Analysis of Phenotypic and Grain Quality Traits of Wheat Genotypes Under Drought-Stressed and Non-Stressed Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Site Description
2.3. Experimental Design and Establishment
2.4. Data Collection
2.4.1. Phenotypic Traits
2.4.2. Grain Carbon, Nitrogen and Protein Content Determination
2.5. Data Analysis
3. Results
3.1. A Combined Analysis of Variances on Phenotypic Traits
3.2. Analysis of Variance for the Grain Quality Traits
3.3. Wheat Performance Under Drought-Stressed and Non-Stressed Conditions
3.4. Grain Carbon, Nitrogen, and Protein Content Determination
3.5. Correlation Analysis
3.5.1. Phenotypic Traits
3.5.2. Phenotypic Traits, Grain Carbon, Nitrogen, and Crude Protein
3.6. Principal Component Analysis for the Phenotypic Traits Recorded over Two Seasons
4. Discussion
4.1. Performance of Wheat Genotypes
4.2. Grain Carbon, Nitrogen, and Protein Content Determination
4.3. Association Between Phenotypic Traits
4.4. Link Between Selected Phenotypic Traits and Grain Quality Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Yang, R.; Liang, X.; Marshall, J.M.; Neibling, W. Impact of Drought Stress on Spring Wheat Grain Yield and Quality. Agrosyst. Geosci. Environ. 2023, 6, e20351. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Hou, J.; Du, C.; Liu, S.; Kang, J.; Lu, H.; Xie, Y.; Guo, T.; Ma, D. Coordination of Carbon and Nitrogen Accumulation and Translocation of Winter Wheat Plant to Improve Grain Yield and Processing Quality. Sci. Rep. 2020, 10, 10340. [Google Scholar] [CrossRef]
- Gooding, M.J.; Shewry, P.R. Wheat: Environment, Food and Health; John Wiley & Sons: Hoboken, NJ, USA, 2022; ISBN 9781119652557. [Google Scholar]
- Fathian, M.; Bazrafshan, O.; Jamshidi, S.; Jafari, L. Impacts of Climate Change on Water Footprint Components of Rainfed and Irrigated Wheat in a Semi-Arid Environment. Environ. Monit. Assess. 2023, 195, 324. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. 2023. Available online: https://sdgs.un.org/un-system-sdg-implementation/food-and-agriculture-organization-fao-54096 (accessed on 12 June 2024).
- Dadrasi, A.; Chaichi, M.; Nehbandani, A.; Soltani, E.; Nemati, A.; Salmani, F.; Heydari, M.; Yousefi, A.R. Global Insight into Understanding Wheat Yield and Production through Agro-Ecological Zoning. Sci. Rep. 2023, 13, 15898. [Google Scholar] [CrossRef]
- Soba, D.; Shu, T.; Runion, G.B.; Prior, S.A.; Fritschi, F.B.; Aranjuelo, I.; Sanz-Saez, A. Effects of Elevated [CO2] on Photosynthesis and Seed Yield Parameters in Two Soybean Genotypes with Contrasting Water Use Efficiency. Environ. Exp. Bot. 2020, 178, 104154. [Google Scholar] [CrossRef]
- Tadesse, W.; Bishaw, Z.; Assefa, S. Wheat Production and Breeding in Sub-Saharan Africa. Int. J. Clim. Change Strateg. Manag. 2019, 11, 696–715. [Google Scholar] [CrossRef]
- Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Front. Plant Sci. 2016, 7, 1276. [Google Scholar] [CrossRef]
- Mathew, I.; Shimelis, H.; Mutema, M.; Clulow, A.; Zengeni, R.; Mbava, N.; Chaplot, V. Selection of Wheat Genotypes for Biomass Allocation to Improve Drought Tolerance and Carbon Sequestration into Soils. J. Agron. Crop Sci. 2019, 205, 385–400. [Google Scholar] [CrossRef]
- Shamuyarira, K.W.; Shimelis, H.; Figlan, S.; Chaplot, V. Combining Ability Analysis of Yield and Biomass Allocation Related Traits in Newly Developed Wheat Populations. Sci. Rep. 2023, 13, 11832. [Google Scholar] [CrossRef]
- Shamuyarira, K.W.; Shimelis, H.; Tapera, T.; Tsilo, T.J. Genetic Advancement of Newly Developed Wheat Populations Under Drought-Stressed and Non-Stressed Conditions. J. Crop Sci. Biotechnol. 2019, 22, 169–176. [Google Scholar] [CrossRef]
- Makebe, A.; Shimelis, H.; Mashilo, J. Selection of M5 Mutant Lines of Wheat (Triticum aestivum L.) for Agronomic Traits and Biomass Allocation under Drought Stress and Non-Stressed Conditions. Front. Plant Sci. 2024, 15, 1314014. [Google Scholar] [CrossRef]
- Li, P.; Ma, B.; Palta, J.A.; Wei, X.; Guo, S.; Ding, T.; Ma, Y. Distinctive Root System Adaptation of Ploidy Wheats to Water Stress: A Cue to Yield Enhancement. J. Agron. Crop Sci. 2023, 209, 566–577. [Google Scholar] [CrossRef]
- Rossi, R.; Bochicchio, R.; Labella, R.; Amato, M.; De Vita, P. Phenotyping Seedling Root Biometry of Two Contrasting Bread Wheat Cultivars under Nutrient Deficiency and Drought Stress. Agronomy 2024, 14, 775. [Google Scholar] [CrossRef]
- Wan, C.; Dang, P.; Gao, L.; Wang, J.; Tao, J.; Qin, X.; Feng, B.; Gao, J. How Does the Environment Affect Wheat Yield and Protein Content Response to Drought? A Meta-Analysis. Front. Plant Sci. 2022, 13, 896985. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, A.; Aydin, F. Effect of Water Stress at Various Growth Stages on Some Quality Characteristics of Winter Wheat. J. Agron. Crop Sci. 2004, 190, 93–99. [Google Scholar] [CrossRef]
- Zörb, C.; Becker, E.; Merkt, N.; Kafka, S.; Schmidt, S.; Schmidhalter, U. Shift of Grain Protein Composition in Bread Wheat under Summer Drought Events. J. Plant Nutr. Soil Sci. 2016, 180, 49–55. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Hawkesford, M.J.; Barraclough, P.B.; Holdsworth, M.J.; Kerr, S.; Kightley, S.; Shewry, P.R. Identifying Traits to Improve the Nitrogen Economy of Wheat: Recent Advances and Future Prospects. Field Crops Res. 2009, 114, 329–342. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Chen, J.; Adams, C. Late-season Photosynthetic Rate and Senescence Were Associated with Grain Yield in Winter Wheat of Diverse Origins. J. Agron. Crop Sci. 2017, 204, 1–12. [Google Scholar] [CrossRef]
- He, M.; Dijkstra, F.A. Drought Effect on Plant Nitrogen and Phosphorus: A Meta-analysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef]
- Peters, W.; van der Velde, I.R.; van Schaik, E.; Miller, J.B.; Ciais, P.; Duarte, H.F.; van der Laan-Luijkx, I.T.; van der Molen, M.K.; Scholze, M.; Schaefer, K.; et al. Increased Water-Use Efficiency and Reduced CO2 Uptake by Plants during Droughts at a Continental Scale. Nat. Geosci. 2018, 11, 744–748. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Xie, F. Effect of Drought Stress at Reproductive Stages on Growth and Nitrogen Metabolism in Soybean. Agronomy 2020, 10, 302. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, N.; Lu, H.; Zhu, L. Molecular Mechanism of Organic Pollutant-Induced Reduction of Carbon Fixation and Biomass Yield in Oryza sativa L. Environ. Sci. Technol. 2022, 56, 4162–4172. [Google Scholar] [CrossRef]
- Aluko, O.O.; Liu, Z.; Sun, X. The Interplay of Carbon and Nitrogen Distribution: Prospects for Improved Crop Yields. Mod. Agric. 2023, 1, 57–75. [Google Scholar] [CrossRef]
- Husenov, B.; Makhkamov, M.; Garkava-Gustavsson, L.; Muminjanov, H.; Johansson, E. Breeding for Wheat Quality to Assure Food Security of a Staple Crop: The Case Study of Tajikistan. Agric. Food Secur. 2015, 4, 9. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F. Effects of Elevated CO2 and Heat on Wheat Grain Quality. Plants 2021, 10, 1027. [Google Scholar] [CrossRef]
- Makhubu, F.N.; Mutanda, M.; Madala, N.E.; Figlan, S. Metabolite Profiling in Ten Bread Wheat (Triticum aestivum L.) Genotypes in Response to Drought Stress. Plant Stress 2024, 14, 100680. [Google Scholar] [CrossRef]
- Mutanda, M.; Shimelis, H.; Chaplot, V.; Shamuyarira, K.W.; Figlan, S. Agronomic Performance and Water Use Efficiency of Newly Developed Wheat Populations under Drought-Stressed and Non-Stressed Conditions. Discov. Appl. Sci. 2025, 7, 176. [Google Scholar] [CrossRef]
- Mutanda, M.; Shimelis, H.; Chaplot, V.; Figlan, S. Managing Drought Stress in Wheat (Triticum aestivum L.) Production: Strategies and Impacts. S. Afr. J. Plant Soil 2025, 1–12. [Google Scholar] [CrossRef]
- Mutanda, M.; Shimelis, H.; Chaplot, V.; Madala, N.E.; Figlan, S. Association between Agronomic Traits and Metabolite Profiles on Yield Response and Water Use Efficiency in Newly Developed Wheat Populations under Drought Stressed Conditions. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2025, 75, 2454389. [Google Scholar] [CrossRef]
- Robertson, M.J.; Fukai, S.; Peoples, M.B. The Effect of Timing and Severity of Water Deficit on Growth, Development, Yield Accumulation and Nitrogen Fixation of Mungbean. Field Crops Res. 2004, 86, 67–80. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Zhang, R.; Li, F.; Liang, L.; Liu, S.; Xu, B.; Chen, Y. Assessing the Impact of Early and Terminal Droughts on Root Growth, Grain Yield and Yield Stability in Old and Modern Wheat Cultivars on the Loess Plateau. Agric. Water Manag. 2024, 301, 108940. [Google Scholar] [CrossRef]
- Xu, Z.; Lai, X.; Ren, Y.; Yang, H.; Wang, H.; Wang, C.; Xia, J.; Wang, Z.; Yang, Z.; Geng, H.; et al. Impact of Drought Stress on Yield-Related Agronomic Traits of Different Genotypes in Spring Wheat. Agronomy 2023, 13, 2968. [Google Scholar] [CrossRef]
- Shamuyarira, K.W.; Shimelis, H.A.; Mathew, I.; Tsilo, T.J. Correlation and Path Coefficient Analyses of Yield and Yield Components in Drought-Tolerant Bread Wheat Populations. S. Afr. J. Plant Soil 2019, 36, 367–374. [Google Scholar] [CrossRef]
- Gous, P.W.; Warren, F.; Mo, O.W.; Gilbert, R.G.; Fox, G.P. The Effects of Variable Nitrogen Application on Barley Starch Structure under Drought Stress. J. Inst. Brew. 2015, 121, 502–509. [Google Scholar] [CrossRef]
- He, J.; Hu, W.; Li, Y.; Zhu, H.; Zou, J.; Wang, Y.; Meng, Y.; Chen, B.; Zhao, W.; Wang, S.; et al. Prolonged Drought Affects the Interaction of Carbon and Nitrogen Metabolism in Root and Shoot of Cotton. Environ. Exp. Bot. 2022, 197, 104839. [Google Scholar] [CrossRef]
- Shamuyarira, K.W.; Shimelis, H.; Figlan, S.; Chaplot, V. Path Coefficient and Principal Component Analyses for Biomass Allocation, Drought Tolerance and Carbon Sequestration Potential in Wheat. Plants 2022, 11, 1407. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Pellegrineschi, A.; Skovmand, B. Sink-Limitation to Yield and Biomass: A Summary of Some Investigations in Spring Wheat. Ann. Appl. Biol. 2005, 146, 39–49. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, W.; Chen, C.; Chen, L. Plant Root-Shoot Biomass Allocation over Diverse Biomes: A Global Synthesis. Glob. Ecol. Conserv. 2019, 18, e00606. [Google Scholar] [CrossRef]
- Asadullah Kalhoro, S.A.; Farhad, W.; Iqbal, A.; Sultan Waheed, A.; Rashid, M.; Shah, S.R.U. Exploring the Variability of Root System Architecture under Drought Stress in Heat-Tolerant Spring-Wheat Lines. Plant Soil 2024, 502, 103–119. [Google Scholar] [CrossRef]
- Li, Q.; Ren, Y.; Fu, H.; Li, Z.; Kong, F.; Yuan, J. Cultivar Differences in Carbon and Nitrogen Accumulation, Balance, and Grain Yield in Maize. Front. Plant Sci. 2022, 13, 992041. [Google Scholar] [CrossRef]
Wheat Genotypes | Pedigree |
---|---|
LM26 | ATTILA * 2/PBW65//TAM200/TUI |
LM47 | FRET2/KUKUNA//FRET2/3/YANAC/4/FRET2/KIRITATI |
LM48 | FRET2/K UKUNA//FRET2/3/PASTOR//HXL7573/2 * BAU/5/FRET2 * 2/4/SNI/TRAP#1/3/KAUZ * 2/TRAP//KAUZ |
LM71 | BABAX/3/PRL/SARA//TSI/VEE#5/4/CROC_1/AE.SQUARROSA (224)//2 * OPATA |
LM75 | BUC/MN72253//PASTOR |
BW141 | HUW234 + LR34/PRINIA * 2//WHEAR |
BW152 | PBW343 * 2/KUKUNA * 2//YANAC |
BW162 | FRET2/KUKUNA//FRET2/3/WHEAR/4/FRET2 * 2/KUKUNA |
LM70 (local check) | Local check |
BW140 (local check) | CSW88 |
Source of Variation | df | DTH | DTM | PH | TN | SL | SK | GY | SB | RB | HI | RS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rep | 1 | 11.900 | 0.007 | 11.89 | 3.006 | 2.467 | 0.72 | 4096 | 450,630 | 1186 | 195.89 | 0.000633 |
Block | 1 | 5.767 | 15.41 | 219.31 ** | 3.963 | 16.36 | 93.53 ** | 194,324.00 * | 396,919.00 | 13,825.00 | 138.17 | 0.008147 |
Genotype | 9 | 6.819 * | 19.911 * | 60.50 * | 4.559 * | 2.927 * | 34.62 * | 132,730.00 * | 461,498.00 * | 26,519.00 ** | 136.27 * | 0.003315 * |
Season | 1 | 81.176 *** | 23.913 | 42.98 | 0.003 | 33.122 *** | 71.07 | 35,515 | 1,372,040.00 * | 150,676.00 *** | 29.33 | 0.255775 *** |
Water regime | 1 | 8.041 | 8.537 | 0.03 | 3.270 | 2.589 | 0.17 | 527,490.00 ** | 1626 | 6185 | 529.28 * | 0.000884 |
Genotype × season | 9 | 6.237 | 10.917 | 37.79 | 8.441 ** | 4.053 | 26.12 | 92,646 | 199,000 | 13,907 | 156.21 * | 0.004542 |
Genotype × water regime | 9 | 2.760 | 4.576 | 84.72 ** | 3.324 | 2.598 | 12.84 | 51,280. | 131,546 | 7022 | 58.36 | 0.003375 |
Season × water regime | 1 | 9.373 | 0.393 | 83.51 | 3.513 | 1.195 | 48.20 | 304,759.00 * | 191,116 | 30,645 | 521.72 * | 0.004193 |
Genotype × season × water regime | 9 | 4.711 | 12.887 | 27.55 | 4.208 | 1.096 | 6.32 | 22,722 | 135,500 | 5534 | 68.49 | 0.003678 |
Residual | 38 | 5.646 | 9.683 | 24.52 | 2.661 | 2.157 | 18.35 | 64,317 | 219,289 | 8129 | 75.39 | 0.005333 |
Total | 78 | 6.536 | 10.710 | 38.01 | 3.791 | 2.787 | 19.70 | 77,055 | 239,696 | 12,493 | 101.48 | 0.007671 |
Source of Variation | df | C | N | CP |
---|---|---|---|---|
Rep | 1 | 29.380 | 0.1120 | 0.821 |
Block | 1 | 27.253 | 0.7643 * | 9.047 |
Genotype | 9 | 15.842 * | 0.5231 * | 13.809 * |
Water regime | 1 | 7.438 | 1.1847 * | 32.809 * |
Genotype × water regime | 9 | 27.614 * | 0.4944 * | 9.453 |
Residual | 17 | 8.954 | 0.1550 | 4.526 |
Total | 39 | 16.273 | 0.3748 | 8.668 |
Genotypes | DTH | DTM | PH | TN | SL | SPS | GY | SB | RB | HI | RS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DS | NS | DS | NS | DS | NS | DS | NS | DS | NS | DS | NS | DS | NS | DS | NS | DS | NS | DS | NS | DS | NS | |
BW140 | 64.00 | 62.75 | 100.00 | 100.75 | 71.53 | 75.10 | 3.50 | 3.63 | 9.18 | 9.72 | 7.55 | 7.40 | 460.28 | 496.67 | 1046.67 | 1151.67 | 167.78 | 212.22 | 24.28 | 21.71 | 0.17 | 0.20 |
BW141 | 65.33 | 65.50 | 102.33 | 97.50 | 83.58 | 78.30 | 3.83 | 3.58 | 8.02 | 9.60 | 7.17 | 6.04 | 131.48 | 460.00 | 925.93 | 1058.33 | 117.04 | 166.67 | 14.96 | 21.76 | 0.17 | 0.17 |
BW152 | 63.25 | 64.75 | 99.75 | 99.25 | 80.15 | 81.68 | 7.05 | 4.05 | 9.56 | 7.55 | 11.04 | 15.81 | 331.94 | 265.28 | 1169.44 | 944.42 | 173.33 | 167.24 | 17.90 | 23.28 | 0.15 | 0.19 |
BW162 | 65.50 | 65.25 | 102.50 | 100.75 | 84.28 | 76.43 | 4.75 | 4.08 | 9.03 | 9.25 | 9.33 | 7.31 | 225.00 | 245.83 | 1364.44 | 1048.89 | 190.00 | 148.89 | 11.99 | 13.57 | 0.15 | 0.16 |
LM26 | 65.00 | 66.75 | 101.75 | 102.00 | 72.13 | 81.30 | 4.43 | 4.60 | 9.38 | 9.05 | 5.93 | 9.73 | 195.39 | 365.83 | 1133.33 | 1003.33 | 138.89 | 118.33 | 13.48 | 23.93 | 0.14 | 0.16 |
LM47 | 64.00 | 65.00 | 98.50 | 98.50 | 81.78 | 83.43 | 3.45 | 4.78 | 9.10 | 10.96 | 12.00 | 8.95 | 380.56 | 550.00 | 1700.00 | 1622.22 | 233.33 | 375.56 | 15.27 | 19.78 | 0.14 | 0.23 |
LM48 | 63.50 | 63.25 | 98.25 | 96.75 | 74.88 | 84.33 | 5.25 | 6.53 | 9.36 | 10.20 | 11.42 | 10.77 | 495.83 | 771.17 | 1605.56 | 1327.22 | 222.22 | 194.44 | 19.45 | 34.39 | 0.16 | 0.14 |
LM70 | 64.25 | 63.75 | 100.00 | 100.00 | 80.28 | 79.83 | 5.33 | 4.28 | 11.08 | 10.40 | 9.58 | 7.37 | 276.39 | 610.48 | 1419.44 | 1794.44 | 261.11 | 233.33 | 12.81 | 18.89 | 0.19 | 0.15 |
LM71 | 63.25 | 65.50 | 101.25 | 100.75 | 84.65 | 75.28 | 4.55 | 3.83 | 9.11 | 9.98 | 8.90 | 9.00 | 184.72 | 466.67 | 1211.11 | 1405.56 | 233.33 | 311.11 | 11.26 | 18.39 | 0.22 | 0.22 |
LM75 | 62.50 | 64.00 | 97.00 | 97.75 | 83.76 | 81.05 | 5.73 | 4.43 | 8.97 | 9.73 | 7.44 | 7.13 | 366.67 | 388.33 | 1325.00 | 1635.56 | 250.00 | 252.22 | 17.86 | 15.33 | 0.21 | 0.15 |
Mean | 64.06 | 64.65 | 100.13 | 99.40 | 79.70 | 79.67 | 4.79 | 4.38 | 9.28 | 9.64 | 9.03 | 8.95 | 304.83 | 427.68 | 1290.09 | 1299.16 | 198.70 | 218.00 | 15.93 | 21.10 | 0.17 | 0.18 |
Std | 0.98 | 1.21 | 1.84 | 1.72 | 5.05 | 3.28 | 1.11 | 0.85 | 0.76 | 0.92 | 2.02 | 2.79 | 122.28 | 178.00 | 242.27 | 303.81 | 48.76 | 78.46 | 4.00 | 5.72 | 0.03 | 0.03 |
SEM | 0.31 | 0.38 | 0.58 | 0.55 | 1.60 | 1.04 | 0.35 | 0.27 | 0.24 | 0.29 | 0.64 | 0.88 | 38.67 | 59.33 | 76.61 | 96.07 | 15.42 | 24.81 | 1.27 | 1.81 | 0.01 | 0.01 |
%CV | 1.53 | 1.87 | 1.84 | 1.74 | 6.33 | 4.12 | 23.15 | 19.49 | 8.16 | 9.54 | 22.39 | 31.22 | 40.12 | 41.62 | 18.78 | 23.38 | 24.54 | 35.99 | 25.13 | 27.09 | 15.74 | 17.41 |
%LSD | 3.06 | 3.45 | 4.76 | 4.34 | 11.55 | 8.09 | 1.44 | 1.86 | 1.21 | 1.05 | 1.37 | 1.26 | 34.40 | 46.23 | 24.30 | 83.50 | 1.02 | 18.88 | 1.44 | 1.32 | 0.04 | 0.02 |
Genotype | N | CP | C | |||
---|---|---|---|---|---|---|
DS | NS | DS | NS | DS | NS | |
BW140 | 2.71 | 2.66 | 16.91 | 16.63 | 41.42 | 41.66 |
BW141 | 3.16 | 2.98 | 19.75 | 18.64 | 41.67 | 41.68 |
BW152 | 2.99 | 4.19 | 18.7 | 26.19 | 41.95 | 41.74 |
BW162 | 2.60 | 2.7 | 16.26 | 16.85 | 41.32 | 41.33 |
LM26 | 2.84 | 3.98 | 17.73 | 24.89 | 41.25 | 41.67 |
LM47 | 2.60 | 3.04 | 16.25 | 19.00 | 41.31 | 41.74 |
LM48 | 2.94 | 2.91 | 18.39 | 18.22 | 41.23 | 41.22 |
LM70 | 2.99 | 2.73 | 18.69 | 17.09 | 41.63 | 41.91 |
LM71 | 2.81 | 2.97 | 17.57 | 18.55 | 41.61 | 41.25 |
LM75 | 1.76 | 2.96 | 14.58 | 18.47 | 40.22 | 41.65 |
Mean | 2.74 | 3.11 | 17.48 | 19.45 | 41.36 | 41.59 |
Std | 0.39 | 0.53 | 1.51 | 3.32 | 0.46 | 0.23 |
%CV | 14.17 | 17.08 | 8.68 | 17.09 | 1.12 | 0.56 |
%LSD | 1.34 | 1.22 | 1.05 | 1.32 | 5.06 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutanda, M.; Figlan, S. Analysis of Phenotypic and Grain Quality Traits of Wheat Genotypes Under Drought-Stressed and Non-Stressed Conditions. Int. J. Plant Biol. 2025, 16, 119. https://doi.org/10.3390/ijpb16040119
Mutanda M, Figlan S. Analysis of Phenotypic and Grain Quality Traits of Wheat Genotypes Under Drought-Stressed and Non-Stressed Conditions. International Journal of Plant Biology. 2025; 16(4):119. https://doi.org/10.3390/ijpb16040119
Chicago/Turabian StyleMutanda, Maltase, and Sandiswa Figlan. 2025. "Analysis of Phenotypic and Grain Quality Traits of Wheat Genotypes Under Drought-Stressed and Non-Stressed Conditions" International Journal of Plant Biology 16, no. 4: 119. https://doi.org/10.3390/ijpb16040119
APA StyleMutanda, M., & Figlan, S. (2025). Analysis of Phenotypic and Grain Quality Traits of Wheat Genotypes Under Drought-Stressed and Non-Stressed Conditions. International Journal of Plant Biology, 16(4), 119. https://doi.org/10.3390/ijpb16040119