser pulse duration was varied in single-digit nanosecond pulse durations and applied to high throughput microstructuring. We studied the effects of scanning speed on pulse-on-demand operation, single- and multipass laser percussion drilling performance, surface structuring of sensitive materials, and ablation efficiency for pulse durations in the range of 1–4 ns. We confirmed the pulse-on-demand operation suitability for microstructuring for a range of frequencies from below 1 kHz to 1.0 MHz with 5 ns timing precision and identified the scanners as the limiting factor even at full utilization. The ablation efficiency was improved with longer pulse durations, but structure quality degraded. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication)
Show Figures

Figure 1

13 pages, 2565 KiB  
Article
Flexible, Heat-Durable, and Highly Sensitive Piezoelectrets from Cyclic Olefin Copolymer with Microhoneycomb Structure
by Hui Wang, Xiaolin Wang and Changchun Zeng
Micromachines 2023, 14(4), 829; https://doi.org/10.3390/mi14040829 - 8 Apr 2023
Cited by 2 | Viewed by 1468
Abstract
This paper discusses the fabrication and characterization of cyclic olefin copolymer (COC)-based pseudo-piezoelectric materials (piezoelectrets) with exceptionally high piezoelectric activity, and their potential use in sensing applications. Piezoelectrets that utilize a novel microhoneycomb structure to achieve high piezoelectric sensitivity are carefully engineered and [...] Read more.
This paper discusses the fabrication and characterization of cyclic olefin copolymer (COC)-based pseudo-piezoelectric materials (piezoelectrets) with exceptionally high piezoelectric activity, and their potential use in sensing applications. Piezoelectrets that utilize a novel microhoneycomb structure to achieve high piezoelectric sensitivity are carefully engineered and fabricated at a low temperature using a supercritical CO2-assisted assembly. The quasistatic piezoelectric coefficient d33 of the material can reach up to 12,900 pCN−1 when charged at 8000 V. The materials also exhibit excellent thermal stability. The charge build-up in the materials and the actuation behavior of the materials are also investigated. Finally, applications of these materials in pressure sensing and mapping and in wearable sensing are demonstrated. Full article
(This article belongs to the Special Issue Advanced Electrostatic Sensors and Actuators)
Show Figures

Figure 1

19 pages, 2417 KiB  
Article
Novel Size-Variable Dedicated Rodent Oxygenator for ECLS Animal Models—Introduction of the “RatOx” Oxygenator and Preliminary In Vitro Results
by Lasse J. Strudthoff, Jannis Focke, Felix Hesselmann, Andreas Kaesler, Ana Martins Costa, Peter C. Schlanstein, Thomas Schmitz-Rode, Ulrich Steinseifer, Niklas B. Steuer, Bettina Wiegmann, Jutta Arens and Sebastian V. Jansen
Micromachines 2023, 14(4), 800; https://doi.org/10.3390/mi14040800 - 31 Mar 2023
Cited by 3 | Viewed by 1794
Abstract
The overall survival rate of extracorporeal life support (ECLS) remains at 60%. Research and development has been slow, in part due to the lack of sophisticated experimental models. This publication introduces a dedicated rodent oxygenator (“RatOx”) and presents preliminary in vitro classification tests. [...] Read more.
The overall survival rate of extracorporeal life support (ECLS) remains at 60%. Research and development has been slow, in part due to the lack of sophisticated experimental models. This publication introduces a dedicated rodent oxygenator (“RatOx”) and presents preliminary in vitro classification tests. The RatOx has an adaptable fiber module size for various rodent models. Gas transfer performances over the fiber module for different blood flows and fiber module sizes were tested according to DIN EN ISO 7199. At the maximum possible amount of effective fiber surface area and a blood flow of 100 mL/min, the oxygenator performance was tested to a maximum of 6.27 mL O2/min and 8.2 mL CO2/min, respectively. The priming volume for the largest fiber module is 5.4 mL, while the smallest possible configuration with a single fiber mat layer has a priming volume of 1.1 mL. The novel RatOx ECLS system has been evaluated in vitro and has demonstrated a high degree of compliance with all pre-defined functional criteria for rodent-sized animal models. We intend for the RatOx to become a standard testing platform for scientific studies on ECLS therapy and technology. Full article
(This article belongs to the Special Issue Biohybrid Lung Assist Devices)
Show Figures

Figure 1

12 pages, 5954 KiB  
Article
Improving the Thickness Uniformity of Micro Gear by Multi-Step, Self-Aligned Lithography and Electroforming
by Huan Wang, Jing Xie, Tao Fan, Dapeng Sun and Chaobo Li
Micromachines 2023, 14(4), 775; https://doi.org/10.3390/mi14040775 - 30 Mar 2023
Cited by 4 | Viewed by 1222
Abstract
The thickness nonuniformity of an electroformed layer is a bottleneck problem for electroformed micro metal devices. In this paper, a new fabrication method is proposed to improve the thickness uniformity of micro gear, which is the key element of various microdevices. The effect [...] Read more.
The thickness nonuniformity of an electroformed layer is a bottleneck problem for electroformed micro metal devices. In this paper, a new fabrication method is proposed to improve the thickness uniformity of micro gear, which is the key element of various microdevices. The effect of the thickness of the photoresist on the uniformity was studied by simulation analysis, which showed that as the thickness of the photoresist increased, the thickness nonuniformity of the electroformed gear should decrease due to the reduced edge effect of the current density. Differently from the traditional method performed by one-step front lithography and electroforming, multi-step, self-aligned lithography and electroforming are used to fabricate micro gear structures in proposed method, which intermittently keeps the thickness of photoresist from decreasing during processes of alternate lithography and electroforming. The experimental results show that the thickness uniformity of micro gear fabricated by the proposed method was improved by 45.7% compared with that fabricated by the traditional method. Meanwhile, the roughness of the middle region of the gear structure was reduced by 17.4%. Full article
Show Figures

Figure 1

13 pages, 4949 KiB  
Article
A Design Approach to Reducing Stress and Distortion Caused by Adhesive Assembly in Micromachined Deformable Mirrors
by Wenkuan Man and Thomas G. Bifano
Micromachines 2023, 14(4), 740; https://doi.org/10.3390/mi14040740 - 27 Mar 2023
Viewed by 1670
Abstract
A common problem in deformable mirror assembly is that the adhesion of actuators to an optical mirror face sheet introduces unwanted topography due to large local stresses generated at the adhesive joint. A new approach to minimizing that effect is described, with inspiration [...] Read more.
A common problem in deformable mirror assembly is that the adhesion of actuators to an optical mirror face sheet introduces unwanted topography due to large local stresses generated at the adhesive joint. A new approach to minimizing that effect is described, with inspiration taken from St. Venant’s principle, a fundamental precept in solid mechanics. It is demonstrated that moving the adhesive joint to the end of a slender post extending from the face sheet largely eliminates deformation due to adhesive stresses. A practical implementation of this design innovation is described, using silicon-on-insulator wafers and deep reactive ion etching. Simulation and experiments validate the effectiveness of the approach, reducing stress-induced topography on a test structure by a factor of 50. A prototype electromagnetic DM using this design approach is described, and its actuation is demonstrated. This new design can benefit a wide range of DMs that rely on actuator arrays that are adhesively bonded to a mirror face sheet. Full article
(This article belongs to the Special Issue MEMS Packaging Technologies and 3D Integration, 2nd Edition)
Show Figures

Figure 1

14 pages, 6754 KiB  
Article
Evaluation of Polydimethylsiloxane (PDMS) as a Substrate for the Realization of Flexible/Wearable Antennas and Sensors
by Praveen Kumar Sharma and Jae-Young Chung
Micromachines 2023, 14(4), 735; https://doi.org/10.3390/mi14040735 - 26 Mar 2023
Cited by 10 | Viewed by 2471
Abstract
To demonstrate that the silicone-based polymer polydimethylsiloxane (PDMS) is suitable as a substrate for flexible/wearable antennae and sensors, an investigation of its various properties was carried out. The substrate was first developed in compliance with the requirements, and then its anisotropy was investigated [...] Read more.
To demonstrate that the silicone-based polymer polydimethylsiloxane (PDMS) is suitable as a substrate for flexible/wearable antennae and sensors, an investigation of its various properties was carried out. The substrate was first developed in compliance with the requirements, and then its anisotropy was investigated using an experimental bi-resonator approach. This material exhibited modest but discernible anisotropy, with values of ~6.2/25 % for the dielectric constant and loss tangent, respectively. Its anisotropic behavior was confirmed by a parallel dielectric constant (εpar) ~2.717 and an evaluated perpendicular dielectric constant (εperp) ~2.570—εpar > εperp by 5.7%. Temperature affected PDMS’s dielectric properties. Lastly, the simultaneous impact of bending and anisotropy of the flexible substrate PDMS on the resonance properties of planar structures was also addressed, and these had diametrically opposed effects. PDMS appears to be a good contender as a substrate for flexible/wearable antennae and sensors based on all experimental evaluations conducted for this research. Full article
(This article belongs to the Special Issue Miniaturized Wearable Antennas)
Show Figures

Figure 1

14 pages, 2473 KiB  
Article
Electrochemical Redox Cycling Behavior of Gold Nanoring Electrodes Microfabricated on a Silicon Micropillar
by Haocheng Yin, Chao Tan, Shabnam Siddiqui and Prabhu U. Arumugam
Micromachines 2023, 14(4), 726; https://doi.org/10.3390/mi14040726 - 24 Mar 2023
Viewed by 1546
Abstract
We report the microfabrication and characterization of concentric gold nanoring electrodes (Au NREs), which were fabricated by patterning two gold nanoelectrodes on the same silicon (Si) micropillar tip. Au NREs of 165 ± 10 nm in width were micropatterned on a 6.5 ± [...] Read more.
We report the microfabrication and characterization of concentric gold nanoring electrodes (Au NREs), which were fabricated by patterning two gold nanoelectrodes on the same silicon (Si) micropillar tip. Au NREs of 165 ± 10 nm in width were micropatterned on a 6.5 ± 0.2 µm diameter 80 ± 0.5 µm height Si micropillar with an intervening ~ 100 nm thick hafnium oxide insulating layer between the two nanoelectrodes. Excellent cylindricality of the micropillar with vertical sidewalls as well as a completely intact layer of a concentric Au NRE including the entire micropillar perimeter has been achieved as observed via scanning electron microscopy and energy dispersive spectroscopy data. The electrochemical behavior of the Au NREs was characterized by steady-state cyclic voltammetry and electrochemical impedance spectroscopy. The applicability of Au NREs to electrochemical sensing was demonstrated by redox cycling with the ferro/ferricyanide redox couple. The redox cycling amplified the currents by 1.63-fold with a collection efficiency of > 90% on a single collection cycle. The proposed micro-nanofabrication approach with further optimization studies shows great promise for the creation and expansion of concentric 3D NRE arrays with controllable width and nanometer spacing for electroanalytical research and applications such as single-cell analysis and advanced biological and neurochemical sensing. Full article
Show Figures

Figure 1

12 pages, 4085 KiB  
Article
Heterogeneous Multi-Material Flexible Piezoresistive Sensor with High Sensitivity and Wide Measurement Range
by Tingting Yu, Yebo Tao, Yali Wu, Dongguang Zhang, Jiayi Yang and Gang Ge
Micromachines 2023, 14(4), 716; https://doi.org/10.3390/mi14040716 - 23 Mar 2023
Cited by 5 | Viewed by 1550
Abstract
Flexible piezoresistive sensors (FPSs) have the advantages of compact structure, convenient signal acquisition and fast dynamic response; they are widely used in motion detection, wearable electronic devices and electronic skins. FPSs accomplish the measurement of stresses through piezoresistive material (PM). However, FPSs based [...] Read more.
Flexible piezoresistive sensors (FPSs) have the advantages of compact structure, convenient signal acquisition and fast dynamic response; they are widely used in motion detection, wearable electronic devices and electronic skins. FPSs accomplish the measurement of stresses through piezoresistive material (PM). However, FPSs based on a single PM cannot achieve high sensitivity and wide measurement range simultaneously. To solve this problem, a heterogeneous multi-material flexible piezoresistive sensor (HMFPS) with high sensitivity and a wide measurement range is proposed. The HMFPS consists of a graphene foam (GF), a PDMS layer and an interdigital electrode. Among them, the GF serves as a sensing layer, providing high sensitivity, and the PDMS serves as a supporting layer, providing a large measurement range. The influence and principle of the heterogeneous multi-material (HM) on the piezoresistivity were investigated by comparing the three HMFPS with different sizes. The HM proved to be an effective way to produce flexible sensors with high sensitivity and a wide measurement range. The HMFPS-10 has a sensitivity of 0.695 kPa−1, a measurement range of 0–14,122 kPa, fast response/recovery (83 ms and 166 ms) and excellent stability (2000 cycles). In addition, the potential application of the HMFPS-10 in human motion monitoring was demonstrated. Full article
Show Figures

Figure 1

9 pages, 3778 KiB  
Article
Design of Wearable Finger Sensors for Rehabilitation Applications
by Beyza Bozali, Sepideh Ghodrat and Kaspar M. B. Jansen
Micromachines 2023, 14(4), 710; https://doi.org/10.3390/mi14040710 - 23 Mar 2023
Cited by 3 | Viewed by 1569
Abstract
As an emerging technology, smart textiles have attracted attention for rehabilitation purposes or to monitor heart rate, blood pressure, breathing rate, body posture, as well as limb movements. Traditional rigid sensors do not always provide the desired level of comfort, flexibility, and adaptability. [...] Read more.
As an emerging technology, smart textiles have attracted attention for rehabilitation purposes or to monitor heart rate, blood pressure, breathing rate, body posture, as well as limb movements. Traditional rigid sensors do not always provide the desired level of comfort, flexibility, and adaptability. To improve this, recent research focuses on the development of textile-based sensors. In this study, knitted strain sensors that are linear up to 40% strain with a sensitivity of 1.19 and a low hysteresis characteristic were integrated into different versions of wearable finger sensors for rehabilitation purposes. The results showed that the different finger sensor versions have accurate responses to different angles of the index finger at relaxation, 45° and 90°. Additionally, the effect of spacer layer thickness between the finger and sensor was investigated. Full article
Show Figures

Figure 1

Back to TopTop