Grapevine Rootstocks and Salt Stress Tolerance: Mechanisms, Omics Insights, and Implications for Sustainable Viticulture
Abstract
1. Introduction
2. Morphological Responses to Grapevine Rootstock Under Salt Stress
2.1. Shoot System
2.2. Mechanism of Root Tolerance
3. Origin and Global Contribution of Grapevine Rootstocks to Salt Stress
3.1. Effects of Rootstock on Grafted Scion
3.2. Significance of Grapevine Rootstocks
4. Physiological Responses of Grapevine Rootstocks to Salt Stress
4.1. Photosynthesis
4.2. Fiber Quality
4.3. Oxidative Stress
4.4. Impact and Mechanistic Regulation of Mineral Ions in Grapevine Rootstocks Under Salt Stress
4.5. Antioxidant Enzymes
5. Molecular Tools for the Improvement of Grapevine Under Salt Stress
5.1. Transcriptomics

| Name of Cultivars | NaCl (mM) | Gene Names | Techniques | Functions | References |
|---|---|---|---|---|---|
| Grapevine | 130 | VvSOS1 VvSOS2 | RNA-Seq | Salt overly sensitive genes upregulated the sodium–proton antiporter Protein kinase Phenylalanine pathway Phytohormones | [1] |
| Tunisian | 100 | VvPR10 VvPR10.2 | Proteomics | Displaying a differential expression pattern between proteins Proteins are attached to the different plant organs Regulation of pathogen-related proteins Proteins degradations | [156] |
| Table grape | − | RD22 GTG2 MAPK4 | Genomics | Regulate hormonal signal transduction Modification of cell wall organizations Reactive oxygen species Osmotic stress | [157] |
| Crimson Seedless | − | VvPAL VvCHS VvDOX | Metabolomics | Promoted anthocyanin biosynthesis Regulation of anthocyanin-related derivatives Pigments responsible for coloration in berries | [158] |
| Grapevine | 150 | VvP5CS VvP5CR VvAOT VvPDH | RT-qPCR and PCA analysis | Upregulated the proline synthesis Proline degradation Maintain a high K+ level | [159] |
| Vitis amurensis, Vitis berlandieri × Vitis riparia | 100 | VvLSM2 VvSRSF1 | RNA-Seq | Possible roles in the regulation of alternative splicing in response to abiotic stress | [160] |
| Grapevine | 50 and 100 | VaCPK | RT-qPCR | Acclimation to environmental stress | [161] |
| V. solonis × V. riparia | 400 | VvER | RNA-Seq | Endoplasmic reticulum coding transcripts | [74] |
| Cabernet Sauvignon | 200 | VvAKT1 VvHKT1 VvNHX1 VvNHX2 VvTPC1A VvTPC1B | RNA-Seq and metabolomics | Upregulated ABA and MAPK signaling pathways Involvement of ion transportation Regulate rubisco activity Photosynthetic pathways | [162] |
| Thompson Seedless | 150 | VvWRKY VvEREB VvMYB VvNAC VvbHLH | RNA-Seq | Differentially expressed genes related to stress resistance Transcription factors responsible for metabolic pathways Identification of molecular markers Development of salt resistance grape breeding | [148] |
| Vitis vinifera | 100 | VvNHXs VvNHX1 VvNHX2 VvNHX3 VvNHX4 VvNHX5 VvNHX6 | RT-qPCR | Classified into I vacuolar and group II endosomal groups Growth of berry development Seed maturation Flower development Plant hormone signaling interactions Phylogenetic classification | [163] |
| Summer black | 0.8% | VvHSPs VvTFs VvPRs | RNA-Seq | Salt stress-induced heat shock proteins Encoding of transcription factors Regulatory pathogenesis-related proteins Hormonal regulations | [90] |
| Cabernet Sauvignon | 25, 50 and 100 | GLRaV-3 | In vitro | The virus-infected plants were more tolerant to NaCl for sustainable production and growth | [164] |
| Malbec vines | 0, 50 and 100 | VvLA | Grafting | Leaf area plays a key role in Na+ exclusion for long-term for salt tolerance levels Reduce growth performance and transpiration rate | [165] |
| Qarah Shani and Thompson Seedless | 0, 25, 50, 75 and 100 | Unknown | Cutting and hydroponic | The evaluation of harmful ions and improvement for mineral substances in grape crops under salt tolerance | [166] |
5.2. Proteomics
5.3. Genomics
5.4. Metabolomics
5.5. Signaling Pathway in Grapevine Rootstock Under Salt Stress
5.6. Integrated Omics Insights: From Molecules to Phenotypes
5.7. Epigenomics and Single-Cell Omics in Salt Stress Research
6. Regulation of Plant Growth Regulators in Grapevine Rootstock Under Salt Stress
6.1. Abscisic Acid (ABA) Regulation
6.2. Indole-3-Acetic Acid (IAA) and Auxin Signaling
6.3. Melatonin (MT) and Cross-Hormonal Synergy
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Zheng, T.; Liu, Z.; Fu, W.; Fang, J. Transcriptomic analysis elaborates the resistance mechanism of grapevine rootstocks against salt stress. Plants 2022, 11, 1167. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, F.; Zheng, T.; Zhongjie, L.; Ji, X.; Zhang, Z.; Pervaiz, T.; Shangguan, L.; Fang, J. Whole-genome re-sequencing, diversity analysis, and stress-resistance analysis of 77 grape rootstock genotypes. Front. Plant Sci. 2023, 14, 1102695. [Google Scholar] [CrossRef]
- Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Hakeem, A.; Li, S.; Iqbal, S.; Elatafi, E.; Aziz, R.B.; Mauligen, E.; Liu, S.; Chen, X.; Zhang, R.; Shangguan, L. Effects of salt stress on growth, physio-biochemical traits, and tolerance mechanism of grapevine rootstocks. Euphytica 2025, 221, 122. [Google Scholar] [CrossRef]
- Sivritepe, N.; Sivritepe, H.Ö.; Çelik, H.; Katkat, A. Salinity Responses of Grafted Grapevines: Effects of Scion and Rootstock Genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 193–201. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Sharma, J.; Satisha, J. Influence of rootstocks on salinity tolerance of Thompson Seedless grapevines. J. Appl. Hortic. 2013, 15, 173–177. [Google Scholar] [CrossRef]
- Elatafi, E.; Elhendawy, B.; Elshahat, A.; Iqbal, S.; Yauha, R.; Xuxian, X.; Wentao, L.; Feiyue, L.; Shaoxiao, F.; Hakeem, A. A Comprehensive Analysis of Cadmium Contamination in Viticulture: From Soil and Grape to Ecological Risks and Remediation. J. Soil Sci. Plant Nutr. 2025, 25, 1401–1431. [Google Scholar] [CrossRef]
- Gajjar, P.; Ismail, A.; Islam, T.; Darwish, A.; Abuslima, E.; Dawood, A.; El-Saady, A.; Tsolova, V.; El-kereamy, A.; Nick, P.; et al. Physiological Comparison of Two Salt-Excluder Hybrid Grapevine Rootstocks under Salinity Reveals Different Adaptation Qualities. Plants 2023, 12, 3247. [Google Scholar] [CrossRef]
- Jogaiah, S. Morphological, physio-biochemical and molecular response of grapevine rootstocks to moisture and salinity stress-A review. Progress. Hortic. 2015, 47, 179. [Google Scholar] [CrossRef]
- Elatafi, E.; Elhendawy, B.; Iqbal, S.; Ali, S.; Elshahat, A.; Hakeem, A.; Shaonan, L.; Ibrahim, A.; Shangguan, L.; Fang, J. Physicochemical, Metabolite, Osmolyte Synthesis, and Enzymatic Alterations of Grapevine Rootstocks in Response to Cadmium Stress. J. Soil Sci. Plant Nutr. 2025, 1–19. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Manuck, C.; Drucker, S.; Shaghasi, T.; Fort, K.; Matthews, M.; Walker, M.A.; McElrone, A. The relationship between root hydraulics and scion vigour across Vitis rootstocks: What role do root aquaporins play? J. Exp. Bot. 2012, 63, 6445–6455. [Google Scholar] [CrossRef] [PubMed]
- Al-Taey, D.; Al-Ameer, A. Effect of Salinity on the Growth and Yield of Grapes: A review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 042038. [Google Scholar] [CrossRef]
- Owais, S.J. Morphological and physiological responses of six grape genotypes to NaCl salt stress. Pak. J. Biol. Sci. 2015, 18, 240–246. [Google Scholar] [CrossRef]
- Lo’ay, A.; Abo El-Ezz, S. Performance of ‘Flame seedless’ grapevines grown on different rootstocks in response to soil salinity stress. Sci. Hortic. 2021, 275, 109704. [Google Scholar] [CrossRef]
- Maryum, Z.; Luqman, T.; Nadeem, S.; Khan, S.M.U.D.; Wang, B.; Ditta, A.; Khan, M.K.R. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Front. Plant Sci. 2022, 13, 907937. [Google Scholar] [CrossRef]
- Zhang, X.; Walker, R.R.; Stevens, R.M.; Prior, L.D. Yield-salinity relationships of different grapevine (Vitis vinifera L.) scion-rootstock combinations. Aust. J. Grape Wine Res. 2002, 8, 150–156. [Google Scholar] [CrossRef]
- Henderson, S.W.; Baumann, U.; Blackmore, D.H.; Walker, A.R.; Walker, R.R.; Gilliham, M. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biol. 2014, 14, 273. [Google Scholar] [CrossRef]
- Peiro, R.; Jimenez, C.; Perpiñà, G.; Soler, J.X.; Gisbert, C. Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones. Sci. Hortic. 2020, 266, 109283. [Google Scholar] [CrossRef]
- Shani, U.; Waisel, Y.; Eshel, A.; Xue, S.; Ziv, G. Responses to salinity of grapevine plants with split root systems. New Phytol. 1993, 124, 695–701. [Google Scholar] [CrossRef]
- Prinsi, B.; Failla, O.; Scienza, A.; Espen, L. Root proteomic analysis of two grapevine rootstock genotypes showing different susceptibility to salt stress. Int. J. Mol. Sci. 2020, 21, 1076. [Google Scholar] [CrossRef] [PubMed]
- Jellouli, N.; Ben Jouira, H.; Skouri, H.; Ghorbel, A.; Mliki, A. Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J. Plant Physiol. 2008, 165, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Lupo, Y.; Schlisser, A.; Dong, S.; Rachmilevitch, S.; Fait, A.; Lazarovitch, N. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion. Plant Sci. 2022, 325, 111460. [Google Scholar] [CrossRef] [PubMed]
- Hayta, S.; Polat, R.; Selvi, S. Traditional uses of medicinal plants in Elazığ (Turkey). J. Ethnopharmacol. 2014, 154, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaq, M.; Mahmood, A.; Maqbool, M. Indigenous knowledge of medicinal plants from Sudhanoti district (AJK), Pakistan. J. Ethnopharmacol. 2015, 168, 201–207. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Tetik, F.; Civelek, S.; Cakilcioglu, U. Traditional uses of some medicinal plants in Malatya (Turkey). J. Ethnopharmacol. 2013, 146, 331–346. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Lü, E.; Wang, C. Archaeobotanical evidence of plant utilization in the ancient Turpan of Xinjiang, China: A case study at the Shengjindian cemetery. Veg. Hist. Archaeobotany 2015, 24, 165–177. [Google Scholar] [CrossRef]
- Jiang, Y.; Timpe, A.; Lohrberg, F. Identifying urban agriculture as heritage: Traditional urban grape gardens in the ancient city of Xuanhua, China. J. Urban Hist. 2023, 49, 1199–1218. [Google Scholar] [CrossRef]
- Chen, T.; Wang, X.; Dai, J.; Li, W.; Jiang, H. Plant use in the Lop Nor region of southern Xinjiang, China: Archaeobotanical studies of the Yingpan cemetery (∼25–420 AD). Quat. Int. 2016, 426, 166–174. [Google Scholar] [CrossRef]
- Singh, K.K.; Chauhan, J. A review on vegetative propagation of grape (Vitis vinifera L.) through cutting. Glob. J. Bio-Sci. Biotechnol. 2020, 9, 50–55. [Google Scholar]
- Nikolaou, K.-E.; Chatzistathis, T.; Theocharis, S.; Argiriou, A.; Koundouras, S.; Zioziou, E. Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own-Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change. Sustainability 2021, 13, 2477. [Google Scholar] [CrossRef]
- Katnee, S.; Vijaya, D.; Rao, B.; Padma, M. Relative Salt Tolerance of Different Grape Rootstocks to NaCl. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 723–733. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Sawler, J.; Gardner, K.M.; Aradhya, M.K.; Prins, B.H.; Schwaninger, H.R.; Bustamante, C.D.; Buckler, E.S.; Zhong, G.-Y.; Brown, P.J. Patterns of genomic and phenomic diversity in wine and table grapes. Hortic. Res. 2017, 4, 17035. [Google Scholar] [CrossRef]
- Parihar, S.; Sharma, D. A brief overview on Vitis vinifera. Sch Acad J Pharm 2021, 12, 231–239. [Google Scholar] [CrossRef]
- Ramos-Madrigal, J.; Runge, A.K.W.; Bouby, L.; Lacombe, T.; Samaniego Castruita, J.A.; Adam-Blondon, A.-F.; Figueiral, I.; Hallavant, C.; Martínez-Zapater, J.M.; Schaal, C. Palaeogenomic insights into the origins of French grapevine diversity. Nat. Plants 2019, 5, 595–603. [Google Scholar] [CrossRef]
- Fort, K.; Fraga, J.; Grossi, D.; Walker, M.A. Early Measures of Drought Tolerance in Four Grape Rootstocks. J. Am. Soc. Hortic. Sci. 2017, 142, 36–46. [Google Scholar] [CrossRef]
- Zhou-Tsang, A.; Wu, Y.; Henderson, S.; Walker, A.; Borneman, A.; Walker, R.; Gilliham, M. Grapevine salt tolerance. Aust. J. Grape Wine Res. 2021, 27, 149–168. [Google Scholar] [CrossRef]
- Satisha, J.; Ramteke, S.; Karibasappa, G. Physiological and biochemical characterisation of grape rootstocks. S. Afr. J. Enol. Vitic. 2007, 28, 163–168. [Google Scholar] [CrossRef]
- Arbabzadeh, F.; Dutt, G. Salt Tolerance of Grape Rootstocks Under Greenhouse Conditions. Am. J. Enol. Vitic. 1987, 38, 95–99. [Google Scholar] [CrossRef]
- Bacilieri, R.; Lacombe, T.; Le Cunff, L.; Di Vecchi-Staraz, M.; Laucou, V.; Genna, B.; Péros, J.-P.; This, P.; Boursiquot, J.-M. Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. 2013, 13, 25. [Google Scholar] [CrossRef]
- Sharafan, M.; Malinowska, M.A.; Ekiert, H.; Kwaśniak, B.; Sikora, E.; Szopa, A. Vitis vinifera (Vine Grape) as a valuable cosmetic raw material. Pharmaceutics 2023, 15, 1372. [Google Scholar] [CrossRef] [PubMed]
- Galet, P.; Smith, J. Grape Varieties and Rootstock Varieties, English ed.; Oenoplurimédia: Chaintré, France, 1998. [Google Scholar]
- Nicol, J.; Stirling, G.; Rose, B.; May, P.; Van Heeswijck, R. Impact of nematodes on grapevine growth and productivity: Current knowledge and future directions, with special reference to Australian viticulture. Aust. J. Grape Wine Res. 1999, 5, 109–127. [Google Scholar] [CrossRef]
- Rahmani, H.; Rasoli, V.; Abdossi, V.; Ghanbari Jahromi, M. Ch1 (Vitis vinifera L.) rootstock control of scion response to water stress in some commercial grapevine cultivars. S. Afr. J. Enol. Vitic. 2023, 44, 1–8. [Google Scholar] [CrossRef]
- Galet, P. Cépages et vignobles de France: Tome 1, Les vignes américaines; Impr. P. Déhan: Montpellier, France, 1988. [Google Scholar]
- Khan, M.; Akram, M.; Waseem, R.; Qadri, R.; Al-Yahyai, R. Role of Grapevine Rootstocks in Mitigating Environmental Stresses: A review. Journal of Agricultural and Marine Sciences. J. Agric. Mar. Sci. 2020, 25, 7. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, K.; Yang, X.; Li, J.; Li, X. Comparative study of the key aromatic compounds of Cabernet Sauvignon wine from the Xinjiang region of China. J. Food Sci. Technol. 2021, 58, 2109–2120. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Z.; Zhu, C.; Zhang, Z.; Shi, W.; Lu, Q.; Sun, J. Saline–Alkaline Stress Resistance of Cabernet Sauvignon Grapes Grafted on Different Rootstocks and Rootstock Combinations. Plants 2023, 12, 2881. [Google Scholar] [CrossRef]
- Wang, W.-n.; Min, Z.; Wu, J.-r.; Liu, B.-c.; Xu, X.-l.; Fang, Y.; Ju, Y. Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress. Plant Physiol. Biochem. 2021, 167, 400–409. [Google Scholar] [CrossRef]
- George, I.; Pascovici, D.; Mirzaei, M.; Haynes, P. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism. Proteomics 2015, 15, 3048–3060. [Google Scholar] [CrossRef]
- Han, X.; Yao, F.; Xue, T.-t.; Wang, Z.; Wang, Y.; Cao, X.; Hui, M.; Wu, D.; Li, Y.-h.; Wang, H.; et al. Sprayed biodegradable liquid film improved the freezing tolerance of cv. Cabernet Sauvignon by up-regulating soluble protein and carbohydrate levels and alleviating oxidative damage. Front. Plant Sci. 2022, 13, 1021483. [Google Scholar] [CrossRef]
- Li, Y.; Du, Y.P.; Fu, Y.D.; Zhai, H. Physiological Responses of Waterlogging on Different Rootstock Combinations of Cabernet Sauvignon Grape. Acta Hortic. Sin. 2013, 40, 2105. [Google Scholar]
- Dami, I.; Zhang, Y. Variations of freezing tolerance and sugar concentrations of grape buds in response to foliar application of abscisic acid. Front. Plant Sci. 2023, 14, 1084590. [Google Scholar] [CrossRef]
- Lu, X.; Ma, L.; Zhang, C.; Yan, H.; Bao, J.; Gong, M.; Wang, W.; Li, S.; Ma, S.; Chen, B. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: Transcriptional and metabolic profiling. BMC Plant Biol. 2022, 22, 528. [Google Scholar] [CrossRef]
- Han, X.; Li, Y.-H.; Yao, M.-H.; Yao, F.; Wang, Z.; Wang, H.; Li, H. Transcriptomics Reveals the Effect of Short-Term Freezing on the Signal Transduction and Metabolism of Grapevine. Int. J. Mol. Sci. 2023, 24, 3884. [Google Scholar] [CrossRef] [PubMed]
- Verslype, N.; Nascimento, A.; Musser, R.; de Souza Caldas, R.M.; Martins, L.; Leão, P. Drought tolerance classification of grapevine rootstock by machine learning for the São Francisco Valley. Smart Agric. Technol. 2023, 4, 100192. [Google Scholar] [CrossRef]
- Gao, Z.; Li, J.; Zhu, H.; Sun, L.; Du, Y.; Zhai, H. Using differential thermal analysis to analyze cold hardiness in the roots of grape varieties. Sci. Hortic. 2014, 174, 155–163. [Google Scholar] [CrossRef]
- Jogaiah, S.; Ramteke, S.; Sharma, J.; Upadhyay, A.K. Moisture and Salinity Stress Induced Changes in Biochemical Constituents and Water Relations of Different Grape Rootstock Cultivars. Int. J. Agron. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Scott, D.H. Breeding Salt Tolerant Grapevine Rootstocks. Master’s Thesis, University of California, Davis, CA, USA, 2022. [Google Scholar]
- Lo’ay, A.; Hamza, D. The potential of vine rootstocks impacts on ‘Flame Seedless’ bunches behavior under cold storage and antioxidant enzyme activity performance. Sci. Hortic. 2020, 260, 108844. [Google Scholar] [CrossRef]
- Miller, D.; Howell, G.; Striegler, R. Cane and Bud Hardiness of Selected Grapevine Rootstocks. Am. J. Enol. Vitic. 1988, 39, 55–59. [Google Scholar] [CrossRef]
- Ruperti, B.; Botton, A.; Populin, F.; Eccher, G.; Brilli, M.; Quaggiotti, S.; Trevisan, S.; Cainelli, N.; Guarracino, P.; Schievano, E.; et al. Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective. Front. Plant Sci. 2019, 10, 339. [Google Scholar] [CrossRef]
- Wang, X.; Yan, L.; Wang, B.; Qian, Y.; Wang, Z.; Wu, W. Comparative Proteomic Analysis of Grapevine Rootstock in Response to Waterlogging Stress. Front. Plant Sci. 2021, 12, 749184. [Google Scholar] [CrossRef]
- Shi, W.; He, W.; Zhang, Z.; Sun, J.; Zhu, C.; Liu, Z.; Xu, Y.; Zhao, B. Study on the Resistance of ‘Cabernet Sauvignon’ Grapevine with Different Rootstocks to Colomerus vitis. Sustainability 2022, 14, 15193. [Google Scholar] [CrossRef]
- Barakat, A.; Hussein, B.; Abd-Elfattah, N.; Soliman, M. Evaluation of the two rootstocks (SO4 and Freedom) for the salt stress in vitro conditions. Plant Arch. 2019, 19, 500–507. [Google Scholar]
- Verma, Y.; Upadhyay, A.K.; Taynath, B.; Raut, S.; Yadav, S.; Ghadge, S. Role of Dogridge Rootstock for Salinity Tolerance in Thompson Seedless Grapevine: Nutrient Distribution, Physiological and Biochemical Functions. Agric. Mech. Asia 2023, 54, 13965–13986. [Google Scholar]
- Baghdady, M.; Abdrabboh, G.; Abdel-Aziz, H. In vitro responses of some grape rootstocks to salt stress. In Proceedings of the 3rd International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha University, Moshtohor and Sharm El-Sheikh, Egypt, 5–9 April 2016. [Google Scholar]
- Zhu, X.; Li, X.; Jiu, S.; Zhang, K.; Wang, C.; Fang, J. Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity. R. Soc. Open Sci. 2018, 5, 172253. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M. Effect of rootstocks on growth, yield and fruit quality of Red Globe grape. Ann. Agric. Sci. Moshtohor 2016, 54, 339–344. [Google Scholar]
- Ramajayam, D.; Singh, S. In Vitro Screening of Grape Root-Stocks for NaCl Tolerance; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2018. [Google Scholar]
- Ramajayam, D. Mycorrhization alleviates salt stress in grape rootstocks during in vitro acclimatization. Indian J. Hortic. 2013, 70, 26–32. [Google Scholar]
- Cakir, B.; Özmen, C.; Kibar, U.; Mutaf, F.; Büyük, P.; Bakır, M.; Ergul, A. Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS ONE 2020, 15, e0236424. [Google Scholar] [CrossRef]
- Berdeja Aramayo, M.; Hilbert, G.; Dai, Z.; Blank, M.; Stoll, M.; Delrot, S. Effects of drought stress and rootstock genotype on grape berry quality. In Proceedings of the 7th International Symposium on Irrigation of Horticultural Crops, Geisenheim, Germany, 16–20 July 2012; p. 1038. [Google Scholar] [CrossRef]
- Kidman, C.; Olarte Mantilla, S.M.; Dry, P.; McCarthy, M.; Collins, C. Effect of Water Stress on the Reproductive Performance of Shiraz (Vitis vinifera L.) Grafted to Rootstocks. Am. J. Enol. Vitic. 2014, 65, 96–108. [Google Scholar] [CrossRef]
- Kang, S.-B.; Lee, I.-B.; Park, J.; Lim, T. Effect of Waterlogging Conditions on the Growth, Root Activities and Nutrient Content of ‘Campbell Early’ Grapevine. Wonye Kwahak Kisulchi = Korean J. Hortic. Sci. Technol. 2010, 28, 172–179. [Google Scholar]
- Rashedy, A. Growth Evaluation of Some Grape Cultivars and Rootstocks Under Saline Stress Conditions. Ph.D. Thesis, Cairo University, Giza, Egypt, 2011. [Google Scholar] [CrossRef]
- Küskü, D.; Soylemezoglu, G. Responses of Potential Rootstock Hybrids (Vinifera × American) to Drought and Salt Stress. Erwerbs-Obstbau 2023, 65, 2143–2152. [Google Scholar] [CrossRef]
- Suarez, D.; Celis, N.; Anderson, R.; Sandhu, D. Grape Rootstock Response to Salinity, Water and Combined Salinity and Water Stresses. Agronomy 2019, 9, 321. [Google Scholar] [CrossRef]
- Han, Y.; Li, X. Current progress in research focused on salt tolerance in Vitis vinifera L. Front. Plant Sci. 2024, 15, 1353436. [Google Scholar]
- Daldoul, S.; Gargouri, M.; Weinert, C.; Jarrar, A.; Egert, B.; Mliki, A.; Nick, P. A Tunisian Wild Grape Leads to Metabolic Fingerprints of Salt Tolerance. Plant Physiol. 2023, 193, 371–388. [Google Scholar] [CrossRef]
- Ojeda, M.; Pire, R. Effect of salinity on two grafted or ungrafted grape rootstocks. Rev. Fitotec. Mex. 2011, 34, 43–52. [Google Scholar]
- Pire, R.; Pereira, A.; Diez, J.; Fereres, E. Drought tolerance assessment of a Venzuelan grape rootstock and possible conditioning mechanisms. Agrociencia 2007, 41, 435–446. [Google Scholar]
- Fahim, S.; Ghanbari, A.; Naji, A.; Shokohian, A.; Maleki, H.; Gohari, G.; Hano, C. Multivariate Discrimination of Some Grapevine Cultivars under Drought Stress in Iran. Horticulturae 2022, 8, 871. [Google Scholar] [CrossRef]
- Stevens, R.M.; Walker, R. Response of grapevines to irrigation-induced saline–sodic soil conditions. Anim. Prod. Sci. 2002, 42, 323–331. [Google Scholar] [CrossRef]
- Pommer, C.V.; Ribeiro, I.J.A.; Jr, M.J.; Hernandes, J.; Martins, F.P.; Gallo, P. IAC JULIANA—Table grape cultivar. Crop. Breed. Appl. Biotechnol. 2002, 2, 323–324. [Google Scholar] [CrossRef]
- da Silva, E.; Santos, H.; Ometto, J.; Maniçoba da Rosa Ferraz Jardim, A.; Silva, T.; Hermínio, P.; Simões, A.; Souza, E.; Ferreira-Silva, S. Salt-excluder rootstock improves physio-biochemical responses of grafted grapevine plants subjected to salinity stress. Curr. Plant Biol. 2024, 37, 100316. [Google Scholar] [CrossRef]
- Daldoul, S.; Hanzouli, F.; Hamdi, Z.; Chenenaoui, S.; Wetzel, T.; Nick, P.; Mliki, A.; Gargouri, M. The root transcriptome dynamics reveals new valuable insights in the salt-resilience mechanism of wild grapevine (Vitis vinifera subsp. sylvestris). Front. Plant Sci. 2022, 13, 1077710. [Google Scholar] [CrossRef]
- Guan, L.; Muhammad Salman, H.; Khan, N.; Nasim, M.; Jiu, S.; Fiaz, M.; Zhu, X.; Zhang, K.; Fang, J. Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (Vitis vinifera L.) in Response to Salt Stress. Int. J. Mol. Sci. 2018, 19, 4019. [Google Scholar] [CrossRef] [PubMed]
- Bari, L.R.; Ghanbari, A.; Darvishzadeh, R.; Giglou, M.T.; Baneh, H.D. Discernment of grape rootstocks base on their response to salt stress using selected characteristics in combination with chemometric tools. Food Chem. 2021, 365, 130408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hui, M.; Shi, X.-Q.; Wu, D.; Wang, Y.; Han, X.; Cao, X.; Yao, F.; Li, H.; Wang, H. Characteristics of the Seed Germination and Seedlings of Six Grape Varieties (V. vinifera). Plants 2022, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Cuena Lombraña, A.; Lallai, A.; Belhadj, F.; Gharbi, B.; Bacchetta, G. Carignan Grape Cultivar Salt Tolerance during the Germination Phase across the Mediterranean Basin. Seeds 2022, 1, 136–145. [Google Scholar] [CrossRef]
- Nasim, M.; Zheng, T.; Naseri, E.; Leng, X.; Zhang, Z.; Jia, H.; Fang, J. Molecular Evaluation of Vitality and Survival Rate of Dormant Kyoho Grape Seedlings: A Step toward Molecular Farming. Plants 2019, 8, 577. [Google Scholar] [CrossRef]
- İlhan, M.; EkbİÇ, H. Determination of Tolerance to Drought Stress of Two American Grapevine Rootstocks by PEG Application. Akad. Ziraat Derg. 2023, 153–162. [Google Scholar] [CrossRef]
- Cancado, G.; Ribeiro, A.; Piñeros, M.; Miyata, L.; Alvarenga, Â.; Villa, F.; Pasqual, M.; Purgatto, E. Evaluation of aluminium tolerance in grapevine rootstocks. VITIS 2009, 48, 167–173. [Google Scholar]
- Jogaiah, S.; Porika, H. Scion preconditioning and cytokinin treatment improved graft compatibility in Red Globe grape grafted on Dogridge rootstock. Indian J. Hortic. 2023, 80, 165–170. [Google Scholar] [CrossRef]
- Titova, L.; Magomadov, A.; Avdeenko, I.; Grigoriev, A.; Palaeva, D. Analysis of the development of grafted grape seedlings on a nursery garden of different graft-rootstock combinations. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 022105. [Google Scholar] [CrossRef]
- Titova, L.; Magomadov, A.; Avdeenko, I.; Grigoriev, A. Development of grafted grape seedlings depending on the length and variety of rootstock. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 022085. [Google Scholar] [CrossRef]
- Dardeniz, A.; Müftüoğlu, N.; Altay, H. Determination of salt tolerance of some American grape rootstocks. Bangladesh J. Bot. 2006, 35, 143–150. [Google Scholar]
- Sabir, A.; Yazar, K.; Doğan, O.; Şit, M.; Kara, Z. Effects of Colchicine Treatments on Some Grape Rootstock and Grape Varieties at Cotyledon Stage. Selcuk J. Agric. Food Sci. 2018, 32, 424–429. [Google Scholar] [CrossRef]
- Sabir, A. Influences of Self- and Cross-pollinations on Berry Set, Seed Characteristics and Germination Progress of Grape (Vitis vinifera cv. Italia). Int. J. Agric. Biol. 2011, 13, 591–594. [Google Scholar]
- Kucukbasmaci, A.; Sabir, A. Long-term impact of deficit irrigation on the physiology and growth of grapevine cv. ‘Prima’ grafted on various rootstocks. Acta Sci. Pol. Hortorum Cultus 2019, 18, 57–70. [Google Scholar] [CrossRef]
- Dardeniz, A.; Gökbayrak, Z.; Müftüoğlu, N.; Turkmen, C.; Beşer, K. Cane Quality Determination of 5 BB and 140 Ru Grape Rootstocks. Eur. J. Hortic. Sci. 2008, 73, 254–258. [Google Scholar] [CrossRef]
- Somkuwar, R.; Bondage, D.; M, S.; S, N.; Sharma, A. Yield, raisin recovery and biochemical characters of fresh and dried grapes (raisin). Indian J. Agric. Sci. 2013, 83, 924–927. [Google Scholar]
- Sucu, S.; Yağci, A.; yıldırım, K. Changes in Morphological, Physiological Traits and Enzyme Activity of Grafted and Ungrafted Grapevine Rootstocks Under Drought Stress. Erwerbs-Obstbau 2018, 60, 1–10. [Google Scholar] [CrossRef]
- Lu, J.; Ren, Z.; Cousins, P. Field Evaluation of Grape Rootstock Response to Natural Infection by Pierce’s Disease. Available online: https://static.cdfa.ca.gov/PiercesDisease/proceedings/2004/2004_45-47.pdf (accessed on 5 July 2025).
- Miras-Avalos, J.; Intrigliolo, D. Grape Composition under Abiotic Constrains: Water Stress and Salinity. Front. Plant Sci. 2017, 8, 851. [Google Scholar] [CrossRef]
- yıldırım, K.; Yağci, A.; Sucu, S.; Tunç, S. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol. Biochem. 2018, 127, 256–268. [Google Scholar] [CrossRef]
- Elaidy, A.; Khalf, A.; Abo-Ogiala, A. Effect of different grape rootstocks on the growth, yield and quality of Superior grape under salt stress. Middle East J. 2019, 8, 167–175. [Google Scholar]
- Corso, M.; Bonghi, C. Grapevine rootstock effects on abiotic stress tolerance. Plant Sci. Today 2014, 1, 108–113. [Google Scholar] [CrossRef]
- Flexas, J.; Barón, M.; Bota, J.; Ducruet, J.-M.; Gallé, A.; Galmés, J.; Jiménez, M.; Pou, A.; Ribas-Carbó, M.; Sajnani, C.; et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). J. Exp. Bot. 2009, 60, 2361–2377. [Google Scholar] [CrossRef] [PubMed]
- Ezzahouani, A.; Williams, L. The Influence of Rootstock on Leaf Water Potential, Yield, and Berry Composition of Ruby Seedless Grapevines. Am. J. Enol. Vitic. 1995, 46, 559–563. [Google Scholar] [CrossRef]
- Rashedy, A. Response of two grape rootstocks to some salt tolerance treatments under saline water conditions. J. Hortic. Sci. Ornam. Plants 2010, 2079–2158, 93–106. [Google Scholar]
- Buesa, I.; Pérez-Pérez, J.G.; Visconti, F.; Strah, R.; Intrigliolo, D.S.; Bonet, L.; Gruden, K.; Pompe-Novak, M.; de Paz, J.M. Physiological and Transcriptional Responses to Saline Irrigation of Young ‘Tempranillo’ Vines Grafted Onto Different Rootstocks. Front Plant Sci 2022, 13, 866053. [Google Scholar] [CrossRef]
- Bettiga, L.J. Wine Grape Varieties in California; UCANR Publications: Davis, CA, USA, 2003; Volume 3419. [Google Scholar]
- Ferreira, J.H.S. Effect of Rootstock on the Incidence of Dying Arm of Chenin blanc vines. S. Afr. J. Enol. Vitic. 1985, 6, 23–24. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Wardle, D.A.J.H. Rootstocks impact vine performance and fruit composition of grapes in British Columbia. HortTechnology 2001, 11, 419–427. [Google Scholar] [CrossRef]
- Rahemi, A. Breeding of grapevine rootstocks for adaptability to the environmental stresses. In Proceedings of the Third National Conference of Grape and Raisin Conducted by Research Institute of Grape and Raisin (RIGR), Malayer, Iran, 27–29 September 2016; Malayer University: Malayer, Iran, 2016; pp. 27–29. (In Persian) [Google Scholar]
- Lin, Y.; Liu, S.; Fang, X.; Ren, Y.; You, Z.; Xia, J.; Hakeem, A.; Yang, Y.; Wang, L.; Fang, J. The physiology of drought stress in two grapevine cultivars: Photosynthesis, antioxidant system, and osmotic regulation responses. Physiol. Plant. 2023, 175, e14005. [Google Scholar] [CrossRef]
- Bota, B.J.; Flexas, J.; Medrano, H. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol. 2001, 138, 353–361. [Google Scholar] [CrossRef]
- Pool, B.; Lerch, S.; Howard, G.; Johnson, T.; Weimann, D. Rootstocks for planting or replanting New York vineyards, Finger lakes vineyard notes. Cornell Univ. 2005, 1–14. [Google Scholar]
- Bica, D.; Gay, G.; Morando, A.; Soave, E. Effects of rootstock and Vitis vinifera genotype on photosynthetic parameters. In Proceedings of the V International Symposium on Grapevine Physiology, Jerusalem, Israel, 25–30 May 1997; Volume 526, pp. 373–380. [Google Scholar]
- Regina, M.; Carbonneau, A. Gas exchanges in Vitis vinifera under water stress regime. I. Characterization of the variety behavior. Pesqui. Agropecu. Bras. 1996, 31, 869–876. [Google Scholar]
- Amir, J.; Eshghi, S.; Tafazoli, E.; Kholdebarin, B.; Abbaspour, N. Ameliorative effects of Salicylic acid on mineral concentrations in roots and leaves of two grapevine (Vitis vinifera L.) cultivars under salt stress. Vitis—J. Grapevine Res. 2014, 53, 181–188. [Google Scholar]
- Zhang, Z.; Liu, H.; Sun, J.; Yu, S.; He, W.; Li, T.; Baolong, Z. Nontarget Metabolomics of Grape Seed Metabolites Produced by Various Scion–Rootstock Combinations. J. Am. Soc. Hortic. Sci. 2020, 145, 1–10. [Google Scholar] [CrossRef]
- Dubrovina, A.; Kiselev, K.; Khristenko, V.; Aleynova, O. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J. Plant Physiol. 2015, 185, 1–12. [Google Scholar] [CrossRef]
- Lupo, Y.; Prashanth, K.; Lazarovitch, N.; Fait, A.; Rachmilevitch, S. Importance of Leaf Age in Grapevines Under Salt Stress. bioRxiv 2023, 2023.04. 02, 535264. [Google Scholar] [CrossRef]
- Minarovicová, L.; Karovicová, J.; Kohajdová, Z.; Kuchtová, V. The Chemical Composition of Grape Fibre. Potravin. Slovak J. Food Sci 2015, 9, 53–57. [Google Scholar]
- Aloy, K.G.; Lemos, P.L.P.K.; Jacobs, S.A.; Schumacher, R.L.; Jacobs, B.; Potter, G.H.; Costa, V.B. Climatological variables and their influence on the quality of Vitis vinifera grapes in Dom Pedrito, region of Campanha, Brazil. Rev. DELOS 2023, 16, 3753–3770. [Google Scholar] [CrossRef]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants 2022, 11, 396. [Google Scholar] [CrossRef]
- Oliveira, M.; Fernandes-Silva, A. Vineyard and Olive Orchard Management to Maintain Yield and Quality Under Abiotic Stress Conditions. In Modern Fruit Industry; IntechOpen: London, UK, 2019. [Google Scholar]
- Razzaq, A.; Zafar, M.M.; Ali, A.; Hafeez, A.; Sharif, F.; Guan, X.; Deng, X.; Pengtao, L.; Shi, Y.; Haroon, M. The pivotal role of major chromosomes of sub-genomes A and D in fiber quality traits of cotton. Front. Genet. 2022, 12, 642595. [Google Scholar] [CrossRef]
- Razzaq, A.; Zafar, M.M.; Li, P.; Qun, G.; Deng, X.; Ali, A.; Hafeez, A.; Irfan, M.; Liu, A.; Ren, M. Transformation and overexpression of primary cell wall synthesis-related zinc finger gene Gh_A07G1537 to improve fiber length in cotton. Front. Plant Sci. 2021, 12, 777794. [Google Scholar] [CrossRef]
- Bilal, H.; Shakeel, A.; Chattha, W.S.; Tehseen, M.; Azhar, S.A.; Rizwan, M. Genetic variability studies of seed cotton yield and fibre quality in upland cotton (Gossypium hirsutum L.) grown under salinity stress. Pak. J. Bot 2022, 54, 1995–1999. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, C.; Yan, D.; Chen, W.; Luo, L. Estimation of characteristic parameters of grape clusters based on point cloud data. Front. Plant Sci. 2022, 13, 885167. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Pardo, J.; Batelli, G.; Oosten, M.; Bressan, R.; Li, X. The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Mol. Plant 2013, 6, 275–286. [Google Scholar] [CrossRef]
- Raza, A.; Tabassum, J.; Fakhar, A.; Sharif, R.; Chen, H.; Zhang, C.; Ju, L.; Fotopoulos, V.; Siddique, K.; Singh, R.; et al. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit. Rev. Biotechnol. 2022, 43, 1035–1062. [Google Scholar] [CrossRef]
- Wei, L.; Du, Y.; Xiang, J.; Zheng, T.; Cheng, J.; Wu, J. Integrated mRNA and miRNA transcriptome analysis of grape in responses to salt stress. Front. Plant Sci. 2023, 14, 1173857. [Google Scholar] [CrossRef]
- Catacchio, C.; Alagna, F.; Perniola, R.; Bergamini, C.; Rotunno, S.; Calabrese, F.; Crupi, P.; Antonacci, D.; Ventura, M.; Cardone, M. Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress. Sci. Rep. 2019, 9, 2809. [Google Scholar] [CrossRef]
- Zhong, H.; Zhongjie, L.; Zhang, F.; Zhou, X.; Sun, X.; Li, Y.; Liu, W.; Xiao, H.; Wang, N.; Lu, H.; et al. Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine. Hortic. Res. 2022, 9, 103. [Google Scholar] [CrossRef]
- Aswathi, K.; Ul-Allah, S.; Puthur, J.T.; Siddique, K.H.; Frei, M.; Farooq, M. The Plant Mind: Unraveling Abiotic Stress Priming, Memory, and Adaptation. Physiol. Plant. 2025, 177, e70372. [Google Scholar] [CrossRef]
- Zrig, A.; Mohamed, H.B.; Tounekti, T.; Khemira, H.; Serrano, M.; Valero, D.; Vadel, A. Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). S. Afr. J. Bot. 2016, 102, 50–59. [Google Scholar] [CrossRef]
- Upreti, K.K.; Murti, G. Response of grape rootstocks to salinity: Changes in root growth, polyamines and abscisic acid. Biol. Plant. 2010, 54, 730–734. [Google Scholar] [CrossRef]
- Wei, P.; Che, B.; Shen, L.; Cui, Y.; Wu, S.; Cheng, C.; Liu, F.; Li, M.-W.; Yu, B.; Lam, H.-M. Identification and functional characterization of the chloride channel gene, GsCLC-c2 from wild soybean. BMC Plant Biol. 2019, 19, 121. [Google Scholar] [CrossRef] [PubMed]
- Mohammadkhani, N.; Heidari, R.; Abbaspour, N. Effects of salinity on antioxidant system in four grape (Vitis vinifera L.) genotypes. Vitis 2013, 52, 105–110. [Google Scholar]
- Raziq, A.; Wang, Y.; Mohi Ud Din, A.; Sun, J.; Shu, S.; Guo, S. A comprehensive evaluation of salt tolerance in tomato (Var. ailsa craig): Responses of physiological and transcriptional changes in RBOH’s and ABA biosynthesis and signalling genes. Int. J. Mol. Sci. 2022, 23, 1603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, H.; Chen, T.; Pen, J.; Yu, S.; Zhao, X. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE 2014, 9, e112807. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef]
- Zhu, J.-K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 2000, 124, 941–948. [Google Scholar] [CrossRef]
- Qiu, Q.-S.; Guo, Y.; Dietrich, M.A.; Schumaker, K.S.; Zhu, J.-K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 2002, 99, 8436–8441. [Google Scholar] [CrossRef]
- Muhammad Salman, H.; Jogaiah, S.; Pervaiz, T.; Zhao, Y.; Khan, N.; Fang, J. Physiological and Transcriptional Variations Inducing Complex Adaptive Mechanisms in Grapevine by Salt Stress. Environ. Exp. Bot. 2019, 162, 455–467. [Google Scholar] [CrossRef]
- Jin, Z.; Lv, X.; Sun, Y.; Fan, Z.; Xiang, G.; Yao, Y. Comprehensive discovery of salt-responsive alternative splicing events based on Iso-Seq and RNA-seq in grapevine roots. Environ. Exp. Bot. 2021, 192, 104645. [Google Scholar] [CrossRef]
- Lu, X.; Ma, L.; Zhang, C.; Yan, H.; Bao, J.; Gong, M.; Wang, W.; Li, S.; Ma, S.; Chen, B. Transcriptional and metabolic profiles revealed the difference in grapevine (Vitis vinifera) plants responses to neutral salt stress and alkali salt stress. BMC Plant Bio. 2022. preprint. [Google Scholar] [CrossRef]
- Upadhyay, A.; Gaonkar, T.; Upadhyay, A.K.; Jogaiah, S.; Shinde, M.; Kadoo, N.; Gupta, V. Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless. Plant Physiol. Biochem. 2018, 129, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, M.; Martins, V.; Ben Ayed, R.; Jbir-Koubaa, R.; Feki, M.; Mzid, R.; Gerós, H.; Sami, A.; Hanana, M. Genome Wide Identification, Molecular Characterization, and Gene Expression Analyses of Grapevine NHX Antiporters Suggest Their Involvement in Growth, Ripening, Seed Dormancy, and Stress Response. Biochem. Genet. 2020, 58, 102–128. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Jiao, B.; Liu, Z.; Wang, X.; Wang, J.; Zhang, J.; Wang, Q.; Xu, Y.; Wang, Q.C. Crosstalk between grapevine leafroll-associate virus-3 (GLRaV-3) and NaCl-induced salt stress in in vitro cultures of the red grape ‘Cabernet Sauvignon’. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 144, 1–12. [Google Scholar] [CrossRef]
- Vila, H.; Filippini, M.; Venier, M.; Di Filippo, M.; Hugalde, I. A dynamic model for sodium intoxication unravels salt tolerance in grapevine (Vitis vinifera L.) rootstocks. Rev. Fac. Cienc. Agrar. 2020, 52, 88–101. [Google Scholar]
- Jellouli, N.; Ben Jouira, H.; Daldoul, S.; Chenenaoui, S.; Ghorbel, A.; Bensalem-Fnayou, A. Proteomic and Transcriptomic Analysis of Grapevine PR10 Expression During Salt Stress and Functional Characterization in Yeast. Plant Mol. Biol. Rep. 2010, 28, 1–8. [Google Scholar] [CrossRef]
- Li, P.; Tan, X.; Liu, R.; Rahman, F.; Jianfu, J.; Sun, L.; Fan, X.; Liu, J.; Liu, C.; Zhang, Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (V. vinifera L. x V. davidii Foex.) crossing. Hortic. Res. 2023, 10, uhad063. [Google Scholar] [CrossRef]
- Karaagac, E.; Vargas, A.M.; de Andrés, M.; Carreño, I.; Ibáñez, J.; Carreño, J.; Martínez-Zapater, J.; Cabezas, J.A. Marker assisted selection for seedlessness in table grape breeding. Tree Genet. Genomes 2012, 8, 1003–1015. [Google Scholar] [CrossRef]
- Debreceni, D.; Lencsés, A.; Szőke, A.; Veres, A.; Hoffmann, S.; Kozma, P.; Kovacs, L.; Heszky, L.; Kiss, E. Marker-assisted selection for two dominant powdery mildew resistance genes introgressed into a hybrid grape population. Sci. Hortic. 2010, 126, 448–453. [Google Scholar] [CrossRef]
- Das, P.; Lahiri Majumder, A. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Funct. Integr. Genom. 2019, 19, 61–73. [Google Scholar] [CrossRef]
- Lima, M.; Machado, A.; Gubler, W. Metabolomic Study of Chardonnay Grapevines Double Stressed with Esca-Associated Fungi and Drought. Phytopathology 2017, 107, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, J.; Zhao, S.; Lu, Q.; Pan, L.; Zhao, B.; Yu, S. Effects of different rootstocks on Phenolics in skin of “cabernet sauvignon” and widely targeted metabolome and transcriptome analysis. Hortic. Res. 2022, 9, uhac053. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Ebrahimi, M.; Amerian, M. Abscisic acid mitigates NaCl toxicity in grapevine by influencing phytochemical compounds and mineral nutrients in leaves. Sci. Hortic. 2021, 288, 110336. [Google Scholar] [CrossRef]
- Rooy, S.S.; Salekdeh, G.H.; Ghabooli, M.; Gholami, M.; Mohsenifard, E.; Karimi, R. Effect of gradual and shock chilling stress on abscisic acid, soluble sugars and antioxidant enzymes changes in ‘Sultana’ grapevine. Iran. J. Plant Physiol. 2017, 7, 2211–2224. [Google Scholar]
- Karimi, R.; Merati, M.; Shayganfar, A. Phytochemical characterization of five commercial Vitis vinifera cultivars in response to salinity. Acta Physiol. Plant. 2023, 45, 108. [Google Scholar] [CrossRef]
- Liang, X.; Li, J.; Yang, Y.; Jiang, C.; Guo, Y. Designing salt stress-resilient crops: Current progress and future challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [Google Scholar] [CrossRef]
- Shi, L.; Cui, X.; Shen, Y. The roles of histone methylation in the regulation of abiotic stress responses in plants. Plant Stress 2024, 11, 100303. [Google Scholar] [CrossRef]
- Vodiasova, E.; Sinchenko, A.; Khvatkov, P.; Dolgov, S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine (Vitis vinifera): New View and Update. Int. J. Mol. Sci. 2024, 25, 6241. [Google Scholar] [CrossRef]
- Giribaldi, M.; Gény, L.; Delrot, S.; Schubert, A. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. J. Exp. Bot. 2010, 61, 2447–2458. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, D.; Zhang, Y.; Li, G.; Sun, D.; Zhou, B.; Li, J. Insights into the Epigenetic Basis of Plant Salt Tolerance. Int. J. Mol. Sci. 2024, 25, 11698. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Xiong, Y.; Moshood, A.Y.; Cadenas-Pliego, G.; Zhang, H.; Hu, J. Mechanisms of plant epigenetic regulation in response to plant stress: Recent discoveries and implications. Plants 2024, 13, 163. [Google Scholar] [CrossRef]
- Liu, Q.; Kang, J.; Du, L.; Liu, Z.; Liang, H.; Wang, K.; He, H.; Zhang, X.; Wang, Q.; Hong, Y. Single-cell multiome reveals root hair-specific responses to salt stress. New Phytol. 2025, 246, 2634–2651. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Liu, Y.; Hassan, M.M.; Abraham, P.E.; Merlet, J.; Townsend, A.; Jacobson, D.; Buell, C.R.; Tuskan, G.A.; Yang, X. Advances in the application of single-cell transcriptomics in plant systems and synthetic biology. BioDesign Res. 2024, 6, 0029. [Google Scholar] [CrossRef] [PubMed]
- Corso, M.; Vannozzi, A.; Ziliotto, F.; Zouine, M.; Maza, E.; Nicolato, T.; Vitulo, N.; Meggio, F.; Valle, G.; Bouzayen, M.; et al. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries. Front. Plant Sci. 2016, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, C.; Davies, C. Hormonal Control of Grape Berry Development and Ripening. Biochem. Grape Berry 2012, 1, 194–217. [Google Scholar]
- Cakir, B.; Kiliçkaya, O.; Olcay, A. Genome-wide analysis of Aux/IAA genes in Vitis vinifera: Cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses. Acta Physiol. Plant 2013, 35, 365–377. [Google Scholar] [CrossRef]
- Böttcher, C.; Burbidge, C.; Boss, P.; Davies, C. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biol. 2013, 13, 222. [Google Scholar] [CrossRef]
- Karimi, R.; Gavili-Kilaneh, K.; Khadivi, A. Methyl jasmonate promotes salinity adaptation responses in two grapevine (Vitis vinifera L.) cultivars differing in salt tolerance. Food Chem. 2021, 375, 131667. [Google Scholar] [CrossRef]
- Ismail, A.; Riemann, M.; Nick, P. The jasmonate pathway mediates salt tolerance in grapevines. J. Exp. Bot. 2012, 63, 2127–2139. [Google Scholar] [CrossRef]
- Xu, L.; Xiang, G.; Sun, Q.; Ni, Y.; Jin, Z.; Gao, S.; Yao, Y. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic. Res. 2019, 6, 114. [Google Scholar] [CrossRef]
- Montanaro, G.; Briglia, N.; Lopez, L.; Amato, D.; Panara, F.; Petrozza, A.; Cellini, F.; Nuzzo, V. A synthetic cytokinin primes photosynthetic and growth response in grapevine under ion-independent salinity stress. J. Plant Interact. 2022, 17, 789–800. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, J.; Fang, X.; Jia, H.; Wang, X.; Lin, Y.; Liu, S.; Ge, M.; Pu, Y.; Fang, J.; et al. Drought stress in ‘Shine Muscat’ grapevine: Consequences and a novel mitigation strategy–5-aminolevulinic acid. Front. Plant Sci. 2023, 14, 1129114. [Google Scholar] [CrossRef]
- Cetin, E.; Canbay, H.; Daler, S. The roles of strigolactones: Mineral compounds, indole-3 acetic acid and GA3 content in grapevine on drought stress. J. Plant Stress Physiol. 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Jogaiah, S.; Prakash, G.S.; Murti, G.S.R.; Upreti, K.K. Water stress and rootstocks influences on hormonal status of budded grapevine. Eur. J. Hortic. Sci. 2007, 72, 202–205. [Google Scholar] [CrossRef]









| Year Released | Name of Rootstocks | Common Names | Tolerant Levels | Countries of Origin | Vitis Pedigree | Abiotic Stress Tolerance Levels | References | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1976 | Cabernet Sauvignon | Cab sauv | Tolerant | Xinjiang, China | Vitis vinifera L | Salt | Freezing | Waterlogging | Drought | Thermal | [47,48,49,50,51,52,53] |
| − | Vitis vinifera | Vitis | Tolerant | Shandong, China | Vitis vinifera L | Salt | − | − | − | − | [54] |
| 1976 | Cabernet Sauvignon | C, sauv | Tolerant | Yangling, China | Vitis vinifera L | − | Freezing | − | − | − | [55] |
| 1881 | 3309-C | Couderc | Tolerant | France | Riparia tomenteuse × Rupestris martin | Salt | Freezing | Waterlogging | Drought | Thermal | [48,53,56,57,58] |
| 1887 | 520A, 420A | − | Tolerant | France | V. berlandieri × V. riparia | Salt | − | − | − | − | [8,12,56] |
| 1896 | 1103-P | Paulsen | Tolerant | Italy, France | V. berlandieri × V. rupestris | Salt | Freezing/cold | − | Drought | Thermal | [31,57,58,59,60,61] |
| 1896 | K5-BB | Kober | Susceptible | France | Vitis berlandieri and Vitis riparia | Salt | Freezing | − | Drought | − | [1,56,57,62,63] |
| 1882 | 101-14 Mgt | Mil et de Grasset | Susceptible | France | V. riparia × V. rupestris | Salt | − | Waterlogging | Drought | Thermal | [31,56,57,58] |
| − | Beta | − | Susceptible | America | Vitis ‘Beta’ | Salt | − | − | − | Thermal | [56,58] |
| 1919 | SO-4 | Fuhr | Tolerant | Germany | V. berlandieri × V. riparia | Salt | − | Waterlogging | − | Thermal | [58,64,65,66,67] |
| 1985 | Dogridge | − | Tolerant | USA | V. × champinii | Salt | − | Waterlogging | − | Thermal | [58,68,69,70] |
| 1974 | Freedom | − | Tolerant | USA | Couderc 1613 × V. champini | Salt | Cold | − | Drought | − | [57,61,67,69,71] |
| 1965 | Salt Creek | − | Tolerant | USA | V. champini | Salt | − | − | Drought | − | [57,69,71,72,73] |
| − | Richter 110 | − | Susceptible | France | V. berlandieri × V. rupestris | Salt | − | − | Drought | − | [36,69,71] |
| 1882 | 1616C/1613-C | Couderc | Tolerant | France | Longii × riparia | Salt | − | Drought | − | [32,57,74,75] | |
| 1902 | 110R/125AA | Richter | Tolerant | France | Vitis berlandieri × Vitis rupestris | Salt/water | − | − | Drought | Thermal | [57,58,59,76] |
| 1902 | 99R/Campbell Early | − | Tolerant | France | Vitis berlandieri × Vitis rupestris | − | − | Waterlogging | Drought | − | [57,59,72,77] |
| 1900, 1896 | 5A, 5C | Teleki 5A, Teleki 5C | Tolerant | Hungary, France | Vitis berlandieri × Vitis riparia | − | − | − | Drought | − | [57,59,78] |
| 1894 | 140-R | Ruggeri | Tolerant | France, Turkey | Vitis berlandieri | Salt | Cold | − | Drought | Thermal | [8,57,58,60,61,79,80] |
| 1998 | Ramsey | − | Tolerant | USA | Vitis champini | Salt | − | − | Drought | − | [35,60,81] |
| − | Tebaba | − | Tolerant | − | Vitis sylvestris | − | − | − | − | − | [82] |
| − | H-144/41-B | − | Moderate | − | V. sylvestris | Salt | − | − | − | − | [39,72] |
| − | Criolla Negra | − | − | Australia | − | − | − | − | Drought | − | [83,84] |
| − | Garashiligh | − | Tolerant | Iran | − | − | − | − | Drought | − | [85] |
| − | Tukilgan | − | Semi-tolerant | Iran | − | − | − | − | Drought | − | [85] |
| − | Saheb | − | Semi-sensitive | Iran | − | − | − | − | Drought | − | [85] |
| − | Ramsey | − | Sensitive | Iran | − | Salt | − | − | Drought | − | [85,86] |
| − | Nm0317 | − | Tolerant | PR. China | V. berlandieri | Salt | − | − | − | − | [81] |
| 1983 | IAC313 | − | Tolerant | Brazil | V. riparia × V. rupestris) × V. cinerea | Salt | − | − | − | − | [87,88] |
| − | Tebaba | − | Tolerant | − | Vitis sylvestris | Salt | − | − | − | − | [89] |
| 1968 | Summer black | − | Resistant | Japan | V. vinifera and V. labrusca | Salt | − | Waterlogging | − | − | [70,90] |
| Name of Rootstocks | GR (%) | IIY (%) | SR (%) | RFW, RDW, and RL | Colors | Shapes | Stress Level | References |
|---|---|---|---|---|---|---|---|---|
| Grapevine | 30–50 | 88.10 | 87.77–100.00 | − | Yellow and green | Oval | Salt | [91,92,93,94] |
| 1103-P | 21–50 | 76.0 | 90.08 | 0.44 g, 0.06 g and 5.52 cm | Grayish | Kidney | Drought and aluminum | [95,96] |
| Dog-ridge | − | 20–25 | 72.35 | 58.6 g, 17.17 g and 0.20 cm | Purple | Conical | Salt | [68,97] |
| Kober 5-BB | 35–45 | 39.9 | 80.1 | 1.31 g, 0.13 g and 8.76 cm | Green and hairless | Round and circular | Drought and aluminum | [95,96,98,99] |
| 41 B | 24–74 | 84.0 | 68.21 | 0.573 g and 0.038 g | Gray-brown | Cluster | Salt | [100,101] |
| 140 Ruggeri | 49.3 | 73.75 | − | 0.378 g and 0.028 g | Dark | Herat | Salt | [100,102] |
| 101-14 Mgt | 25–80 | 48.0 | 42–82.5 | − | Gray | Circular | − | [98,99] |
| 44–53 M, Ramsey, and 99 R | 25–50 | − | 35.1–100 | − | Dark, red, and purple | Herat or V shape, short conical | Deficit irrigation | [103,104] |
| Salt Creek and Freedom | 30–50 | 40.6 | − | − | Slightly dark and black | Cluster and spherical | Salt | [69] |
| 1103M | 21–50 | 76.0 | 90.08 | − | Green | Prolate spheroid | Salt | [14,105] |
| 1613-C | 29.90 | 16.35 | − | − | Shiny | Conical | Salt | [105,106] |
| Grapevine | 30–50 | 88.10 | 87.77–100.00 | − | White and yellow | Oval | Drought | [107] |
| 99 R | 30–50 | − | 30.07–40.02 | − | Rough and white | Cylindrical | − | [108] |
| St. George | − | − | 70.00 | − | Deep black | Conical | Natural infection | [108,109] |
| S.NO | Name of Rootstocks | Salinity Tolerance | Grafted Scion Vigor | Susceptibility to ‘Mg’ Inadequacy | Susceptibility to ‘K’ Inadequacy |
|---|---|---|---|---|---|
| 1 | Riparia Gloire | D | D | N | 0 |
| 2 | Rupestris St George | D | A | 0 | N |
| 3 | Rupestris du Lot | D | A | 0 | 0 |
| 4 | 420A MGt | 0 | C | 0 | Y |
| 5 | 5-BB Kober | C | C | Y | Y |
| 6 | SO-4 | D | B | Y | N |
| 7 | 8B | 0 | B | 0 | 0 |
| 8 | 5C Teleki | C | A | 0 | 0 |
| 9 | 161-49 Couderc | D | B | 0 | 0 |
| 10 | 99 Richter | D | A | Y | Y |
| 11 | 110 Richter | C | B | Y | Y |
| 12 | 1103 Paulsen | A | B | N | Y |
| 13 | 140 Ruggeri | A | A | N | Y |
| 14 | 44–53 Malègue | 0 | B | Y | N |
| 15 | 3309 Couderc | D | C | N | 0 |
| 16 | 101-14 MGt | B | B | 0 | 0 |
| 17 | Schwarzmann | B | B | 0 | 0 |
| 18 | Gravesac | 0 | C | 0 | 0 |
| 19 | 1616 Couderc | B | C | 0 | 0 |
| 20 | Salt Creek (Ramsey) | A | A | 0 | 0 |
| 21 | Dogridge | A | A | 0 | 0 |
| 22 | Harmony | A | C | 0 | 0 |
| 23 | Freedom | A | C | 0 | 0 |
| Name of Rootstock/Cultivar | T/DEGs (Up) | T/DEGs (Down) | T/DAMs (Up) | T/DAMs (Down) | T/miRNAs (Up) | T/miRNAs (Down) | Stress Type | References |
|---|---|---|---|---|---|---|---|---|
| Category: Salt Stress Responses | ||||||||
| Grapevine | 3504 | 4352 | 747 | 318 | 3027 | 174 | Salt/light | [165,175] |
| Grapevine | 1067 | 1405 | 10 | 12 | 15 | 8 | Salt | [105,176] |
| Thompson Seedless | 405 | 309 | NA | NA | 18 | 6 | Salt | [160,161] |
| Grapevine | 1637 | 1206 | 431 | 378 | NA | NA | Salt + alkali | [72,160] |
| Thompson Seedless | 111 | 232 | NA | NA | NA | NA | Salt | [162] |
| Category: Drought Tolerance Mechanisms | ||||||||
| 1616C | 287 | 110 | NA | NA | NA | NA | Drought | [162] |
| 101-14 | 257 | 101 | NA | NA | 98 | 94 | Drought | [158] |
| 1103-P | 1261 | 1530 | NA | NA | 121 | 101 | Drought | [158] |
| Grapevine | 8021 | 4430 | NA | NA | NA | NA | Drought | [159] |
| Shine Muscat | NA | NA | 379 | NA | NA | NA | Drought | [137] |
| Thompson Seedless | NA | NA | 385 | NA | NA | NA | Drought | [137] |
| Category: Heavy Metal/Oxidative Stress | ||||||||
| Shine Muscat | 657 | 527 | 31 | 41 | NA | NA | Copper | [163] |
| Shine Muscat | 1201 | 1137 | 23 | 58 | 37 | 16 | Excess copper | [161] |
| Category: Light and Signaling Responses | ||||||||
| Grapevine | 343 | 134 | 747 | 318 | NA | NA | Light qualities | [162,163] |
| Grapevine | NA | NA | 300 | NA | NA | NA | Nitric oxide | [164] |
| Category: Pathogen Interaction/Secondary Stress | ||||||||
| Grapevine | 5377 | 5283 | NA | NA | NA | NA | Botrytis cinerea | [165] |
| Grapevine | 6373 | 3659 | 105 | NA | NA | NA | – | [166,167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha, A.; Hakeem, A.; Li, S.; Mustafa, G.; Elatafi, E.; Fang, J.; Zhou, C. Grapevine Rootstocks and Salt Stress Tolerance: Mechanisms, Omics Insights, and Implications for Sustainable Viticulture. Int. J. Plant Biol. 2025, 16, 129. https://doi.org/10.3390/ijpb16040129
Mustapha A, Hakeem A, Li S, Mustafa G, Elatafi E, Fang J, Zhou C. Grapevine Rootstocks and Salt Stress Tolerance: Mechanisms, Omics Insights, and Implications for Sustainable Viticulture. International Journal of Plant Biology. 2025; 16(4):129. https://doi.org/10.3390/ijpb16040129
Chicago/Turabian StyleMustapha, Abdullateef, Abdul Hakeem, Shaonan Li, Ghulam Mustafa, Essam Elatafi, Jinggui Fang, and Cunshan Zhou. 2025. "Grapevine Rootstocks and Salt Stress Tolerance: Mechanisms, Omics Insights, and Implications for Sustainable Viticulture" International Journal of Plant Biology 16, no. 4: 129. https://doi.org/10.3390/ijpb16040129
APA StyleMustapha, A., Hakeem, A., Li, S., Mustafa, G., Elatafi, E., Fang, J., & Zhou, C. (2025). Grapevine Rootstocks and Salt Stress Tolerance: Mechanisms, Omics Insights, and Implications for Sustainable Viticulture. International Journal of Plant Biology, 16(4), 129. https://doi.org/10.3390/ijpb16040129

