Improvement of the Airflow Energy Harvester Based on the New Diamagnetic Levitation Structure
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Analysis of Fundamentals
2.2. Analysis of the Floating Rotor
3. Simulation Analysis of Centrosymmetric Rotor
3.1. Analysis of the Output Performance
3.2. Analysis of Levitation Characteristics
4. Experimental Verification
4.1. Levitation Characteristics Test Experiments
4.2. Output Performance Test Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdulkarem, M.; Samsudin, K.; Rokhani, F.Z.; Rasid, M.F. Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction. Struct. Health Monit. 2020, 19, 693–735. [Google Scholar] [CrossRef]
- Karimzadehkhouei, M.; Ali, B.; Ghourichaei, M.J.; Alaca, B.E. Silicon Nanowires Driving Miniaturization of Microelectromechanical Systems Physical Sensors: A Review. Adv. Eng. Mater. 2023, 25, 2300007. [Google Scholar] [CrossRef]
- Jeyaraj, R.; Balasubramaniam, A.; Kumara, M.A.A.; Guizani, N.; Paul, A. Resource Management in Cloud and Cloud-Influenced Technologies for Internet of Things Applications. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, Y.; Zhu, J.; Wei, X.; Dai, H. An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range. Energy 2023, 263, 125802. [Google Scholar] [CrossRef]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Appl. Energy 2019, 255, 113823. [Google Scholar] [CrossRef]
- Hernandez-Benitez, A.; Balam, A.; Vazquez-Castillo, J.; Estrada-Lopez, J.J.; Quijano-Cetina, R.; Bassam, A.; Aviles, F.; Castillo-Atoche, A. An Ultra-Low-Power Strain Sensing Node for Long-Range Wireless Networks in Carbon Nanotube-Based Materials. IEEE Sens. J. 2022, 22, 9778–9786. [Google Scholar] [CrossRef]
- Kato, M. Numerical Simulation on Electromagnetic Energy Harvester Oscillated by Speed Ripple of AC Motors. Energies 2023, 16, 940. [Google Scholar] [CrossRef]
- Holm, P.; Imbaquingo, C.; Mann, B.P.; Bjork, R. High power electromagnetic vibration harvesting using a magnetic dumbbell structure. J. Sound Vibr. 2023, 546, 117446. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, H.; Shao, J.; Zhang, Y.; Chen, Y. Output Characteristics of an Electromagnetic-Triboelectric Hybrid Energy Harvester Based on Magnetic Liquid. ACS Appl. Electron. Mater. 2023, 5, 775–783. [Google Scholar] [CrossRef]
- Shan, C.; Li, K.; Cheng, Y.; Hu, C. Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators. Nano-Micro Lett. 2023, 15, 127. [Google Scholar] [CrossRef]
- Li, M.; Luo, A.; Luo, W.; Liu, X.; Wang, F. Electrostatic Vibration Energy Harvester with a Self-Rechargeable Electret. IEEE Electron Device Lett. 2023, 44, 540–543. [Google Scholar] [CrossRef]
- Zhai, L.; Gao, L.; Wang, Z.; Dai, K.; Wu, S.; Mu, X. An Energy Harvester Coupled with a Triboelectric Mechanism and Electrostatic Mechanism for Biomechanical Energy Harvesting. Nanomaterials 2022, 12, 933. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, H.; Lv, S.; Zhang, B.; Wu, Z.; Yang, J. Magnetic Force-Assisted Nonlinear Three-Dimensional Wideband Energy Harvester Using Magnetostrictive/Piezoelectric Composite Transducers. Micromachines 2022, 13, 1633. [Google Scholar] [CrossRef]
- Yamaura, S.; Nakajima, T.; Kamata, Y.; Sasaki, T.; Sekiguchi, T. Production of vibration energy harvester with impact-sliding structure using magnetostrictive Fe-Co-V alloy rod. J. Magn. Magn. Mater. 2020, 514, 167260. [Google Scholar] [CrossRef]
- Jeon, B.; Yoon, C.S.; Yoon, W. Experimental Study on Zinc Oxide Thin Film-Based Thermoelectric Energy Harvester Under Plane-Vertical Temperature Gradients. IEEE Sens. J. 2021, 21, 27298–27307. [Google Scholar] [CrossRef]
- Zhu, P.; Luo, X.; Lin, X.; Qiu, Z.; Chen, R.; Wang, X.; Wang, Y.; Deng, Y.; Mao, Y. A self-healable, recyclable, and flexible thermoelectric device for wearable energy harvesting and personal thermal management. Energy Conv. Manag. 2023, 285, 117017. [Google Scholar] [CrossRef]
- Ma, T.; Ding, Y.; Wu, X.; Chen, N.; Yin, M. Research on piezoelectric vibration energy harvester with variable section circular beam. J. Low Freq. Noise Vib. Act. Control 2020, 40, 753–771. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Liu, Y.; Li, W.; Xiao, X.; Chen, C.; Lu, H.; Yuan, Z.; Tai, H.; Jiang, Y.; Zou, J. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horizons 2023, 10, 842–851. [Google Scholar] [CrossRef]
- Hsu, T.; Wu, H.; Tsai, D.; Wei, C. Photovoltaic Energy Harvester with Fractional Open-Circuit Voltage Based Maximum Power Point Tracking Circuit. IEEE Trans. Circuits Syst. II-Express Briefs 2019, 66, 257–261. [Google Scholar] [CrossRef]
- Sakthivel, K.; Krishnasamy, R.; Balasubramanian, K.; Krishnakumar, V.; Ganesan, M. Averaged state space modeling and the applicability of the series Compensated Buck-Boost converter for harvesting solar Photo Voltaic energy. Sustain. Energy Technol. Assess. 2022, 53, 102611. [Google Scholar] [CrossRef]
- Xin, M.; Jiang, X.; Xu, C.; Yang, J.; Lu, C. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever. Micromachines 2023, 14, 127. [Google Scholar] [CrossRef]
- Wang, S.; Liao, W.; Zhang, Z.; Liao, Y.; Yan, M.; Kan, J. Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration. Energy Conv. Manag. 2021, 235, 113980. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D. A Flapping Airflow Energy Harvester with Flexible Wing Sections. In Proceedings of the 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS), Krakow, Poland, 2–6 December 2019. [Google Scholar]
- Cansiz, A.; Hull, J. Stable load-carrying and rotational loss characteristics of diamagnetic bearings. IEEE Trans. Magn. 2004, 40, 1636–1641. [Google Scholar] [CrossRef]
- Shao, H.; Li, X.; Cheng, S.; Aw, K.C.; Su, Y. Comparative Analysis and Experiment Verification of Diamagnetically Stable Levitation Structure. IEEE Sens. J. 2023, 23, 11469–11481. [Google Scholar] [CrossRef]
- Shao, H.; Bian, F.; Zhang, L.; Zhang, J.; Aw, K.C.; Su, Y. Airflow Energy Harvester based on Diamagnetic Levitation Structure with Double Stabilizing Magnets. IEEE Sens. J. 2023, 23, 13942–13956. [Google Scholar] [CrossRef]
- Simon, M.D.; Geim, A.K. Diamagnetic levitation: Flying frogs and floating magnets (invited). J. Appl. Phys. 2000, 87, 6200–6204. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Li, X.; Wang, Y.; Su, Y. Levitation Characteristics Analysis of a Diamagnetically Stabilized Levitation Structure. Micromachines 2021, 12, 982. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value|Material |
---|---|
Pushing magnet, Pulling magnet, Floating rotor | NdFeB-52 |
Pushing magnet | ∅19 × 6.35 (mm) |
Pulling magnet | ∅10 × 2 (mm) |
Radius of the floating rotor | 9 (mm) |
Thickness of the floating rotor | 3 (mm) |
Radius of the central bore of the floating rotor | 1 (mm) |
Radius of the notches of the floating rotor | 2.5 (mm) |
Outer diameter of circular coils | 11.5 (mm) |
Inner diameter of circular coils | 0 (mm) |
Wire diameter for circular coils | 0.1 (mm) |
Ld | 0.5 (mm) |
Number | LPus (mm) | LPul3 (mm) | LPul4 (mm) | LHmax3 (mm) | LHmax4 (mm) |
---|---|---|---|---|---|
1 | 55.365 | 46.885 | 47.385 | 4.73 | 4.81 |
2 | 54.365 | 41.885 | 42.385 | 4.53 | 4.63 |
3 | 53.365 | 38.385 | 39.285 | 4.31 | 4.41 |
4 | 52.365 | 35.385 | 35.885 | 4.09 | 4.17 |
5 | 51.365 | 33.485 | 33.885 | 3.89 | 3.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Shao, H.; Zhang, J.; Liu, D.; Aw, K.C.; Su, Y. Improvement of the Airflow Energy Harvester Based on the New Diamagnetic Levitation Structure. Micromachines 2023, 14, 1374. https://doi.org/10.3390/mi14071374
Zhang L, Shao H, Zhang J, Liu D, Aw KC, Su Y. Improvement of the Airflow Energy Harvester Based on the New Diamagnetic Levitation Structure. Micromachines. 2023; 14(7):1374. https://doi.org/10.3390/mi14071374
Chicago/Turabian StyleZhang, Long, Hang Shao, Jiaxiang Zhang, Deping Liu, Kean C. Aw, and Yufeng Su. 2023. "Improvement of the Airflow Energy Harvester Based on the New Diamagnetic Levitation Structure" Micromachines 14, no. 7: 1374. https://doi.org/10.3390/mi14071374
APA StyleZhang, L., Shao, H., Zhang, J., Liu, D., Aw, K. C., & Su, Y. (2023). Improvement of the Airflow Energy Harvester Based on the New Diamagnetic Levitation Structure. Micromachines, 14(7), 1374. https://doi.org/10.3390/mi14071374