Genetic Characterization and Variability of Cassava (Manihot esculenta) Accessions Cultivated in Southwest and North Central Nigeria Using Agromorphological Markers
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Experimental Field
2.3. Data Collection
Determination of Harvest Index
2.4. Data Analysis
3. Results
3.1. Frequency Description of Qualitative Traits
3.1.1. Foliar Traits
3.1.2. Stem Related Traits
3.1.3. Root Related Traits
3.2. Descriptive Statistics of Quantitative Traits
3.3. Genetic Variability
3.4. Correlation Analysis for Quantitative Traits
3.5. Multiple Correspondence Analysis of Qualitative Traits
3.6. Principal Component Analysis of Quantitative Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Polthanee, A. Cassava as an insurance crop in a changing climate: The changing role and potential applications of cassava for smallholder farmers in Northeastern Thailand. For. Soc. 2018, 2, 121–137. [Google Scholar] [CrossRef]
- Online Statistical Database: Food Balance. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QI (accessed on 1 June 2025).
- Ukpong-Umo, R. Sustained adoption of improved cassava varieties and food security in Nigeria: Implication for rural development. Int. J. Innov. Res. Soc. Sci. Strateg. Manag. Tech. 2022, 9, 1–11. [Google Scholar] [CrossRef]
- Aina, O.O.; Dixon, A.G.O.; Akinrinde, E.A. Genetic variability in cassava as it influences storage root yield in Nigeria. J. Biol. Sci. 2007, 7, 765–770. [Google Scholar] [CrossRef]
- Tumuhimbise, R.; Shanahan, P.; Melis, R.; Kawuki, R. Genetic variation and association among factors influencing storage root bulking in cassava. J. Agric. Sci. 2015, 153, 1267–1280. [Google Scholar] [CrossRef]
- Amelework, A.B.; Bairu, M.W. Advances in Genetic Analysis and Breeding of Cassava (Manihot esculenta Crantz): A Review. Plants 2022, 11, 1617. [Google Scholar] [CrossRef]
- Hoban, S.; Campbell, C.D.; da Silva, J.M.; Ekblom, R.; Funk, W.C.; Garner, B.A.; Godoy, J.A.; Kershaw, F.; MacDonald, A.J.; Joachim, M.; et al. Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biol. Conserv. 2021, 261, 109233. [Google Scholar] [CrossRef]
- De Andrade, C.J.; De Andrade, L.M.; Rocco, S.A.; Sforça, M.L.; Pastore, G.M.; Jauregi, P. A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Sep. Purif. Technol. 2017, 180, 157–167. [Google Scholar] [CrossRef]
- Asare, P.A.; Galyuon, I.K.A.; Sarfo, J.K.; Tetteh, J.P. Morphological and molecular based diversity studies of some cassava (Manihot esculenta Crantz) germplasm in Ghana. Afr. J. Biotechnol. 2011, 10, 13900–13908. [Google Scholar] [CrossRef]
- Yoon, M.S.; Song, Q.J.; Choi, I.Y.; Specht, J.E.; Hyten, D.L.; Cregan, P.B. BARCSoySNP23: A panel of 23 selected SNPs for soybean cultivar identification. Theor. Appl. Genet. 2007, 114, 885–899. [Google Scholar] [CrossRef]
- Souza, D.C.L. Molecular techniques for characterization and conservation of medicinal and aromatic plants: A review. Rev. Bras. Plantas Med. 2015, 17, 495–503. [Google Scholar] [CrossRef]
- Fukuda, W.M.G.; Guevara, C.L.; Kawuki, R.; Ferguson, M.E. Selected Morphological and Agronomic Descriptors for the Characterization of Cassava; IITA: Ibadan, Nigeria, 2010; p. 25. [Google Scholar] [CrossRef]
- Federer, W.T. Augmented (or Hoonuiaku) Designs. Biom. Unit Tech. Rep. 1956, 2, BU-74-M. [Google Scholar]
- Aravind, J.; Mukesh Sankar, S.; Wankhede, D.P.; Kaur, V. augmentedRCBD: Analysis of Augmented Randomised Complete Block Designs. R Package Version 0.1.7. 2023. Available online: https://aravind-j.github.io/augmentedRCBD (accessed on 13 November 2025).
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Burton, G.W. Quantitative inheritance in pearl millet (Pennisetum glaucum). Agron. J. 1951, 43, 409–417. [Google Scholar] [CrossRef]
- Burton, G.W. Qualitative inheritance in grasses. In Proceedings of the 6th International Grassland Congress, State College, PA, USA, 17–23 August 1952; Volume 1, pp. 277–283. [Google Scholar]
- Federer, W.T.; Searle, S.R. Model considerations and variance component estimation in augmented completely randomized and randomized complete blocks designs—Preliminary Version. Biom. Unit Tech. Rep. 1976, 8, BU-592-M. [Google Scholar]
- Sivasubramaniam, S.; Madhava Menon, P. Genotypic and phenotypic variability in rice. Madras Agric. J. 1973, 60, 1093–1096. [Google Scholar]
- Lush, J.L. Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. J. Anim. Sci. 1940, 1940, 293–301. [Google Scholar] [CrossRef]
- Robinson, H.F. Quantitative genetics in relation to breeding on the centennial of Mendelism. Ind. J. Genet. Plant Breed. 1966, 26A, 171–187. [Google Scholar]
- Johnson, H.W.; Robinson, H.F.; Comstock, R.E. Estimates of genetic and environmental variability in soybeans. Agronomy 1955, 47, 314–318. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: A Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall Pearson: New York, NY, USA, 2010. [Google Scholar]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Karim, K.Y.; Ifie, B.; Dzidzienyo, D.; Danquah, E.Y.; Blay, E.T.; Whyte, J.B.; Kulakow, P.; Rabbi, I.; Parkes, E.; Iluebbey, P.; et al. Genetic characterization of cassava (Manihot esculenta Crantz) genotypes using agro-morphological and single nucleotide polymorphism markers. Physiol. Mol. Biol. Plants 2020, 26, 317–330. [Google Scholar] [CrossRef]
- Wang, W.; Feng, B.; Xiao, J.; Xia, Z.; Zhou, X.; Li, P.; Zhang, W.; Wang, Y.; Lindberg Møller, B.M.; Zhang, P. Cassava genome from a wild ancestor to cultivated varieties. Nat. Commun. 2014, 5, 5110. [Google Scholar] [CrossRef] [PubMed]
- Nadjiam, D.; Sarr, P.S.; Naïtormbaïdé, M.; Mbaïguinam, J.M.M.; Guisse, A. Agro-morphological characterization of cassava (Manihot esculenta Crantz) cultivars from Chad. Agric. Sci. 2016, 7, 479. [Google Scholar] [CrossRef]
- Daemo, B.B.; Yohannes, D.B.; Beyene, T.M.; Abtew, W.G. Genetic variability and divergence analysis in cassava (Manihot esculenta Crantz) accessions for storage root yield and other agronomic characters. J. Agric. Food Res. 2023, 14, 100874. [Google Scholar] [CrossRef]
- Mathew, A.M.; Bahadur, V.; Prasad, V.M.; Ghosh, G.; Mishra, S.; Topno, S.E. Study on genetic variability, heritability and genetic advance in tapioca (Manihot esculenta) under Allahabad Agro-Climatic conditions. J. Pharmacogn. Phytochem. 2017, 6, 1287–1290. [Google Scholar]
- Sivan, S.; Arya, K.; Sheela, M.N.; Revathi, B.S.; Krishnan, P.; Muthusamy, S.K. Genetic diversity analysis of Indian Cassava (Manihot esculenta Crantz) accessions using morphological and molecular markers. S. Afr. J. Bot. 2023, 161, 347–357. [Google Scholar] [CrossRef]
- Jiwuba, L.C. Genetic variability and genetic advance of elite varieties of cassava (Manihot esculenta Crantz). Niger. Agric. J. 2020, 51, 81–84. [Google Scholar]
- Rabbi, I.Y.; Kayondo, S.I.; Bauchet, G.; Yusuf, M.; Aghogho, C.I.; Ogunpaimo, K.; Uwugiaren, R.; Smith, I.A.; Peteti, P.; Agbona, A. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Mol. Biol. 2022, 109, 195–213. [Google Scholar] [CrossRef]
- Kanaabi, M.; Settumba, M.B.; Nuwamanya, E.; Muhumuza, N.; Iragaba, P.; Ozimati, A.; Namakula, F.B.; Kayondo, I.S.; Baguma, J.K.; Nanyonjo, A.R. Genetic Variation and Heritability for Hydrogen Cyanide in Fresh Cassava Roots: Implications for Low-Cyanide Cassava Breeding. Plants 2024, 13, 1186. [Google Scholar] [CrossRef]
- Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Holbrook, C.C.; Kvien, C.K.; Banterng, P. Seasonal variation in canopy size, light penetration and photosynthesis of three cassava genotypes with different canopy architectures. Agronomy 2020, 10, 1554. [Google Scholar] [CrossRef]
- Diaguna, R.; Suwarto, S.; Santosa, E.; Hartono, A.; Pramuhadi, G.; Nuryartono, N.; Yusfiandayani, R.; Prartono, T. Morphological and Physiological Characterization of Cassava Genotypes on Dry Land of Ultisol Soil in Indonesia. Int. J. Agron. 2022, 2022, 3599272. [Google Scholar] [CrossRef]
- Brice, D.K.E.; Pierre, Z.G.; Sidoine, E.B.; Alexandre, D.A. Morphological characterization of cassava (Manihot esculenta Crantz) accessions collected in the centre-west, south-west and west of Cote d’Ivoire. Greener J. Agric. Sci. 2014, 4, 220–231. [Google Scholar]
- Laila, F.; Zanetta, C.U.; Karuniawan, A.; Waluyo, B. Classifying cassava (Manihot esculenta Crantz.) clones based on principal component analysis of specific characters for use as selection criteria. IOP Conf. Ser. Earth Environ. Sci. 2021, 911, 012007. [Google Scholar] [CrossRef]
- Tighankoumi, G.; Daniel, D.K.; Pangirayi, T.; Kwame, A.I. Phenotypic Variation in a Panel of 149 varieties of Cassava (Manihot esculenta Crantz): A Pre-Breeding Investigation in Togo. Int. J. Plant Soil Sci. 2024, 36, 554–574. [Google Scholar] [CrossRef]
- Kouakou, D.A.; Koffi, K.K.; Angui, C.M.V.; Komenan, A.O.; Bi, A.I.Z. Agro morphological variability of cassava varieties cultivated in five regions of Côte d’Ivoire based on quantitative traits. J. Appl. Biosci. 2023, 181, 18962–18973. [Google Scholar] [CrossRef]





| Soil Factor | Measured Value |
|---|---|
| pH | 6.90 |
| N% | 0.22 |
| Org. C% | 0.88 |
| Org. M% | 2.29 |
| Av. P mg/kg | 20.96 |
| Ex. A mEq/100 g | 0.47 |
| EC µS/cm | 88.33 |
| Porosity% | 0.47 |
| Na cmol/kg | 0.32 |
| K cmol/kg | 0.51 |
| Ca cmol/kg | 0.31 |
| Mg cmol/kg | 0.34 |
| Sand% | 74.13 |
| Clay% | 2.97 |
| Silt% | 22.90 |
| No | Genetic Parameters | Formula | Reference |
|---|---|---|---|
| 1 | Genotypic variance (GV) | [16,17,18] | |
| 2 | Genotypic coefficients of variation (GCV) | [19] | |
| 3 | Phenotypic variance (PV) | [16,17,18] | |
| 4 | Phenotypic coefficients of variation (PCV) | [19] | |
| 5 | Broad-sense heritability (H2) | [20] | |
| 6 | Genetic advance (GA) | [22] | |
| 7 | Genetic advance as percentage of mean (GAM) | [22] |
| Trait | Count | Mean | Std. Error | Std. Deviation | Min | Max | Skewness | Kurtosis |
|---|---|---|---|---|---|---|---|---|
| Descriptive Statistics for Continuous Quantitative Traits | ||||||||
| LLL | 479 | 15.39 | 0.12 | 2.73 | 5.28 | 21.18 | −0.57 ** | 3.08 ns |
| WLL | 479 | 4.45 | 0.04 | 0.79 | 1.27 | 6.53 | −0.24 * | 3.42 ns |
| PL | 479 | 23.15 | 0.24 | 5.36 | 6.95 | 36.12 | −0.21 ns | 2.74 ns |
| PH | 479 | 229.65 | 2.48 | 54.28 | 68.98 | 389.21 | −0.19 ns | 3.31 ns |
| NSRP | 479 | 5.90 | 0.12 | 2.73 | 0.00 | 17.44 | 0.61 ** | 3.86 ** |
| HI | 479 | 0.44 | 0.01 | 0.12 | 0.04 | 0.87 | −0.67 ** | 3.68 * |
| Descriptive Statistics for Zero-inflated Quantitative Traits (Hurdle Model) | ||||||||
| Presence | ||||||||
| AoB | 479 | 0.42 | 0.02 | 0.4 | 0 | 1 | 0.31 | −1.46 |
| HFB | 479 | 0.42 | 0.02 | 0.4 | 0 | 1 | 0.31 | −1.46 |
| NCRP | 479 | 0.89 | 0.01 | 0.24 | 0 | 1 | −2.43 | 5.43 |
| Magnitude | ||||||||
| AoB | 297 | 55.33 | 0.37 | 6.46 | 28.11 | 76.71 | −0.35 | 1.08 |
| HFB | 297 | 91.7 | 1.86 | 32 | 21.11 | 245.21 | 0.66 | 1.42 |
| NCRP | 461 | 3.49 | 0.08 | 1.65 | 1 | 11 | 0.78 | 0.97 |
| Overall Expectation | ||||||||
| AoB | 479 | 22.94 | 1 | 21.96 | 0 | 67.33 | 0.34 | −1.38 |
| HFB | 479 | 36.93 | 1.74 | 38.02 | 0 | 203.53 | 0.83 | 0.14 |
| NCRP | 479 | 3.17 | 0.08 | 1.8 | 0 | 11 | 0.59 | 0.68 |
| Genetic Variability Analysis for Quantitative Traits (Augmented RCBD Model) | ||||||||||||||
| Trait | Mean | PV | GV | EV | GCV | GCV (Category) | PCV | PCV (Category) | ECV | hBS | hBS (Category) | GA | GAM | GAM (Category) |
| LLL | 15.39 | 21.05 | 16.91 | 4.14 | 26.72 | High | 29.81 | High | 13.21 | 80.36 | High | 7.61 | 49.42 | High |
| WLL | 4.45 | 1.98 | 1.59 | 0.39 | 28.36 | High | 31.63 | High | 14 | 80.4 | High | 2.33 | 52.46 | High |
| PL | 23.15 | 86.9 | 72.47 | 14.43 | 36.78 | High | 40.28 | High | 16.41 | 83.4 | High | 16.04 | 69.29 | High |
| PH | 229.65 | 10,457.45 | 8462.74 | 1994.71 | 40.06 | High | 44.53 | High | 19.45 | 80.93 | High | 170.73 | 74.34 | High |
| NSRP | 5.9 | 23.08 | 14.05 | 9.03 | 63.55 | High | 81.45 | High | 50.94 | 60.88 | High | 6.03 | 102.3 | High |
| HI | 0.44 | 0.03 | 0.02 | 0.01 | 34.98 | High | 41.14 | High | 21.65 | 72.3 | High | 0.27 | 61.36 | High |
| Genetic Variability Analysis (Presence Component) | ||||||||||||||
| Trait | Genotypic Variance (link) | Block Variance (link) | Phenotypic Variance (link) | Heritability (link-scale) | ||||||||||
| AoB | 4.02 | 0.18 | 7.48 | 0.54 | ||||||||||
| HFB | 4.02 | 0.18 | 7.48 | 0.54 | ||||||||||
| NCRP | 2.61 | 0 | 5.90 | 0.44 | ||||||||||
| Genetic Variability Analysis (Magnitude Component) | ||||||||||||||
| Trait | Genotypic Variance | Block Variance | Residual variance | Phenotypic variance | PCV (%) | GCV (%) | Heritability (broad sense) | Genetic advance | Genetic advance (% of mean) | |||||
| AoB | 16.83 | 2.19 | 39.35 | 58.37 | 13.74 | 7.38 | 0.29 | 4.54 | 8.16 | |||||
| HFB | 476.63 | 104.13 | 649.19 | 1125.95 | 38.53 | 23.99 | 0.39 | 27.99 | 30.76 | |||||
| NCRP | 0.06 | 0.02 | 1200.45 | 1200.53 | 945.73 | 6.69 | 0.00 | 0.00 | 0.10 | |||||
| Dimensions | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Component | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Eigenvalue | 0.12 | 0.09 | 0.08 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 |
| Variance (%) | 4.58 | 3.54 | 3.21 | 2.64 | 2.48 | 2.37 | 2.34 | 2.23 | 2.15 | 2.09 | 2.04 | 1.97 | 1.94 | 1.91 | 1.85 | 1.77 | 1.75 | 1.71 | 1.7 | 1.63 |
| Cumulative Variance (%) | 4.58 | 8.12 | 11.33 | 13.97 | 16.45 | 18.82 | 21.16 | 23.39 | 25.54 | 27.63 | 29.68 | 31.65 | 33.59 | 35.5 | 37.35 | 39.12 | 40.87 | 42.58 | 44.28 | 45.91 |
| Component | PC1 | PC2 | PC3 |
|---|---|---|---|
| AoB | −0.0464 | 0.8834 | 0.2758 |
| HFB | 0.0704 | 0.8454 | 0.3897 |
| HI | 0.3323 | 0.1885 | −0.7667 |
| LLL | 0.8646 | −0.2303 | 0.1759 |
| NCRP | 0.5744 | 0.5986 | −0.2929 |
| NSRP | 0.613 | 0.4826 | −0.3068 |
| PH | 0.5871 | 0.0705 | 0.4207 |
| PL | 0.7772 | −0.3986 | 0.1309 |
| WLL | 0.7582 | −0.3343 | 0.1261 |
| Eigenvalue | 3.0943 | 2.4505 | 1.2367 |
| Variance (%) | 34.3808 | 27.228 | 13.7414 |
| Cumulative Variance (%) | 34.3808 | 61.6088 | 75.3502 |
| Cluster | 1 | 2 | 3 |
|---|---|---|---|
| No. of Samples | 163 | 236 | 80 |
| AoB | 45.73 | 8.57 | 18.92 |
| HFB | 75.45 | 13.64 | 27.14 |
| HI | 0.46 | 0.47 | 0.33 |
| LLL | 15.22 | 16.77 | 11.67 |
| NCRP | 4.08 | 3.21 | 1.09 |
| NSRP | 7.44 | 6.68 | 3.39 |
| PH | 236.38 | 239.50 | 186.83 |
| PL | 21.71 | 26.17 | 17.16 |
| WLL | 4.28 | 4.84 | 3.60 |
| Quantitative Cluster | |||
|---|---|---|---|
| Qualitative cluster | 1 | 2 | 3 |
| 1 | 163 | 229 | 80 |
| 2 | 0 | 7 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abegunde, I.O.; Efekemo, O.P.; Onile-Ere, O.; Otitolaye, F.; Oduwaye, O.A.; Fabunmi, T.O.; Idehen, E.O.; Pita, J.S.; Tiendrébéogo, F.; Alicai, T.; et al. Genetic Characterization and Variability of Cassava (Manihot esculenta) Accessions Cultivated in Southwest and North Central Nigeria Using Agromorphological Markers. Int. J. Plant Biol. 2025, 16, 132. https://doi.org/10.3390/ijpb16040132
Abegunde IO, Efekemo OP, Onile-Ere O, Otitolaye F, Oduwaye OA, Fabunmi TO, Idehen EO, Pita JS, Tiendrébéogo F, Alicai T, et al. Genetic Characterization and Variability of Cassava (Manihot esculenta) Accessions Cultivated in Southwest and North Central Nigeria Using Agromorphological Markers. International Journal of Plant Biology. 2025; 16(4):132. https://doi.org/10.3390/ijpb16040132
Chicago/Turabian StyleAbegunde, Isaac O., Oghenevwairhe P. Efekemo, Olabode Onile-Ere, Folashade Otitolaye, Olusegun A. Oduwaye, Thomas O. Fabunmi, Emmanuel O. Idehen, Justin S. Pita, Fidèle Tiendrébéogo, Titus Alicai, and et al. 2025. "Genetic Characterization and Variability of Cassava (Manihot esculenta) Accessions Cultivated in Southwest and North Central Nigeria Using Agromorphological Markers" International Journal of Plant Biology 16, no. 4: 132. https://doi.org/10.3390/ijpb16040132
APA StyleAbegunde, I. O., Efekemo, O. P., Onile-Ere, O., Otitolaye, F., Oduwaye, O. A., Fabunmi, T. O., Idehen, E. O., Pita, J. S., Tiendrébéogo, F., Alicai, T., & Eni, A. O. (2025). Genetic Characterization and Variability of Cassava (Manihot esculenta) Accessions Cultivated in Southwest and North Central Nigeria Using Agromorphological Markers. International Journal of Plant Biology, 16(4), 132. https://doi.org/10.3390/ijpb16040132

