-
Unmasking the Warburg Effect: Unleashing the Power of Enzyme Inhibitors for Cancer Therapy
-
Bradykinin-Mediated Angioedema Induced by Commonly Used Cardiovascular Drugs
-
Requiem for Rimonabant: Therapeutic Potential for Cannabinoid CB1 Receptor Antagonists after the Fall
-
Synthesis and Antimalarial Evaluation of New 1,3,5-tris[(4-(Substituted-aminomethyl)phenyl)methyl]benzene Derivatives: A Novel Alternative Antiparasitic Scaffold
Journal Description
Drugs and Drug Candidates
Drugs and Drug Candidates
is an international, peer-reviewed, open access journal on drug discovery, development, and knowledge, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: first decisions in 16 days; acceptance to publication in 5.8 days (median values for MDPI journals in the first half of 2023).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Drugs and Drug Candidates is a companion journal of Pharmaceuticals.
Latest Articles
Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery
Drugs Drug Candidates 2023, 2(4), 898-922; https://doi.org/10.3390/ddc2040045 - 22 Nov 2023
Abstract
►
Show Figures
This review article emphasizes the current enlargements in the formation and properties of the various nanostructured aggregates resulting from the self-assembly of a variety of block copolymers (BCPs) in an aqueous solution. The development of the different polymerization techniques which produce polymers with
[...] Read more.
This review article emphasizes the current enlargements in the formation and properties of the various nanostructured aggregates resulting from the self-assembly of a variety of block copolymers (BCPs) in an aqueous solution. The development of the different polymerization techniques which produce polymers with a desired predetermined molecular weight and low polydispersity is investigated with regard to their technological and biomedical applications; in particular, their applications as vehicles for drug delivery systems are considered. The solution behavior of amphiphilic BCPs and double-hydrophilic block copolymers (DHBCs), with one or both blocks being responsive to any stimulus, is discussed. Polyion complex micelles (PICMs)/polymersomes obtained from the electrostatic interaction of a polyelectrolyte-neutral BCP with oppositely charged species are also detailed. Lastly, polymerization-induced self-assembly (PISA), which forms nanoscale micellar aggregates with controlled size/shape/surface functionality, and the crystallization-driven self-assembly of semicrystalline BCPs facilitated when one block of the BCP is crystallizable, are also revealed. The scalability of the copolymeric micelles in the drug delivery systems and pharmaceutical formations that are currently being used in clinical trials, research, or preclinical testing is emphasized as these micelles could be used in the future to create novel nanomedicines. The updated literature and the future perspectives of BCP self-assembly are considered.
Full article
Open AccessReview
The Kappa Opioid Receptor: Candidate Pharmacotherapeutic Target for Multiple Sclerosis
by
and
Drugs Drug Candidates 2023, 2(4), 883-897; https://doi.org/10.3390/ddc2040044 - 10 Nov 2023
Abstract
Multiple sclerosis (MS) afflicts millions of people worldwide. While multiple therapeutics have recently been developed and approved as treatment agents, they are not 100% effective. Recent developments investigating the endogenous opioid system involvement in MS has revealed that agonists of the kappa opioid
[...] Read more.
Multiple sclerosis (MS) afflicts millions of people worldwide. While multiple therapeutics have recently been developed and approved as treatment agents, they are not 100% effective. Recent developments investigating the endogenous opioid system involvement in MS has revealed that agonists of the kappa opioid receptor (KOR) have beneficial effects in both animal models of MS (and demyelinating disorders more generally) as well as in vitro models of remyelination. Several groups have contributed to this development. We summarize here the findings of these published studies, with comparisons of the effects and discussion of similarities and differences. The effects of KOR agonists involve both neuroimmunomodulation as well as remyelination, in different populations of cells. The compelling findings in MS model systems using KOR agonists strongly indicate that further investigations at both mechanistic and translational therapeutic levels are warranted.
Full article
(This article belongs to the Section Preclinical Research)
►▼
Show Figures

Figure 1
Open AccessFeature PaperReview
Repositioning Oxybutynin Hydrochloride: State of the Art in Synthesis, Mode of Action, Metabolism, and Formulations
Drugs Drug Candidates 2023, 2(4), 865-882; https://doi.org/10.3390/ddc2040043 - 24 Oct 2023
Abstract
For decades, oxybutynin hydrochloride has been prescribed to improve bladder control in cases of incontinence and excessive urination frequency. This review summarizes synthetic methods enabling the preparation of the racemic drug and, in a detailed manner, preparation of (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid, a
[...] Read more.
For decades, oxybutynin hydrochloride has been prescribed to improve bladder control in cases of incontinence and excessive urination frequency. This review summarizes synthetic methods enabling the preparation of the racemic drug and, in a detailed manner, preparation of (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid, a key intermediate in the synthesis of (S)-oxybutynin. The mode of action and metabolism are briefly addressed in order to explain the main adverse effects associated with its use and to justify the evolution observed in the diverse commercial formulations. Repositioning opportunities are discussed in terms of clinical trials for the management of hyperhidrosis, hot flashes, and obstructive sleep apnea.
Full article
(This article belongs to the Section Marketed Drugs)
►▼
Show Figures

Figure 1
Open AccessReview
Ethnomedicinal Uses, Phytochemistry, and Pharmacological Activity of the Irvingia Species
Drugs Drug Candidates 2023, 2(4), 827-864; https://doi.org/10.3390/ddc2040042 - 17 Oct 2023
Abstract
Plants belonging to the genus Irvingia are widespread across the African and Southeast Asian regions of the world. Irvingia gabonensis, Irvingia malayana, and Irvingia grandifolia are among the commonly used species in ethnomedicine, especially in Africa. Fever, scabies, toothache, inflammation, and
[...] Read more.
Plants belonging to the genus Irvingia are widespread across the African and Southeast Asian regions of the world. Irvingia gabonensis, Irvingia malayana, and Irvingia grandifolia are among the commonly used species in ethnomedicine, especially in Africa. Fever, scabies, toothache, inflammation, and liver and gastrointestinal disorders are among the pathological conditions that are reverted by Irvingia plants upon traditional preparations. Modern pharmacological investigations have substantiated the ethnomedicinal uses of Irvingia spp. Reports on the phytochemical analysis of Irvingia plants have revealed the presence of a number of secondary metabolites such as flavonoids, phenolic compounds, tannins, saponins, and alkaloids. Based on the foregoing, the present study provides a comprehensive evaluation of reports on the ethnomedicinal use, phytochemistry, pharmacology, and toxicity of plants from the genus Irvingia. Relevant information on Irvingia plants was mostly obtained from major scientific databases from their inception until July 2023. As a result, more than forty compounds have been identified in Irvingia spp., proving the abundance of secondary metabolites in these plants. Reports have pointed out modern pharmacological activities such as antiprotozoal, antimicrobial, antioxidant, antidiabetic, anti-inflammatory, and hepatoprotective activities. The present study provides more insights for the successful utilization of Irvingia plants and may guide further research on their therapeutic potential in the treatment of various diseases.
Full article
(This article belongs to the Collection Drug Candidates from Natural Sources)
►▼
Show Figures

Figure 1
Open AccessArticle
In Vitro Study of the Effects of Five Chemically Modified Tetracycline (CMT) Analogs on Human Epidermal Melanogenesis: Potential as Novel Anti-Melanogenic Agents
by
and
Drugs Drug Candidates 2023, 2(4), 810-826; https://doi.org/10.3390/ddc2040041 - 15 Oct 2023
Abstract
Treatment of hyperpigmented skin disorders by novel drug candidates without side effects remains an ongoing area of research. Chemically modified tetracyclines (CMTs) are a group of nonantimicrobial tetracycline drugs that have been shown to possess multiple pharmacological activities. We have previously documented the
[...] Read more.
Treatment of hyperpigmented skin disorders by novel drug candidates without side effects remains an ongoing area of research. Chemically modified tetracyclines (CMTs) are a group of nonantimicrobial tetracycline drugs that have been shown to possess multiple pharmacological activities. We have previously documented the anti-melanogenic effects of CMT-3 and its 9-amino derivative, CMT-308. Herein, we have extended our analysis to evaluate other CMT analogs, namely CMT-1, CMT-4, CMT-5, CMT-6, and CMT-8, for their impact on melanogenesis using primary human epidermal melanocytes (HEMn-DP cells). CMT analogs were screened using a tetrazolium-based assay to identify nontoxic concentration ranges that were further used to analyze the effects of CMTs on cellular melanin content and morphology (via quantitation of dendricity). Cellular tyrosinase (TYR) activity and levels of melanogenesis proteins, TYR, and microphthalmia transcription factor (MITF) were also evaluated to elucidate the mechanisms underlying their effects on melanogenesis. The findings demonstrated that exposure to CMT-8 resulted in notable cytotoxic effects at concentrations >10 µM; hence, all five analogs were further evaluated and compared at 10 µM. None of the five CMT analogs exhibited any impact on intracellular melanin in HEMn-DP cells at the concentration of 10 µM. However, CMT-1, CMT-4, and CMT-8 robustly suppressed dendricity parameters in HEMn-DP cells, while CMT-5 and CMT-6 showed no effect, suggesting that only a subset of CMT analogs can attenuate melanocyte dendricity. Moreover, the analog CMT-5, which has β-diketone blocked, was ineffective, thus confirming the role of this moiety in suppressing dendrite formation. CMT-1 and CMT-8 did not affect cellular tyrosinase activity, while CMT-4 suppressed TYR activity at 10 µM. The capacity of CMT-4 and CMT-8 to suppress dendricity was partly associated with their ability to downregulate MITF protein levels, while CMT-1 had no effect on MITF but suppressed TYR protein levels. The results of this study indicate that CMT-1, CMT-4, and CMT-8 merit further investigation using in vivo studies as potential drug candidates for the treatment of hyperpigmentation disorders.
Full article
(This article belongs to the Section Preclinical Research)
►▼
Show Figures

Figure 1
Open AccessArticle
Identification of Potential Non-Systemic Therapeutics for Hyperammonemia
by
, , , , , , and
Drugs Drug Candidates 2023, 2(4), 796-809; https://doi.org/10.3390/ddc2040040 - 30 Sep 2023
Abstract
A non-absorbable therapeutic candidate for the treatment of hyperammonemia has been identified and characterized. Conventional approaches to reducing ammonia concentration in the blood and colon include acidifying the colon, inhibiting the bacterial production of ammonia, and activation of the urea cycle. Addressing gaps
[...] Read more.
A non-absorbable therapeutic candidate for the treatment of hyperammonemia has been identified and characterized. Conventional approaches to reducing ammonia concentration in the blood and colon include acidifying the colon, inhibiting the bacterial production of ammonia, and activation of the urea cycle. Addressing gaps in the literature around therapeutic ammonia adsorption, this study established assays for ammonia uptake from both NH4OH and NH4Cl solutions as well as interference and selectivity for potassium absorption. Performance was characterized for a large number and variety of materials, spanning zeolites, ion-exchange resins, metallopolymers, metal–organic frameworks (MOFs), and polymeric carboxylic acids. The latter class showed low potassium capacity (poly(acrylic acid): 10 mg/g, poly(maleic-co-acrylic acid): 4 mg/g) and a therapeutically relevant depression of pH in buffered simulated intestinal fluid (SIF) (poly(acrylic acid): −2.01 and poly(maleic-co-acrylic acid): −3.23) compared to lactulose (−3.46), an approved therapeutic for hyperammonemia that works by acidifying the colon. In the polymeric organic acids evaluated, pH depression correlated well with pKa and acid site density. Additionally, this class of candidates should avoid the undesirable side effects of lactulose, such as the potential for hyperglycemia in diabetic patients and incompatible use with galactosemic patients.
Full article
(This article belongs to the Section Preclinical Research)
►▼
Show Figures

Figure 1
Open AccessArticle
Bioactive Components of Myracrodruon urundeuva against SARS-CoV-2: A Computational Study
by
, , , , , , , , and
Drugs Drug Candidates 2023, 2(4), 781-795; https://doi.org/10.3390/ddc2040039 - 27 Sep 2023
Abstract
SARS-CoV-2 (severe acute respiratory distress syndrome coronavirus 2) is the causative agent for the novel coronavirus disease 2019 (COVID-19). It raises serious biosecurity questions due to its high contagious potential, thereby triggering rapid and efficient responses by the scientific community to take necessary
[...] Read more.
SARS-CoV-2 (severe acute respiratory distress syndrome coronavirus 2) is the causative agent for the novel coronavirus disease 2019 (COVID-19). It raises serious biosecurity questions due to its high contagious potential, thereby triggering rapid and efficient responses by the scientific community to take necessary actions against viral infections. Cumulative scientific evidence suggests that natural products remain one of the main sources for pharmaceutical consumption. It is due to their wide chemical diversity that they are able to fight against almost all kinds of diseases and disorders in humans and other animals. Knowing the overall facts, this study was carried out to investigate the chemical interactions between the active constituents of a promising medicinal plant, Myracrodruon urundeuva, and some specific proteins of SARS-CoV-2. For this, we used molecular docking to predict the most appropriate orientation by binding a molecule (a ligand) to its receptor (a protein). The best results were evaluated by screening their pharmacokinetic properties using the online tool pkCSM. Findings suggest that among 44 chemical compounds of M. urundeuva, agathisflavone, which is abundantly present in its leaf, exhibited excellent molecular affinity (−9.3 to −9.7 kcal.mol−1) with three functional proteins, namely, Spike, MPro, and RBD of SARS-CoV-2. In conclusion, M. urundeuva might be a good source of antiviral agents. Further studies are required to elucidate the exact mechanism of action of the bioactive compounds of M. urundeuva acting against SARS-CoV-2.
Full article
(This article belongs to the Special Issue Fighting SARS-CoV-2 and Related Viruses)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Preformulation Studies of Novel Menthol Prodrugs with Antiparasitic Activity: Chemical Stability, In Silico, and In Vitro Permeability Assays
Drugs Drug Candidates 2023, 2(3), 770-780; https://doi.org/10.3390/ddc2030038 - 19 Sep 2023
Abstract
Based on the demonstrated and reported trypanocidal, leishmanicidal, and antiplasmodial activities of two menthol prodrugs, it was decided to proceed with preformulation studies, which are of key relevance in the drug discovery process. The aim of this study is to examine the stability
[...] Read more.
Based on the demonstrated and reported trypanocidal, leishmanicidal, and antiplasmodial activities of two menthol prodrugs, it was decided to proceed with preformulation studies, which are of key relevance in the drug discovery process. The aim of this study is to examine the stability and permeability of two new menthol prodrugs with antiparasitic activity. To determine the stability of menthol and its prodrugs, the corresponding studies were carried out in buffered solutions at pH values of 1.2, 5.8, and 7.4 at 37 °C. In silico permeability studies were performed using the free PerMM software and then in vitro permeability studies were performed using a biomimetic artificial membrane (BAM). Permeability studies conducted in silico predicted that both menthol and its prodrugs would pass through biological membranes via flip-flop movement. This prediction was subsequently confirmed by in vitro BAM permeability studies, where it was observed that the menthol prodrugs (1c and 1g) exhibited the highest Papp (apparent permeability) value compared to the parent compound. The study reveals that menthol prodrugs exhibit stability at a pH of 5.8 and possess sufficient in vitro permeability values as preformulation parameters.
Full article
(This article belongs to the Collection Anti-Parasite Drug Discovery)
►▼
Show Figures

Figure 1
Open AccessReview
Unmasking the Warburg Effect: Unleashing the Power of Enzyme Inhibitors for Cancer Therapy
by
, , , , and
Drugs Drug Candidates 2023, 2(3), 728-769; https://doi.org/10.3390/ddc2030037 - 18 Sep 2023
Abstract
The Warburg effect (or aerobic glycolysis), which was first described in 1926 by Otto Heinrich Warburg, consists of the change in glucose metabolism in cancer cells. In normal cells, glucose metabolism finalizes in the mitochondria through oxidative phosphorylation (OXPHOS) in the presence of
[...] Read more.
The Warburg effect (or aerobic glycolysis), which was first described in 1926 by Otto Heinrich Warburg, consists of the change in glucose metabolism in cancer cells. In normal cells, glucose metabolism finalizes in the mitochondria through oxidative phosphorylation (OXPHOS) in the presence of oxygen. However, the Warburg effect describes a change in the glucose metabolism in cancer cells, consuming excess glucose and converting it into lactate independently of the presence of oxygen. During this process, a wide variety of enzymes can modify their expression and activity to contribute to the mechanism of deregulated cancer metabolism. Therefore, the modulation of enzymes regulating aerobic glycolysis is a strategy for cancer treatment. Although numerous enzymes play a role in regulating aerobic glycolysis, hexokinase 2 (HK2), pyruvate dehydrogenase kinase (PDK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) are worth mentioning. Numerous modulators of these enzymes have been described in recent years. This review aims to present and group, according to their chemical structure, the most recent emerging molecules targeting the above-mentioned enzymes involved in the Warburg effect in view of the future development of cancer treatments.
Full article
(This article belongs to the Section Preclinical Research)
►▼
Show Figures

Figure 1
Open AccessReview
Bradykinin-Mediated Angioedema Induced by Commonly Used Cardiovascular Drugs
Drugs Drug Candidates 2023, 2(3), 708-727; https://doi.org/10.3390/ddc2030036 - 08 Sep 2023
Abstract
ACE inhibitors, sartans, and sacubitril are among the most important drugs for the prevention of cardiovascular mortality and morbidity. At the same time, they are known to cause non-allergic bradykinin-mediated angioedema, a potentially fatal swelling of the mucosa and/or submucosa and deeper skin
[...] Read more.
ACE inhibitors, sartans, and sacubitril are among the most important drugs for the prevention of cardiovascular mortality and morbidity. At the same time, they are known to cause non-allergic bradykinin-mediated angioedema, a potentially fatal swelling of the mucosa and/or submucosa and deeper skin without signs of urticaria or pruritus, occurring mainly in the head and neck region. In contrast with hereditary angioedema, which is also mediated by bradykinin, angioedema triggered by these drugs is by far the most common subtype of non-allergic angioedema. The molecular mechanisms underlying this type of angioedema, which are discussed here, are not yet sufficiently understood. There are a number of approved drugs for the prevention and treatment of acute attacks of hereditary angioedema. These include inhibitors of bradykinin synthesis that act as kallkrein inhibitors, such as the parenterally applied plasma pool, and recombinant C1 esterase inhibitor, ecallantide, lanadelumab, and the orally available berotralstat, as well as the bradykinin receptor type 2 antagonist icatibant. In contrast, no diagnostic tools, guidelines, or treatments have yet been approved for the diagnosis and treatment of acute non-allergic drug-induced angioedema, although it is more common and can take life-threatening courses. Approved specific drugs and a structured diagnostic workflow are needed for this emergency diagnosis.
Full article
(This article belongs to the Special Issue Drugs of the Kallikrein-Kinin System)
►▼
Show Figures

Figure 1
Open AccessReview
Requiem for Rimonabant: Therapeutic Potential for Cannabinoid CB1 Receptor Antagonists after the Fall
Drugs Drug Candidates 2023, 2(3), 689-707; https://doi.org/10.3390/ddc2030035 - 30 Aug 2023
Abstract
The endocannabinoid system is found throughout the CNS and the body where it impacts many important physiological processes. Expectations were high that targeting cannabinoid receptors would prove therapeutically beneficial; pharmaceutical companies quickly seized on the appetitive and metabolic effects of cannabinoids to develop
[...] Read more.
The endocannabinoid system is found throughout the CNS and the body where it impacts many important physiological processes. Expectations were high that targeting cannabinoid receptors would prove therapeutically beneficial; pharmaceutical companies quickly seized on the appetitive and metabolic effects of cannabinoids to develop a drug for the treatment of weight loss. Alas, the experience with first-in-class cannabinoid type-1 receptor (CB1R) antagonist rimonabant is a now-classic cautionary tale of the perils of drug development and the outcome of rimonabant’s fall from grace dealt a blow to those pursuing therapies involving CB1R antagonists. And this most commercially compelling application of rimonabant has now been partially eclipsed by drugs with different mechanisms of action and greater effect. Still, blocking CB1 receptors causes intriguing metabolic effects, some of which appear to occur outside the CNS. Moreover, recent years have seen a startling change in the legal status of cannabis, accompanied by a popular embrace of ‘all things cannabis’. These changes combined with new pharmacological strategies and diligent medicinal chemistry may yet see the field to some measure of fulfillment of its early promise. Here, we review the story of rimonabant and some of the therapeutic niches and strategies that still hold promise after the fall.
Full article
(This article belongs to the Section Marketed Drugs)
►▼
Show Figures

Figure 1
Open AccessReview
Schlesinger Nailed It! Assessing a Key Primary Pharmacodynamic Property of Phages for Phage Therapy: Virion Encounter Rates with Motionless Bacterial Targets
Drugs Drug Candidates 2023, 2(3), 673-688; https://doi.org/10.3390/ddc2030034 - 18 Aug 2023
Abstract
►▼
Show Figures
Bacteriophages (phages) are viruses of bacteria and have been used as antibacterial agents now for over one-hundred years. The primary pharmacodynamics of therapeutic phages can be summed up as follows: phages at a certain concentration can reach bacteria at a certain rate, attach
[...] Read more.
Bacteriophages (phages) are viruses of bacteria and have been used as antibacterial agents now for over one-hundred years. The primary pharmacodynamics of therapeutic phages can be summed up as follows: phages at a certain concentration can reach bacteria at a certain rate, attach to bacteria that display appropriate receptors on their surfaces, infect, and (ideally) kill those now-adsorbed bacteria. Here, I consider the rate at which phages reach bacteria, during what can be dubbed as an ‘extracellular search’. This search is driven by diffusion and can be described by what is known as the phage adsorption rate constant. That constant in turn is thought to be derivable from knowledge of bacterial size, virion diffusion rates, and the likelihood of phage adsorption given this diffusion-driven encounter with a bacterium. Here, I consider only the role of bacterial size in encounter rates. In 1932, Schlesinger hypothesized that bacterial size can be described as a function of cell radius (R, or R1), as based on the non-phage-based theorizing of Smoluchowski (1917). The surface area of a cell—what is actually encountered—varies however instead as a function R2. Here, I both provide and review evidence indicating that Schlesinger’s assertion seems to have been correct.
Full article

Graphical abstract
Open AccessArticle
Synthesis and Antimalarial Evaluation of New 1,3,5-tris[(4-(Substituted-aminomethyl)phenyl)methyl]benzene Derivatives: A Novel Alternative Antiparasitic Scaffold
by
, , , , , , , , , , and
Drugs Drug Candidates 2023, 2(3), 653-672; https://doi.org/10.3390/ddc2030033 - 08 Aug 2023
Abstract
A series of new 1,3,5-tris[(4-(substituted-aminomethyl)phenyl)methyl]benzene compounds were designed, synthesized, and evaluated in vitro against two parasites (Plasmodium falciparum and Leishmania donovani). The biological results showed antimalarial activity with IC50 values in the sub and μM range. The in
[...] Read more.
A series of new 1,3,5-tris[(4-(substituted-aminomethyl)phenyl)methyl]benzene compounds were designed, synthesized, and evaluated in vitro against two parasites (Plasmodium falciparum and Leishmania donovani). The biological results showed antimalarial activity with IC50 values in the sub and μM range. The in vitro cytotoxicity of these new aza polyaromatic derivatives was also evaluated on human HepG2 cells. The 1,3,5-tris[(4-(substituted-aminomethyl)phenyl)methyl]benzene 1m was found as one of the most potent and promising antimalarial candidates with a ratio of cytotoxic to antiprotozoal activities of 83.67 against the P. falciparum CQ-sensitive strain 3D7. In addition, derivative 1r was also identified as the most interesting antimalarial compound with a selectivity index (SI) of 17.28 on the W2 P. falciparum CQ-resistant strain. It was previously described that the telomeres of P. falciparum could be considered as potential targets of these kinds of aza heterocycles; thus, the ability of these new derivatives to stabilize the parasitic telomeric G-quadruplexes was measured through a FRET melting assay.
Full article
(This article belongs to the Collection Anti-Parasite Drug Discovery)
►▼
Show Figures

Figure 1
Open AccessReview
Inhibitors of Farnesyl Diphosphate Synthase and Squalene Synthase: Potential Source for Anti-Trypanosomatidae Drug Discovery
Drugs Drug Candidates 2023, 2(3), 624-652; https://doi.org/10.3390/ddc2030032 - 04 Aug 2023
Abstract
Trypanosomatids are mainly responsible for leishmaniasis, sleeping sickness, and Chagas disease, which are the most challenging among the neglected tropical diseases due to the problem of drug resistance. Although problems of target deconvolution and polypharmacology are encountered, a target-based approach is a rational
[...] Read more.
Trypanosomatids are mainly responsible for leishmaniasis, sleeping sickness, and Chagas disease, which are the most challenging among the neglected tropical diseases due to the problem of drug resistance. Although problems of target deconvolution and polypharmacology are encountered, a target-based approach is a rational method for screening drug candidates targeting a biomolecule that causes infections. The present study aims to summarize the latest information regarding potential inhibitors of squalene synthase and farnesyl phosphate synthase with anti-Trypanosomatidae activity. The information was obtained by referencing textbooks and major scientific databases from their inception until April 2023. Based on in vitro experiments, more than seventy compounds were reported to inhibit squalene synthase and farnesyl diphosphate synthase. Among these compounds, more than 30 were found to be active in vitro against Trypanosomatidae, inferring that these compounds can be used as scaffolds to develop new drugs against trypanosomatid-related infections. Overall, natural and synthetic products can inhibit enzymes that are crucial for the survival and virulence of trypanosomatids. Moreover, in vitro experiments have confirmed the activity of more than half of these inhibitors using cell-based assays. Nevertheless, additional studies on the cytotoxicity, pharmacokinetics, and lead optimization of potent anti-Trypanosomatid compounds should be investigated.
Full article
(This article belongs to the Collection Anti-Parasite Drug Discovery)
►▼
Show Figures

Graphical abstract
Open AccessFeature PaperReview
MET-Targeting Anticancer Drugs—De Novo Design and Identification by Drug Repurposing
Drugs Drug Candidates 2023, 2(3), 591-623; https://doi.org/10.3390/ddc2030031 - 18 Jul 2023
Abstract
►▼
Show Figures
The Met protein is a cell surface receptor tyrosine kinase predominantly expressed in epithelial cells. Aberrant regulation of MET is manifested by numerous mechanisms including amplification, mutations, deletion, fusion of the MET proto-oncogene, and protein overexpression. They represent the common causes of drug
[...] Read more.
The Met protein is a cell surface receptor tyrosine kinase predominantly expressed in epithelial cells. Aberrant regulation of MET is manifested by numerous mechanisms including amplification, mutations, deletion, fusion of the MET proto-oncogene, and protein overexpression. They represent the common causes of drug resistance to conventional and targeted chemotherapy in numerous cancer types. There is also accumulating evidence that MET/HGF signaling drives an immunosuppressive tumor microenvironment and dampens the efficacy of cancer immunotherapy. Substantial research effort has been invested in designing Met-targeting drugs with different mechanisms of action. In this review, we summarized the current preclinical and clinical research about the development of Met-targeting drugs for cancer therapeutics. Early attempts to evaluate Met-targeted therapies in clinical trials without selecting the appropriate patient population did not produce satisfactory outcomes. In the era of personalized medicine, cancer patients harboring MET exon 14 alterations or MET amplification have been found to respond well to Met-inhibitor therapy. The application of Met inhibitors to overcome drug resistance in cancer patients is discussed in this paper. Given that kinases play critical roles in cancer development, numerous kinase-mediated signaling pathways are attractive targets for cancer therapy. Existing kinase inhibitors have also been repurposed to new kinase targets or new indications in cancer. On the other hand, non-oncology drugs have also been repurposed for treating cancer through kinase inhibition as one of their reported anticancer mechanisms.
Full article

Figure 1
Open AccessPerspective
Drug Candidates for the Treatment of Alzheimer’s Disease: New Findings from 2021 and 2022
Drugs Drug Candidates 2023, 2(3), 571-590; https://doi.org/10.3390/ddc2030030 - 17 Jul 2023
Abstract
►▼
Show Figures
Alzheimer’s disease (AD), an ongoing neurodegenerative disorder among the elderly, is signalized by amnesia, progressive deficiency in cognitive roles, and behavioral deformity. Over the last ten years, its pathogenesis still remains unclear despite several efforts from various researchers across the globe. There are
[...] Read more.
Alzheimer’s disease (AD), an ongoing neurodegenerative disorder among the elderly, is signalized by amnesia, progressive deficiency in cognitive roles, and behavioral deformity. Over the last ten years, its pathogenesis still remains unclear despite several efforts from various researchers across the globe. There are certain factors that seem to be involved in the progression of the disease such as the accumulation of β-amyloid, oxidative stress, the hyperphosphorylation of tau protein, and a deficit of acetylcholine (ACh). Ongoing therapeutics are mainly based on the cholinergic hypothesis, which suggests that the decrease in the ACh levels leads to the loss of memory. Therefore, increasing the cholinergic function seems to be beneficial. Acetylcholinesterase inhibitors (AChEIs) inhibit the enzyme by avoiding the cleavage of acetylcholine (ACh) and increasing the neurotransmitter acetylcholine (ACh) levels in the brain areas. Thus, the cholinergic deficit is the root cause of Alzheimer’s disease (AD). Currently, drugs such as tacrine, donepezil, rivastigmine, and galantamine have been launched on the market for a cholinergic approach to AD to increase neurotransmission at cholinergic synapses in the brain and to improve cognition. These commercialized medicines only provide supportive care, and there is a loss of medicinal strength over time. Therefore, there is a demand for investigating a novel molecule that overcomes the drawbacks of commercially available drugs. Therefore, butyrylcholinesterase (BChE), amyloid-β (Aβ), β-secretase-1 (BACE), metals Cu(II), Zn(II), or Fe(II), antioxidant properties, and the free radical scavenging capacity have been primarily targeted in the preceding five years along with targeting the AChE enzyme. A desired, well-established pharmacological profile with a number of hybrid molecules incorporating substructures within a single scaffold has been investigated. From distinct chemical categories such as acridine, quinoline, carbamate, huperzine, and other heterocyclic analogs, the main substructures used in developing these molecules are derived. The optimization of activity through structural modifications of the prototype molecules has been followed to develop the Structure Activity Relationship (SAR), which in turn facilitates the development of novel molecules with expected AChE inhibitory activity together with many more pharmacological properties. The present review outlines the current drug candidates in the advancement of these AChEIs in the last two years.
Full article

Figure 1
Open AccessReview
Algal Nanoparticles and Their Antibacterial Activity: Current Research Status and Future Prospectives
by
, , , and
Drugs Drug Candidates 2023, 2(3), 554-570; https://doi.org/10.3390/ddc2030029 - 06 Jul 2023
Abstract
►▼
Show Figures
Green nanotechnology is a promising technology that has a wide range of applications in pharmaceuticals today because they offer a higher surface-area-to-volume ratio. Algal-based nanoparticles (NPs) are the subject of intense research interest today for their potential to treat and prevent infections caused
[...] Read more.
Green nanotechnology is a promising technology that has a wide range of applications in pharmaceuticals today because they offer a higher surface-area-to-volume ratio. Algal-based nanoparticles (NPs) are the subject of intense research interest today for their potential to treat and prevent infections caused by infectious microorganisms that are antibiotic resistant. Algae contain a variety of therapeutically potential bioactive ingredients, including chlorophyll, phycobilin, phenolics, flavonoids, glucosides, tannins, and saponins. As a result, NPs made from algae could be used as therapeutic antimicrobials. Due to their higher surface-area-to-volume ratios compared to their macroscopic components, metallic nanoparticles are more reactive and have toxic effects on their therapy. For pharmaceutical and biomedical applications, green synthesis restricts the use of physical and chemical methods of metallic nanoparticle synthesis, and it can be carried out in an environmentally friendly and relatively low-cost manner. The majority of macroalgae and some microalgae have latent antimicrobial activity and are used in the synthesis of metallic nanoparticles. A potential application in the field of nanomedicine and the establishment of a potential pharmacophore against microorganisms may result from the synthesis of algal-based NPs. Only a few studies have been done on the potential antimicrobial, antifungal, and antibacterial activity of algae-based NPs. As a result, the study will concentrate on the environmentally friendly synthesis of various NPs and their therapeutic potential, with a focus on their antibacterial activity. Thus, the aim of this study is to review all the literature available on the synthesis and characterization of the algal nanoparticles and their potential application as an antibacterial agent.
Full article

Figure 1
Open AccessReview
Drugs of the Kallikrein–Kinin System: An Overview
Drugs Drug Candidates 2023, 2(3), 538-553; https://doi.org/10.3390/ddc2030028 - 05 Jul 2023
Abstract
The kallikrein–kinin system consists of the two kininogen substrates present in the blood plasma, and two serine proteases: the plasma and tissue kallikreins. The action of the latter on kininogens produces small peptides, the kinins, short-lived, but endowed by powerful pharmacologic actions on
[...] Read more.
The kallikrein–kinin system consists of the two kininogen substrates present in the blood plasma, and two serine proteases: the plasma and tissue kallikreins. The action of the latter on kininogens produces small peptides, the kinins, short-lived, but endowed by powerful pharmacologic actions on blood vessels and other tissues. Many recent and exciting therapeutic developments in the field are briefly summarized. Notably, various novel strategies are being clinically developed to inhibit the formation of bradykinin or block its receptors in the management of hereditary angioedema. The interventions include orally bioavailable drugs, biotechnological proteins, and gene therapy. These approaches are currently explored in a variety of other inflammatory and thrombotic disorders. Harnessing controlled kinin formation is also of potential therapeutic interest, as shown by the clinical development of recombinant tissue kallikrein for ischemic stroke and renal disease. The biomarkers of kinin-mediated disorders, frequently implicating edemas, include the consumption of kininogen(s), plasma kallikrein activity, and the detection of circulating kinin metabolites such as fragments BK1–5 and BK2–9. Novel opportunities to clinically apply the underexploited drugs of the kallikrein–kinin system are briefly reviewed. This personal perspective is offered by an observer of and a participant in drug characterization throughout the last four decades.
Full article
(This article belongs to the Special Issue Drugs of the Kallikrein-Kinin System)
►▼
Show Figures

Figure 1
Open AccessReview
Black Cumin Seed (Nigella sativa) in Inflammatory Disorders: Therapeutic Potential and Promising Molecular Mechanisms
Drugs Drug Candidates 2023, 2(2), 516-537; https://doi.org/10.3390/ddc2020027 - 17 Jun 2023
Abstract
Inflammation is an essential defense mechanism against harmful stimuli. However, uncontrolled inflammatory mechanisms culminate in disturbed responses that contribute to multiple serious diseases. Besides common synthetic drugs, there is a growing interest in optimizing the use of natural products as therapeutic or protective
[...] Read more.
Inflammation is an essential defense mechanism against harmful stimuli. However, uncontrolled inflammatory mechanisms culminate in disturbed responses that contribute to multiple serious diseases. Besides common synthetic drugs, there is a growing interest in optimizing the use of natural products as therapeutic or protective supplements against inflammatory disorders. Black cumin seed (BCS), or Nigella sativa (Family Ranunculaceae), is widely used as a health-supportive herb in the Middle East, Far East and West Asia. BCS is a rich source of phytochemicals, and studies have reported its promising effects against a variety of metabolic, proliferative, respiratory, and neurological disorders associated with disrupted inflammatory pathways. This review presents an updated comprehensive assessment of BCS’s effects against various inflammatory disorders and highlights the role of BCS’s bioactive constituents in inflammation and oxidative stress pathways. Moreover, it outlines the future possibilities for enhancing therapeutic activity through efficient pharmaceutical formulations. Thorough analysis of international research studies published between the years 1998 and 2023 reveals the promising anti-inflammatory potential of BCS’s bioactive constituents through modulating inflammation and crucial oxidative stress players in inflammatory disorders. Thus, the bioactive constituents of BCS can be further boosted by updated technologies such as nano-incorporation for the improved management of inflammatory diseases.
Full article
(This article belongs to the Collection Drug Candidates from Natural Sources)
►▼
Show Figures

Figure 1
Open AccessArticle
Antimicrobial Nanoformulations Based on Schinus areira Essential Oil
by
, , , and
Drugs Drug Candidates 2023, 2(2), 498-515; https://doi.org/10.3390/ddc2020026 - 12 Jun 2023
Abstract
The goal of this research was to create an antibacterial formulation from Scinus areira essential oil (EO) that could spread in water. To achieve this, we developed liposomal formulations of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) or DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) that encapsulated the EO. In addition, we utilized
[...] Read more.
The goal of this research was to create an antibacterial formulation from Scinus areira essential oil (EO) that could spread in water. To achieve this, we developed liposomal formulations of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) or DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) that encapsulated the EO. In addition, we utilized the EO as a reducing and stabilizing agent to synthesize silver nanoparticles (AgNPs). The nanoformulations were characterized by determining their size and zeta potential. In the case of liposomal formulations, chemical composition, and encapsulation efficiency were also determined. Furthermore, antimicrobial activity studies against Gram-positive and Gram-negative model bacteria were carried out for both kinds of formulations. The results obtained showed the successful encapsulation of the S. areira EO in multilamellar liposomes of phosphatidylcholine with high efficiency. DPPC liposomes have proven to be a better encapsulation system, retaining more monoterpenes from the EO and therefore presenting antimicrobial activity against S. aureus with an minimal inhibitory concentration (MIC) value of 3 mg/mL of EO. On the other hand, it was also possible to obtain AgNPs by using S. areira EO, which showed antimicrobial activity against S. aureus and E. coli at low concentrations of EO, with MIC values of 6.68 µg/mL and 3.4 µg/mL of silver, respectively. The data obtained will contribute to enhancing the biotechnological value of natural products derived from native plant species in Argentina. This will be achieved through the generation of novel formulations with antibacterial activity and potential bioavailability.
Full article
(This article belongs to the Collection Drug Candidates from Natural Sources)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomedicines, DDC, Molecules, Pharmaceuticals, Pharmaceutics
Research in Pharmacological Therapies
Topic Editors: Juan Gambini, Ángel Luis OrtegaDeadline: 31 March 2024

Conferences
Special Issues
Special Issue in
DDC
Drugs of the Kallikrein-Kinin System
Guest Editor: François MarceauDeadline: 1 April 2024
Special Issue in
DDC
Fighting SARS-CoV-2 and Related Viruses
Guest Editors: Jean Jacques Vanden Eynde, Annie MayenceDeadline: 30 June 2024
Special Issue in
DDC
Theranostic Small Molecules
Guest Editors: Hélio Albuquerque, Maria Emília De SousaDeadline: 31 August 2024
Topical Collections
Topical Collection in
DDC
Drug Candidates from Natural Sources
Collection Editors: Fatma Sezer Senol Deniz, Duygu Sevim
Topical Collection in
DDC
Bioinorganic Chemistry in Drug Discovery
Collection Editors: Tanja Soldatović, Snežana Jovanović-Stević
Topical Collection in
DDC
Carbohydrate-Containing Molecules: A Platform of Opportunities for Drug Discovery
Collection Editors: Nuno Manuel Xavier, Ana M. de Matos
Topical Collection in
DDC
Chirality in Drugs and Drug Candidates
Collection Editors: Carla Fernandes, Maria Emília De Sousa