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Abstract: A VCF-based mode-matching micromachine-optimized tuning fork gyroscope is proposed
to not only maximize the scale factor of the device, but also avoid use of an additional quadrature-
nulling loop to prevent structure complexity, pick-up electrode occupation, and coupling with
a mode-matching loop. In detail, a mode-matching, closed-loop system without a quadrature-
nulling loop is established, and the corresponding convergence and matching error are quantitatively
analyzed. The optimal straight beam of the gyro structure is then modeled to significantly reduce
the quadrature coupling. The test results show that the frequency split is narrowed from 20 Hz to
0.014 Hz. The scale factor is improved 20.6 times and the bias instability (BI) is suppressed 3.28 times.
The observed matching accuracy demonstrates that a mode matching system without a quadrature
suppression loop is feasible and that the proposed device represents a competitive design for a
mode-matching gyroscope.

Keywords: MEMS gyroscope; mode-matching; matching error; virtual Coriolis force

1. Introduction

A gyroscope is a device for detecting the rotation rate of its carrier, and is one of
the most important sensors for applications in fields such as navigation and industrial
control [1]. MEMS-based gyroscopes are small and can be batch-fabricated at a low cost [2]
compared with other gyroscope technologies such as photonic gyroscopes [3], nuclear
magnetic gyroscopes [4], or fiber-optic gyroscopes [5]. However, the measurement accuracy
of MEMS gyroscopes is limited due to machining errors. To improve the precision of
MEMS gyroscopes, numerous approaches have been used, including the amelioration of
the fabrication process [6], control of the vibration mode [7], temperature compensation [8],
and back-end signal processing [9]. To benefit from the mode matching technology, the
performance of MEMS gyroscopes has significantly improved to achieve navigation-grade
accuracy [6]. This technology mainly relies on the fact that Coriolis-induced displacement
in the sense mode reaches a maximum when the frequency split between the drive and
sense modes of the gyroscope is zero, which means that the scale factor of the gyroscope
is optimal.

The common mode matching scheme can be divided into three approaches. The first
is the structure topology design of the gyroscope to achieve inherent mode matching. A
ring gyroscope with L-shaped spokes based on a non-uniform radial width was designed
to suppress the frequency split from 180 Hz to 50 Hz [10,11]. An elliptic-shaped structure
connecting a thick ring alternately with multiple thin rings achieved the mode matching of
43 ppm at a center frequency of 69 kHz [12,13]. The frequency split of a micro-machined
gyroscope was reduced to sub-Hz values with a temperature stability of 0.05 Hz over a
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130 ◦C temperature range by placing critical mechanical elements, including coupling
springs, anchors, and suspensions, at the center of the resonator structure [14].

The second approach to reduce the frequency split is employing a fabrication trimming
scheme to modify the mass distribution via selective polysilicon deposition, laser trimming,
or a focus-ion process. For example, a focus-ion beam process was used to trim the geometry
to achieve the mode matching of 0.02 Hz at a resonant frequency of about 6 kHz [15].
A quantitative mass deposition process guided by a modification equation for the ring
structure was devised to reach a mode matching level of 0.08 Hz [16]. Femtosecond laser
trimming was applied with a mass-stiffness decoupling design to narrow the frequency
split to 0.4 Hz [17].

The last widely used approach is an electrostatic tuning scheme based on the elec-
trostatic spring softening technology to achieve mode matching by tuning the resonant
frequency of the sense mode with a feedback DC voltage, which is a function of the
characteristic signal reflecting the frequency split. For this category of method, the key
issue is how to extract the related signal to the frequency split. Currently, existing meth-
ods for extracting the frequency split can be divided into three types, including (1) of-
fline calibration, (2) signal symmetry comparison, and (3) small-signal-induced phase
relation analysis.

For the offline calibration method, according to the previously defined quantitative
relations between the frequency split, tuning DC voltage and angular rate output based on
an offline experimental test, a lookup table (LUT) was established to identify the appropriate
tuning voltage during the actual running to achieve mode matching. The LUT was built
to regulate the frequency split of 0.01 Hz and to achieve an overall output bias drift of
0.76◦/s over a 90 ◦C range [18]. A three-layer back propagation neural network controller
was constructed to achieve a frequency split of 0.3 Hz over the temperature range from
−40 ◦C to 80 ◦C by fitting the tuning voltage beforehand with the temperature [19]. Mode
matching based on this method can be achieved quickly. Nevertheless, it is not easy to
deal with the in-run, long-term mode matching uncertainty induced by mechanical fatigue
deformation, residual stress change, or unexpected environment disturbances, such as
vibration and shock.

With respect to the signal symmetry comparison method, double-side signal charac-
teristics, including amplitude symmetry or noise power spectrum symmetry, are usually
extracted as the matching error reference to judge the degree of mode matching. The
symmetry of the both-sides band power spectrum of thermal noise in the sense mode was
calculated to establish the functional relation between the degree of mode matching and the
symmetrical error, achieving the frequency splits of 1.5 Hz [20,21] and 0.28 Hz [22], respec-
tively. For high-quality gyroscopes, the noise characteristics dominated by the interface
circuit are susceptible to environment disturbances, such as space electromagnetic coupling
and stray capacitances fluctuation, which leads to mode matching accuracy deterioration.
Two amplitude values of the signals at the lower and upper sides of the resonant frequency
were compared by design-tuning the control loop to detect an amplitude difference, which
will theoretically converge to zero when the two modes are matched. Nevertheless, due to
the intrinsic, double-sided and non-uniform characteristic of high-Q gyroscopes, the slight
asymmetry response was not fully eliminated [23].

With respect to the phase relation methods, the quadrature error is a typical character-
istic excitation signal for mode matching [24–26]. In this way, the phase difference of the
quadrature signal in the pick-up signal of the sense mode, with respect to the displacement
of the drive mode, is extracted to generate a control error signal for the tuning voltage,
where a 90◦ phase difference constituting a 0 V control error indicates the realization of
mode matching. Nevertheless, the response to the angular rate input can couple into the
control error and lead to a matching error when the sensor is of working status.

Another improved phase relation method is developed based on the virtual Coriolis
force (VCF) [27,28]. In this way, an external signal for simulating the Coriolis force with
the corresponding frequency and phase information was loaded to special electrodes in
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the sense mode to excite the vibration of the sense mode. An induced pick-up signal was
demodulated by the reference signal in the phase with Coriolis force to generate the control
error signal, which trended to zero when the mode matching was reached. Since the VCF
method is based on the closed-loop classical control theory, it is a real-time mode matching
method, which avoids the calibration for each sensor to significantly reduce experimental
complexity. More importantly, the phase relation between the VCF and the pick-up signal
is only decided by the matching degree of the internal gyroscope, and it is not affected by
external disturbances. In reported works, the VCF method is used to narrow the frequency
split to 0.03 Hz and sub-0.1 Hz on the tuning fork gyroscope (TFG) [29] and disk resonator
gyroscope (DRG) [30], respectively.

Nevertheless, according to the precondition of the effectiveness of this VCF method,
the quadrature error of the sensor can be suppressed as much as possible, which is usually
realized through an additional closed quadrature-nulling loop [29–31];otherwise, the resid-
ual quadrature error, referring to the frequency split information, is an output to deteriorate
the phase relation and reduce the sensitivity improvement of the gyroscope [28]. However,
the additional quadrature suppression loop results in the complex gyroscope control circuit
and reduction in the scale factor due to the occupation of sense pick-up electrodes. More
importantly, the feedback of a quadrature-nulling loop may be coupled with the feedback
of the mode-matching loop, leading to the leakage of stiffness trimming from the axis of
quadrature stiffness to the axis of the sense mode. For example, with respect to the tuning
fork gyroscope (TFG), the coexistence of slide-film excitation and squeeze-film excitation
is why the electrostatic force is generated two-dimensionally and further simultaneously
trims the stiffness of quadrature coupling and the sense mode [23]. With respect to the disk
resonator gyroscope (DRG), the coupling is caused by the interaction between the sense
mode stiffness and the quadrature coupling stiffness, due to the continuous distribution of
the stiffness of the rings [32].

Considering the drawbacks of the phase relation method based on an additional
quadrature suppression loop for the circuit complexity, occupation of electrodes, and
coupling between quadrature nulling and mode matching, a simplified VCF-based mode-
matching gyroscope without a quadrature-nulling loop and with an optimized TFG struc-
ture to achieve a sufficient structural quadrature suppression for mode matching is pre-
sented in this work. The proposed gyroscope without a quadrature-nulling loop has
advantages in two aspects. On the one hand, as the quadrature-nulling loop is removed,
the electrodes used for quadrature calibration can be used for detecting the sense mode
displacement, and thus, the scale factor is maximized. On the other hand, the absence of
the quadrature feedback means that the stiffness axis of the sense mode is only acted on by
the frequency tuning voltage, and thus, the mode matching can be maintained more stably.

This work is organized as follows. The corresponding matching error caused by
the quadrature error is theoretically analyzed in Section 2. Then, the optimization of the
TFG structure is proposed and the effect of quadrature suppression is simulated. Third,
the designed mode matching system with the estimated parameters of the gyroscope
is simulated.

2. Theoretical Analysis of VCF-Based Mode Matching and Matching Error
2.1. Mode Matching System Design

Figure 1 shows the whole VCF-based mode matching schematic consisting of the
mechanical part and electrical part. In the mechanical part, TFG is the object of the presented
scheme, as shown in Figure 1b. In detail, TFG mainly consists of a drive, couple, and sense
frames, which are marked by blue, green, and red, respectively. Due to the widely known
tuning fork topology, the description of the Coriolis effect principle of TFG is omitted here.
The electrical part contains three modules. The first module is the vibration-stabilizing
closed-loop circuit for the drive mode, which is marked in blue. The second one is the
equivalent electrical signal of the induced virtual Coriolis force, which is marked in red.
The last one is the presented mode-matching circuit in the sense mode, which is marked
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in orange. In the mode-matching circuit, the total force, Ftot, consisting of Coriolis force,
Fc, virtual Coriolis force, Fvc, and quadrature force, Fq, drives the sense mode to move.
This displacement of sense mode y is then used as a voltage signal, Vsp, by the interface
circuit. Then, the Vsp is divided into circuit units for angular an velocity output and a mode-
matching, closed loop. In the mode-matching loop, Vsp is demodulated by the in-phase
demodulation signal, Vdm, to obtain Vsdm as a function of the phase shift, ϕd

s , between Ftot
and y. Through a low-pass filter, a comparator, and a proportional-integral (PI) controller,
DC tuning voltage, Vt, is obtained and fed into the frequency tuning electrode of the sense
mode. Based on the electrostatic softening effect, the resonant frequency of the sense mode,
ωs, is tuned by Vt and continuously varied until it equals to the resonant frequency of the
drive mode ωd. The detailed deduction is given as follows.
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Figure 1. Schematic of (a) mode matching system with (b) the topology of the gyro sensor.

First, Fc, Fvc, and Fq, which are components of Ftot, are defined in Equation (1). Fc is
the mechanical Coriolis force induced by the Coriolis effect under the angular rate input,
Ωin, with a frequency of ωin. The amplitude of Coriolis force, Fc, is proportional to that of
the angular rage input, ΩIN . Fvc is the electrostatic force produced by the VCF excitation
voltage, Vvc, which is obtained by amplifying the pick-up signal of the drive mode, Vdp,
with the fixed gain, Kvc. According to the Coriolis effect theory and the principle of charge
sensitive amplifier (CSA), all Fc, Vdp, Vvc, and Fvc have in-phase relations. Thus, Fvc is



Micromachines 2023, 14, 1704 5 of 20

considered as artificial Coriolis force caused by the DC (ωin= 0) angular rate input, and it is
defined as the VCF. The amplitudes of FC, FVC, and FQ are considered as fix values due to
the closed-loop amplitude control in the drive mode.

Fc = FCsin(ωdt)cos(ωint)
Fvc = FVCsin(ωdt)
Fq = FQcos(ωdt)

(1)

Then, the transfer function from Ftot to the pick-up signal Vsp is expressed as follows:

Hs(s) =
L
[
Vsp(t)

]
L[Ftot(t)]

=
Ksp/ms

s2 + ωs
Qs

s + ω2
s

(2)

where Ksp is the gain from y to Vsp, ms is the mass of the sense mode, ωs is the resonant
frequency of the sense mode, and Qs is the quality factor of the sense mode. According to
the theory of the second-order system, Vsp in Equation (2) can be solved as follows:

Vsp =

FC
2

[
Gd+in

s sin
(

ωd+int + ϕd+in
s

)
+ Gd−in

s sin
(

ωd−int + ϕd−in
s

)]
︸ ︷︷ ︸

response to Fc

+FVCGd
s sin

(
ωdt + ϕd

s

)
︸ ︷︷ ︸

response to Fvc

+ FQGd
s sin

(
ωdt + ϕd

s +
π

2

)
︸ ︷︷ ︸

response to Fq

ωd±in = ωd ±ωin

(3)


Gd

s =
Ksp

ms

√
ω2

d(∆ω+ωd)
2

Q2
s

+[(∆ω+ωd)
2−ω2

d]
2

ϕd
s = −arctan

[
ωd(∆ω+ωd)/Qs

(∆ω+ωd)
2−ω2

d

] (4)


Gd+in

s =
Ksp

ms

√
ω2

d+in(∆ω+ωd)
2

Q2
s

+[(∆ω+ωd)
2−ω2

d+in]
2

ϕd+in
s = −arctan

[
ωd+in(∆ω+ωd)/Qs

(∆ω+ωd)
2−ω2

d+in

] (5)


Gd−in

s =
Ksp

ms

√
ω2

d−in(∆ω+ωd)
2

Q2
s

+[(∆ω+ωd)
2−ω2

d−in]
2

ϕd−in
s = −arctan

[
ωd−in(∆ω+ωd)/Qs

(∆ω+ωd)
2−ω2

d−in

] (6)

In Equation (3), Vsp comprises three terms, including Fc, Fvc, and Fq. In detail, the
gain Gs and the phase shift ϕs from Ftot to Vsp can be deduced through the functions about
frequency split ∆ω, where ∆ω = ωs −ωd. In the mode-matching loop, in order to extract
the voltage amplitude, Vsp is demodulated by Vdm = VDMsin(ωdt), which is derived from
Vdp multiplied by the fixed gain Kdm. Vsdm is deduced as follows:

Vsdm

(
ϕd

s

)
= VspVdm

= VDM
2

{
FCGd+in

s
2

[
cos
(

ωint + ϕd+in
s

)
− cos

(
2ωdt + ωint + ϕd+in

s

)]
+ FCGd−in

s
2

[
cos
(

ωint− ϕd−in
s

)
− cos

(
2ωdt−ωint + ϕd−in

s

)]
+ FVCGd

s
2

[
cos
(

ϕd
s

)
− cos

(
2ωdt + ϕd

s

)]
+

FQGd
s

2

[
−sin

(
ϕd

s

)
+ sin

(
2ωdt + ϕd

s

)]}
(7)
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From Equation (7), it can be seen that Vsdm contains the signals of three classes of
components distinguished by frequency: the DC signals about ϕd

s , the low-frequency
signals with frequency of ωin, and the double-frequency signals with frequency of 2ωd.
Then, a low-pass filter (LPF) is designed after Vsdm reaching the DC component Vcomp:

Vcomp

(
ϕd

s

)
=

VDMGd
s

2

[
(FC + FVC)cos

(
ϕd

s

)
− FQsin

(
ϕd

s

)]
(8)

Herein, Vcomp is only related to the phase shift ϕd
s . Subsequently, a subtracter with

negative input, Vcomp, and a positive input, Vre f = 0, are designed to obtain the error
signal Verr:

Verr

(
ϕd

s

)
= Vre f−Vcomp

= −VDMGd
s

2

[
(FC + FVC)cos

(
ϕd

s

)
− FQsin

(
ϕd

s

)] (9)

Verr is then input into the PI controller to pursue the DC tuning voltage, Vt, which is
fed into the frequency-tuning electrode of the sense mode. According to electrostatic spring
softening theory [33,34], the stiffness variation of the sense mode kt versus tuning voltage
Vt can be expressed as follows:

kt(Vt) = ε0HL
(

1
D3

1
+ 1

D3
2

)[
Nt
(
Vp −Vt

)2
+
(

Nsp + Nvc
)
Vp

2
]

ωs(Vt) =
√

ks0−kt
ms

(10)

The design parameters of the sensor structure in Equation (10) are defined in Table 1.

Table 1. Parameters of the sensor structure.

Symbol Description

ε0 vacuum dielectric constant
ms mass of the sense mode
ks ks = ω2

s ms, stiffness of sense mode
ks0 stiffness of the sense mode when Vt = 0
H thickness of the device layer
L overlap length of the combs

D1 upper gap of the electrodes
D2 lower gap of the electrodes
Nsp number of capacitor pairs for the sense pick-up
Nvc number of capacitor pairs for the VCF feedback
Nt number of capacitor pairs for frequency tuning

The process reflected by Equations (3)−(10) evolves continuously until Verr equals
to zero, which is proved by Equations (11)−(14) in the following Section 2.2. In this case,
if FQ is suppressed and can be neglected, ϕd

s satisfies the relation ϕd
s = π/2 according to

Equation (9). Furthermore, according to Equation (4), it is deduced that ∆ω = 0, suggesting
that mode matching is realized. In practice, FQ is not strictly controlled and it produces
matching errors within the system. Thus, the influence of FQ is analyzed in Section 2.2.

2.2. Quantification of Matching Errors

As mentioned above, the designed system is self-stabilizing and requires quadra-
ture suppression for mode matching. However, the quadrature force is not strictly con-
trolled with the absence of the quadrature-suppression circuit in this system for max-
imizing the detection sensitivity of Vsp. Herein, the matching error caused by FQ is
mathematically analyzed.
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As the mode matching system is designed with stability conditions, it can be linearized
around its stable point to study the matching error in a stable state. In this case, the equiv-
alent system concerning how ∆ω is established, as shown in Figure 2, and the nonlinear
relations between two nets are linearized. For example, the square root relation between ks
and ωs is replaced by the fixed gain, Gω.
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By taking Verr, Vt, and ∆ω as the output variables, three closed-loop transfer functions
are constructed:

{[
L(Verr)

(
KP + KI

s

)
Gk +

ks0
s

]
Gω − ωd

s

}
GϕFTOTGF +

FQGQ
s = L(Verr){[(

L(Vt)Gk +
ks0
s

)
Gω − ωd

s

]
GϕFTOTGF +

FQGQ
s

}(
KP + KI

s

)
= L(Vt)[(

L(∆ω)GϕFTOTGF +
FQGQ

s

)(
KP + KI

s

)
Gk +

ks0
s

]
Gω − ωd

s = L(∆ω)

(11)

where FTOT = FC + FVC + FQ and L(∗) is the Laplace operator. By solving Equation (11),
the Laplace transformations of Verr, Vt, and ∆ω are obtained as follows:

L(Verr) = −
GQ FQ+GϕGF FTOT(Gωks0−ωd)

(GkGω GϕGFKP FTOT−1)s+GkGω GϕGFKI FTOT

L(Vt) = −
(KI+KPs)[GQ FQ+GϕGF FTOT(Gωks0−ωd)]

(GkGω GϕGFKP FTOT−1)s2+GkGω GϕGFKI FTOTs

L(∆ω) = − GkGω GQKI FQ+s(GkGω GQKP FQ+Gωks0−ωd)
(GkGω GϕGFKP FTOT−1)s2+GkGω GϕGFKI FTOTs

(12)

By conducting an inverse Laplace transformation for Equation (12), the solutions in
the time domain of Verr, Vt, and ∆ω are solved as follows:

Verr = −
GQ FQ+GϕGF FTOT(Gωks0−ωd)

GkGω GϕGFKP FTOT−1 e−
1
T t

Vt = −
GQ FQ+GϕGF FTOT(Gωks0−ωd)

GkGω GϕGF FTOT
− GQ FQ+GϕGF FTOT(Gωks0−ωd)

GkGω GϕGF FTOT(GkGω GϕGFKP FTOT−1)
e−

1
T t

∆ω = − GQ FQ
GϕGF FTOT

+
[

GQ FQ
GϕGF FTOT

− GkGω GQKP FQ+Gωks0−ωd
GkGω GϕGFKP FTOT−1

]
e−

1
T t

(13)

where 1/T = GkGωGϕGFKI FTOT/
(
GkGωGϕGFKPFTOT − 1

)
is the damping coefficient.

With increasing the time, t, the exponential terms in Equation (13) converge to zero and the
stable points of Verr, Vt, and ∆ω converge to the following equations:

Verr = 0
Vt = −

GQ FQ
GkGω GϕGF FTOT

− Gωks0−ωd
GkGω

∆ω = − GQ FQ
GϕGF FTOT

(14)
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Obviously, the stable point of Verr is always equal to zero. This feature is provided by
the principle of the PI controller and not affected by FQ. In contrast, the stable point of ∆ω
is a residual term about FQ, which causes the matching error of the system. Equation (14)
indicates Verr = 0 when the system is stable, and the phase shift, ϕd

s , can be deduced using
Equation (9):

ϕd
s = arctan

(
FC + FVC

FQ

)
(15)

By combining Equations (4) and (15), the stable solution of ∆ω is expressed as follows:

∆ω =

 FQ

2Qs(FC + FVC)
+

√[
FQ

2Qs(FC + FVC)

]2
+ 1− 1

ωd (16)

According to Equation (16), the matching error is affected by FC + FVC and FQ. Specif-
ically, the matching error is proportional to the ratio of FQ to FC + FVC when it satisfies
Equation (17): [

FQ

2Qs(FC + FVC)

]2
� 1 (17)

Thus, |FC + FVC| should be reduced as much as possible with respect to
∣∣FQ
∣∣ for the

matching error reduction. On the contrary, the increase in
∣∣FQ
∣∣ will enlarge the matching

error. In addition, according to Figure 2, FC + FVC constitutes the loop gain of the mode
matching system and its polarity should be constant in working to keep the negative
feedback characteristics of the mode matching system; otherwise, if the value of FC + FVC
exceeds the zero point, the system can possibly oscillate. In summary, the design of the
mode matching system turns to an optimization problem:{

max |FC + FVC|
s.t. FC + FVC > 0, FVC > 0

(18)

In this system, FVC is designed positively, with a fixed value when the drive loop of
gyro is stable. Then, the value of FC + FVC should be discussed in two cases:

• Case FC ≥ 0

The case that FC ≥ 0 corresponds to the situation where the positive direction an-
gular rate is the input. In this case, FC + FVC always satisfies the constraint condition in
Equation (18) and it is increased with increasing the angular rate. Meanwhile, the matching
error is decreased by the input angular rate, according to Equation (16).

• Case FC < 0

The case that FC < 0 corresponds to the situation when the negative direction angular
rate is the input. In this case, we have FC + FVC = FVC − |FC|. To guarantee the constraint
condition in Equation (18), it is required that |FC| < FVC. Combined with Equation (16), it
is revealed that the increment in the angular rate in the negative direction magnifies the
matching error, and FVC is the boundary value of the angular rate in negative direction.

The numerical analysis of the matching error with the designed range of FC, FVC, and
FQ is proposed. To explicitly compare FC, FVC, and FQ, they are equivalently transformed
into the form of amplitudes of angular rate ΩIN , ΩVC, and ΩQ, respectively.

First, ΩIN is the test condition provided by the rate table, and thus it is known as the
setting value. In this paper, it varies from −49◦/s to −50◦/s.

Then, the value of FVC is selected because it is the constant excitation of the in-
run mode matching system. FVC is calculated according to the electrostatic effect of the
mechanical capacitor.

FVC = ε0NvcHL

(
1

D2
1
− 1

D2
2

)
VpVVC (19)
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where VVC is the amplitude of Vvc. Meanwhile, FVC is also related to ΩVC under the
Coriolis effect.

FVC = 2ΩVCms
.
x (20)

where
.
x = ωdx is the velocity of drive mode and x is the displacement of the drive mode.

Combining Equations (19) and (20), the virtual angular rated input ΩVC is expressed by
Equation (21), as follows:

ΩVC =
ε0Nvc HL

2ms
.
x

(
1

D2
1
− 1

D2
2

)
VpVVC (21)

In this paper, ΩVC is 50◦/s via trimming VVC.
Third, ΩQ is evaluated by the scale factor of the gyro. Considering that Ωin is set as a

DC rotation, it is obvious that
ΩQ

ΩIN
=

VQ

VIN
(22)

where VQ and VIN are the DC voltages induced by FQ and FC at the output of the sense
mode detection circuit, respectively. As VIN/ΩIN is the scale factor of the gyro, ΩQ is finally
equal to the ratio of VQ to the scale factor. Experimentally, ΩQ can be estimated under
15◦/s for the proposed gyro. Furthermore, the numerical relations between ΩIN , ΩQ, and
∆ f is calculated through Equation (16), where FC, FVC, and FQ are replaced by ΩIN , ΩVC,
and ΩQ, respectively. Additionally, ∆ f = ∆ω/2π represents the matching error in unit of
Hertz. Calculation results are shown in Figure 3. Figure 3a shows the continuous numerical
relationship between ∆ f and ΩQ with several samples of FC, and Figure 3b corresponds to
the opposite case. It should be noted that ∆ f increases significantly when ΩIN approaches
the boundary negative direction (−ΩVC). Thus, the merge of a negative measurement is
required for the specific matching error target in operation. By comparing the effects of
ΩQ and ΩIN on ∆ f , the target of ∆ f is set as 0.5 Hz for the negative measurement limit
ΩIN = −35◦/s when ΩQ = 15◦/s, which is an empirical value in our previous design of
TFG [35]. The negative measurement limit can be possibly expanded to −45◦/s when ΩQ
is further suppressed below 5◦/s, which is the estimated value referring to [36].
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3. System Implementation
3.1. Optimization of the Gyro Sensor

The optimized TFG structure compared with the original prototype is demonstrated in
Figure 4. The folded sense suspension beams and the sense-decoupled beams are replaced
by the straight ones, which provide better stiffness along the drive axis of the gyro, thereby
improving the oscillation stability of a couple frame and the rigid constraints of a sense



Micromachines 2023, 14, 1704 10 of 20

frame along the drive axis. Consequently, the quadrature couple between the drive and
sense modes is further suppressed.
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Figure 4. Structure comparison of (a) original structure and (b) optimized structure.

The effect of quadrature suppression of TFG structures is verified through a mechanical
simulation. The excitation for quadrature error is operated as shown in Figure 5. To produce
the mode coupling, the deformation of the element mesh is used to drive the suspension
beams for simulating the machining error, which induces the quadrature coupling between
the drive and sense mode (Figure 5a). To produce the quadrature force, the drive mode is
excited by adding a harmonic disturbance load to the drive excitation electrodes (Figure 5b).
The frequency sweep of the harmonic disturbance is executed in the simulation and the
displacement of the sense mode is recorded to evaluate the level of quadrature error.

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 28 
 

 

 

  
(a) (b) 

Figure 5. Steps of quadrature error simulation (a) mesh deformation and (b) load definition. 

The simulation results are shown in Figures 6 and 7. Figure 6 shows the distortion of 

the sense suspension beams caused by the quadrature coupling when the harmonic dis-

turbance load is used for the drive excitation electrodes. By comparison, a significant dis-

tortion emerges on the sense suspension beams of the original structure, whereas the sense 

suspension beams of the optimized structure present a better resistance against the drive 

coupling. Figure 7 shows the frequency sweep of the displacement corresponding to the 

two structures of the quadrature coupling. The maximum amplitudes of displacement of 

the two structures are 0.53 um and 0.11 um, respectively. The quadrature errors Ω𝑄 of the 

two structures are equivalent to 17°/s and 3.5°/s, respectively. 

  

Figure 5. Steps of quadrature error simulation (a) mesh deformation and (b) load definition.

The simulation results are shown in Figures 6 and 7. Figure 6 shows the distortion
of the sense suspension beams caused by the quadrature coupling when the harmonic
disturbance load is used for the drive excitation electrodes. By comparison, a significant
distortion emerges on the sense suspension beams of the original structure, whereas the
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sense suspension beams of the optimized structure present a better resistance against the
drive coupling. Figure 7 shows the frequency sweep of the displacement corresponding to
the two structures of the quadrature coupling. The maximum amplitudes of displacement
of the two structures are 0.53 um and 0.11 um, respectively. The quadrature errors ΩQ of
the two structures are equivalent to 17◦/s and 3.5◦/s, respectively.
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3.2. Simulation System Construction

According to the designed system, a parameterized system model for the real circuit
implementation is constructed as shown in Figure 8. The simulation parameters are
summarized in Table 2. The simulation works consist of a transient response, stable
matching error, and scale factor.



Micromachines 2023, 14, 1704 12 of 20

Micromachines 2023, 14, x FOR PEER REVIEW 15 of 28 
 

 

 

 

Figure 8. Schematic of the simulation model. 

Table 2. Simulation parameters. 

Parameter Value 

𝑓𝑑 7000 Hz 

𝑓𝑠 6990 Hz 

Q𝑠 8000 

Ω𝐼𝑁 −45°/s ~ 50°/s 

Ω𝑉𝐶 50°/s 

Ω𝑄 5°/s ~ 15°/s 

The transient response of the mode matching system varies relatively to Ω𝐼𝑁 , as 

shown in Figure 9. The frequency split converges to zero during the full scale, from –45°/s 

to 50°/s, in the absence of the quadrature error. The setting time is about 0.6 s when Ω𝐼𝑁 = 

50°/s, whereas it is increased to about 11 s when Ω𝐼𝑁 gradually varies to −45°/s. This var-

iation is caused by the closed-loop gain related to Ω𝐼𝑁 + Ω𝑉𝐶 when the quadrature error 

is neglected according to the equivalent system in Figure 2. 

Figure 8. Schematic of the simulation model.

Table 2. Simulation parameters.

Parameter Value

fd 7000 Hz
fs 6990 Hz

Qs 8000
ΩIN −45◦/s~50◦/s
ΩVC 50◦/s
ΩQ 5◦/s~15◦/s

The transient response of the mode matching system varies relatively to ΩIN , as
shown in Figure 9. The frequency split converges to zero during the full scale, from –45◦/s
to 50◦/s, in the absence of the quadrature error. The setting time is about 0.6 s when
ΩIN = 50◦/s, whereas it is increased to about 11 s when ΩIN gradually varies to −45◦/s.
This variation is caused by the closed-loop gain related to ΩIN + ΩVC when the quadrature
error is neglected according to the equivalent system in Figure 2.

The matching error caused by the quadrature error is simulated with a series of ΩIN
and ΩQ. The results are summarized in Table 3. The relations between ∆ f , ΩIN , and
ΩQ agrees well with the description in Section 2.2. The matching error is controlled to
under 0.41 Hz within the measurement range of ΩIN > −45◦/s when ΩQ is suppressed
under 5◦/s.

The scale factor simulation is performed as shown in Figure 10. The discrete points
are the simulated samples, and the solid lines are the corresponding first-order fitting
lines. The fitted scale factors of the open-loop operation and closed-loop operation
with the quadrature error varying from 0◦/s to 15◦/s are calculated as 0.983 mV/◦/s,
16.095 mV/◦/s, 16.082 mV/◦/s, 16.089 mV/◦/s, and 16.102 mV/◦/s, respectively. The
scale factor of the gyro with the mode matching system is improved 16.36 times on average,
compared with that of the open-loop operation. Compared with the result in the case of
ΩQ = 0, the worst deterioration of the scale factor caused by the quadrature error is 0.12%.
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The nonlinearity of the open-loop operation and closed-loop operation with quadrature
error varying from 0◦/s to 15◦/s is calculated as 0.056%, 0.042%, 0.079%, 0.084%, and
0.031%, respectively. The correlation between the nonlinearity and quadrature error cannot
be observed through simulation. It can be considered that the proposed system without
circuits for the quadrature suppression is feasible and acceptable with respect to both the
scale factor improvement and the nonlinearity maintenance.
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Table 3. Matching error (Hz) versus quadrature error and angular rate input.

ΩIN(◦/s)

−45 −20 0 20 50

ΩQ(◦/s)
5 0.41 0.09 0.06 0.05 0.04

10 0.88 0.16 0.10 0.08 0.08
15 1.36 0.15 0.15 0.11 0.09
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4. Experiment
4.1. TFG Sensor Fabrication

The fabrication of TFG sensor is divided into three parts: the through-silicon-via
(TSV) process, the device process, and the wafer-level-package (WLP) process, as shown
in Figure 11. The TSV process contains the following treatments: (a) etching the back side
with TMAH; (b) deep reactive ion etching (DRIE) for trench; (c) filling trench with thermal
oxide and in situ doped polysilicon; and (d) etching the cavity and removing the oxide
layer. The device process contains the following treatments: (e) etching the shallow-bottom
cavity and thermal oxidation; (f) vacuum bonding, grinding, and chemical mechanical
polishing (CMP) the device layer; and (g) DRIE device wafer to release movable structures.
The WLP process contains the following treatments: (h) vacuum-bonding the TSV wafer to
the device wafer; (i) plasma-enhanced chemical vapor deposition (PECVD) of TEOS and
reactive ion etching (RIE); (j) sputtering and dry-etching the metal layer; and (k) PECVD of
TEOS and RIE.
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Figure 11. Fabrication process of TFG sensor: (a) etching the back side with TMAH; (b) deep reactive
ion etching (DRIE) for trench; (c) filling trench with thermal oxide and in situ doped polysilicon;
(d) etching the cavity and removing the oxide layer; (e) etching the shallow-bottom cavity and thermal
oxidation, (f) vacuum bonding, grinding, and chemical mechanical polishing (CMP) the device layer;
(g) DRIE device wafer to release movable structures; (h) vacuum-bonding the TSV wafer to the device
wafer; (i) plasma-enhanced-chemical-vapor deposition (PECVD) of TEOS and reactive ion etching
(RIE); (j) sputtering and dry-etching the metal layer; and (k) PECVD of TEOS and RIE.

4.2. TFG Sensor Tests

The implemented test board and TFG sensor are shown in Figure 12. The experiments
include the open-loop sweep for the mode characteristics, the open-loop frequency tuning
for verifying the electrostatic tuning effect, the transient response of drive mode for the
demodulation signals, the start-up progress of the mode-matching circuit for evaluating
the frequency split, and the scale factor, as well as the Allan variance for evaluating the
overall performance.



Micromachines 2023, 14, 1704 15 of 20

Micromachines 2023, 14, x FOR PEER REVIEW 19 of 28 
 

 

 

 

Figure 12. PCB test board with the TFG sensor. 

The sweep tests of the drive and sense modes were conducted under the open-loop 

operation. The magnitude–frequency response and the phase–frequency response of the 

two modes are shown in Figure 13. It can be found that the resonant frequencies of the 

drive and sense modes are 6960.09 Hz and 6940.28 Hz, respectively. Additionally, the 

quality factors of the two modes are calculated with the 3dB bandwidth, which are 𝑄𝑑 = 

24,857 and 𝑄𝑠 = 7977, respectively. 

  

Figure 12. PCB test board with the TFG sensor.

The sweep tests of the drive and sense modes were conducted under the open-loop
operation. The magnitude–frequency response and the phase–frequency response of the
two modes are shown in Figure 13. It can be found that the resonant frequencies of
the drive and sense modes are 6960.09 Hz and 6940.28 Hz, respectively. Additionally,
the quality factors of the two modes are calculated with the 3dB bandwidth, which are
Qd = 24,857 and Qs = 7977, respectively.
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Figure 13. Sweep tests of the drive and sense modes under open-loop operation.

The open-loop frequency tuning test was conducted as shown in Figure 14. The
resonant frequency of the drive mode is independent of the tuning voltage because of
the fully decoupled structure. The resonant frequency of sense mode is firstly increased
and then decreased when Vt exceeds 5 V. This is because an initial stiffness softening is
induced by the bias voltage, Vp, and is then offset by the improvement in Vt according to
Equation (10).

The transient response of the drive mode under the mode mismatching operation is
shown in Figure 15. The drive mode proceeds about 3 s to reach a stable status. The drive
excitation signal, Vde, is maintained at about 128 mV and the drive pickup signal Vdp is
controlled at 1 V. The drive mode oscillates at its resonant frequency of 6960.3 Hz, which is
indicated by the antiphase between Vde and Vdp. Furthermore, Vdp is reused as the in-phase
demodulation signal Vdm and shifted with 90◦ to get the orthogonal demodulation signal
Vdm−90, as shown in Figure 16.
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Figure 16. Phase shift of the demodulation signals.

The start-up progress of the mode-matching circuit and the oscillation of the sense
mode are shown in Figure 17. In Figure 17a, the error voltage, Verr, and the tuning voltage,
Vt, converge to 0 V and 715 mV after 2 s, respectively. The detected angular rate output
voltage is 350 mV, which reflects the virtual angular rated input, ΩVC. The zoomed wave-
form in Figure 17b shows the phase difference of 88.18◦ between Vdp and Vsp, which is close
to the theory value of 90◦ when the gyro is under the mode matching operation. According
to the relationship between the phase shift, ϕd

s , and frequency split, ∆ f , as expressed by
Equation (4), ∆ f is controlled at about 0.014 Hz. It has been proven that without the
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additional circuits for quadrature suppression, the structure-optimized gyro sensor still
provides an excellent performance of mode decoupling, and the residual quadrature error
barely produces any effect on the mode matching.
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Figure 17. Start-up progress of (a) mode matching and (b) the sense mode.

The scale factors of both the mode matching and mismatching operations are tested as
shown in Figure 18. The discrete points are the tested samples, and the solid lines are the
corresponding first-order fitting lines within the range from −50◦/s to 40◦/s. The scale
factor of the mode matching operation is calculated as 6.70 mV/◦/s, which is improved
20.6 times compared with that of the mode mismatching operation (0.33 mV/◦/s). This
improvement in experimental scale factor conforms well to the estimated value in the
corresponding system simulation. The nonlinearity of the mode matching operation is
calculated as 1.77%, which is comparable to that of the mode mismatching operation of
1.61%. In addition, it is notable that the scale factor is deteriorated when ΩIN exceeds 40◦/s,
where ΩVC is nearly offset by ΩIN and cannot provide enough gain for the mode-matching
loop. Herein, the mode mismatching occurs and decreases the scale factor.
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Figure 18. Scale factor test of mode matching and mismatching.

Finally, the Allan variances of both mode matching and mismatching operations are
calculated as shown in Figure 19. As the sense mode of the gyro oscillates at its resonant
frequency, the signal–noise ratio (SNR) is also improved. The data are acquired with the
sampling rate of 10 Hz during 2 h. The bias instability (BI) of the mode matching operation
is calculated as 9.60◦/h, which is suppressed 3.25 times compared with that of the mode
mismatching operation of 31.53◦/h.
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The comparison of the performance in different works is given in Table 4. The matching
error of this work is at a similar level of [29,31], which indicates that the quadrature
suppression circuit is unnecessary in a VCF-based mode-matching circuit relying on the
proposed TFG decoupling design. For the specific numerical difference, the implementation
of a prototype, such as the selection of operational amplifier or voltage reference, may be
the primary influencing factor [29]. The BI suppression of this work is not outstanding for
the lack of the test environment control. Notably, the work in [31] presents an extraordinary
scale factor improvement and BI suppression. This feature probably benefits from a high-
quality factor of 150,000 of the gyro.

Table 4. Summary of the performance of VCF-based works.

Ref. Matching Error (Hz) SF Improvement
(Times)

BI Suppression
(Times)

This work 0.014 20.6 3.28
[28] 0.6 5.60 -
[29] 0.03 16.8 -
[30] 0.1 17.9 10.9
[31] 0.005 68.8 23.1

5. Conclusions

In this paper, a simplified VCF-based mode-matching micromachine-optimized TFG
is proposed. For the gyroscope sensor, the structure is optimized to provide a better perfor-
mance of structural quadrature suppression. The related theoretical analyses, simulations,
and experiments are implemented. The overall performance of the tested prototype is
that the frequency split is narrowed from 20 Hz to 0.014 Hz. The scale factor is improved
from 0.33 mV/◦/s to 6.70 mV/◦/s. The BI is suppressed from 31.53◦/h to 9.60◦/h. The
level of BI agrees well with the accuracy requirement of the tactical grade and can satisfy
applications, such as those in industrial electronics and those that are low-end tactical [1].
Benefiting from the simplicity of the circuit design, this gyroscope is particularly suitable
in applications requiring a low cost and low power consumption, such as unmanned aerial
vehicles (UAVs), movable energy harvesting systems, and consumer electronics. Alongside
that, the tested matching error represents an outstanding degree of mode matching, and the
times of BI suppression are at a similar level to that in other works. These results effectively
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prove the feasibility of the proposed non-quadrature-nulling mode matching scheme for
avoiding the structure complexity, pick-up electrode occupation, and coupling between
the quadrature-nulling loop and the mode-matching loop. As a preview of the work, it
is hoped that it this will be applied in higher-end fields, such as attitude and heading
reference systems (AHRSs) with a finer interface circuit to reduce the BI.
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