Probing Redox Responses and DNA Interactions in Drug Discovery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Profiling of TP-NB and TP-PC
2.2. Interaction Between Drug Candidates and DNA
- S: Percentage of the guanine peak current change;
- Sa: The magnitude of the guanine current upon interaction with drug candidate;
- Sb: The magnitude of the guanine current before interaction with drug candidate.
3. Materials and Methods
3.1. Chemicals and Apparatus
3.2. Synthesis of Thiazolo [5,4-d]pyrimidine Derivatives
3.3. Electrochemical Analysis of Drug Candidate Molecules and Their Interaction with DNA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuppast, B.; Fahmy, H. Thiazolo[4,5-d]pyrimidines as a privileged scaffold in drug discovery. Eur. J. Med. Chem. 2016, 113, 198–213. [Google Scholar] [CrossRef]
- Li, Z.-H.; Zhang, J.; Liu, X.-Q.; Geng, P.-F.; Ma, J.-L.; Wang, B.; Zhao, T.-Q.; Zhao, B.; Wei, H.-M.; Wang, C.; et al. Identification of thiazolo[5,4-d]pyrimidine derivatives as potent antiproliferative agents through the drug repurposing strategy. Eur. J. Med. Chem. 2017, 135, 204–212. [Google Scholar] [CrossRef]
- Fahmy, H.T.Y.; Rostom, S.A.F.; Saudi, M.N.; Zjawiony, J.K.; Robins, D.J. Synthesis andin vitro evaluation of the anticancer activity of novel fluorinated thiazolo[4, 5-d]pyrimidines. Arch. Pharm. 2003, 336, 216–225. [Google Scholar] [CrossRef]
- Xue, W.; Du, J.; Deng, Y.; Yan, Z.; Liu, J.; Liu, Y.; Sun, L. Design and Synthesis of Novel Thiazolo[5,4- d ]pyrimidine Derivatives as Potential Angiogenesis Inhibitors. Chem. Biodivers. 2019, 16, e1900232. [Google Scholar] [CrossRef]
- Alam, O.; Khan, S.A.; Siddiqui, N.; Ahsan, W. Synthesis and pharmacological evaluation of newer thiazolo [3,2-a] pyrimidines for anti-inflammatory and antinociceptive activity. Med. Chem. Res. 2010, 19, 1245–1258. [Google Scholar] [CrossRef]
- Varano, F.; Catarzi, D.; Vincenzi, F.; Betti, M.; Falsini, M.; Ravani, A.; Borea, P.A.; Colotta, V.; Varani, K. Design, Synthesis, and Pharmacological Characterization of 2-(2-Furanyl)thiazolo[5,4- d ]pyrimidine-5,7-diamine Derivatives: New Highly Potent A 2A Adenosine Receptor Inverse Agonists with Antinociceptive Activity. J. Med. Chem. 2016, 59, 10564–10576. [Google Scholar] [CrossRef]
- Kuppast, B.; Spyridaki, K.; Lynch, C.; Hu, Y.; Liapakis, G.; Davies, G.E.; Fahmy, H. Synthesis of New Thiazolo[4,5-d]pyrimidines as Corticotropin Releasing Factor Modulators. Med. Chem. 2014, 11, 50–59. [Google Scholar] [CrossRef]
- Becan, L.; Wagner, E. Synthesis and anticancer evaluation of novel 3,5-diaryl-thiazolo[4,5-d] pyrimidin-2-one derivatives. Med. Chem. Res. 2013, 22, 2376–2384. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, G.; He, J.; Li, J.; Xiong, M.; Su, H.; Li, M.; Hu, H.; Xu, Y. Structure-Based Design of Potent Peptidomimetic Inhibitors Covalently Targeting SARS-CoV-2 Papain-like Protease. Int. J. Mol. Sci. 2023, 24, 8633. [Google Scholar] [CrossRef]
- Selvaraj, C.; Singh, S.K. Computational and Experimental Binding Mechanism of DNA-drug Interactions. Curr. Pharm. Des. 2019, 24, 3739–3757. [Google Scholar] [CrossRef]
- Rauf, S.; Gooding, J.; Akhtar, K.; Ghauri, M.; Rahman, M.; Anwar, M.; Khalid, A. Electrochemical approach of anticancer drugs–DNA interaction. J. Pharm. Biomed. Anal. 2005, 37, 205–217. [Google Scholar] [CrossRef]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B 2013, 124, 1–19. [Google Scholar] [CrossRef]
- Shahabadi, N.; Fili, S.M.; Kheirdoosh, F. Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J. Photochem. Photobiol. B Biol. 2013, 128, 20–26. [Google Scholar] [CrossRef]
- Sánchez-González, Á.; Castro, T.G.; Melle-Franco, M.; Gil, A. From groove binding to intercalation: Unravelling the weak interactions and other factors modulating the modes of interaction between methylated phenanthroline-based drugs and duplex DNA. Phys. Chem. Chem. Phys. 2021, 23, 26680–26695. [Google Scholar] [CrossRef]
- Kuzpınar, E.; Al Faysal, A.; Şenel, P.; Erdoğan, T.; Gölcü, A. Quantification of mirtazapine in tablets via DNA binding mechanism; development of a new HPLC method. J. Chromatogr. B 2024, 1234, 124019. [Google Scholar] [CrossRef]
- Ponkarpagam, S.; Vennila, K.N.; Elango, K.P. Molecular spectroscopic and molecular simulation studies on the interaction of oral contraceptive drug Ormeloxifene with CT–DNA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 278, 121351. [Google Scholar] [CrossRef]
- Johari-Ahar, M.; Abdian, M.; Maleki, S.; Abbasgolizadeh, P.; Fathi, F. Intercalation of anticancer drug mitoxantrone into DNA: Studied by spectral and surface plasmon resonance methods. J. Mol. Struct. 2023, 1274, 134509. [Google Scholar] [CrossRef]
- Ramotowska, S.; Ciesielska, A.; Makowski, M. What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions? Molecules 2021, 26, 3478. [Google Scholar] [CrossRef]
- Istanbullu, H.; Bayraktar, G.; Karakaya, G.; Akbaba, H.; Perk, N.E.; Cavus, I.; Podlipnik, C.; Yereli, K.; Ozbilgin, A.; Butuner, B.D.; et al. Design, synthesis, in vitro—In vivo biological evaluation of novel thiazolopyrimidine compounds as antileishmanial agent with PTR1 inhibition. Eur. J. Med. Chem. 2023, 247, 115049. [Google Scholar] [CrossRef]
- Okamoto, K.; Nagahara, S.; Imada, Y.; Narita, R.; Kitano, Y.; Chiba, K. Hydrosilane-Mediated Electrochemical Reduction of Amides. J. Org. Chem. 2021, 86, 15992–16000. [Google Scholar] [CrossRef]
- Aftab, S.; Kurbanoglu, S.; Ozcelikay, G.; Bakirhan, N.K.; Shah, A.; Ozkan, S.A. Carbon quantum dots co-catalyzed with multiwalled carbon nanotubes and silver nanoparticles modified nanosensor for the electrochemical assay of anti-HIV drug Rilpivirine. Sens. Actuators B Chem. 2019, 285, 571–583. [Google Scholar] [CrossRef]
- Kaya, S.; Demirkan, B.; Bakirhan, N.; Kuyuldar, E.; Kurbanoglu, S.; Ozkan, S.; Sen, F. Highly sensitive carbon-based nanohybrid sensor platform for determination of 5-hydroxytryptamine receptor agonist (Eletriptan). J. Pharm. Biomed. Anal. 2019, 174, 206–213. [Google Scholar] [CrossRef]
- Samanci, S.N.; Ozcelikay-Akyildiz, G.; Atici, E.B.; Ozkan, S.A. Electrochemical behaviour and determination of niraparib using glassy carbon and boron-doped diamond electrodes. Diam. Relat. Mater. 2025, 152, 111964. [Google Scholar] [CrossRef]
- Mohamed, M.A.; El-Gendy, D.M.; Ahmed, N.; Banks, C.E.; Allam, N.K. 3D spongy graphene-modified screen-printed sensors for the voltammetric determination of the narcotic drug codeine. Biosens. Bioelectron. 2018, 101, 90–95. [Google Scholar] [CrossRef]
- Karadurmus, L.; Kurbanoglu, S.; Uslu, B.; Ozkan, S.A. An Efficient, Simultaneous Electrochemical Assay of Rosuvastatin and Ezetimibe from Human Urine and Serum Samples. Methods Protoc. 2022, 5, 90. [Google Scholar] [CrossRef]
- Fekry, A.M.; Shehata, M.; Azab, S.M.; Walcarius, A. Voltammetric detection of caffeine in pharmacological and beverages samples based on simple nano- Co (II, III) oxide modified carbon paste electrode in aqueous and micellar media. Sens. Actuators B Chem. 2020, 302, 127172. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Shetti, N.P.; Kalanur, S.S.; Pollet, B.G.; Upadhyaya, K.P.; Ayachit, N.H.; Aminabhavi, T.M. Hf-Doped Tungsten Oxide Nanorods as Electrode Materials for Electrochemical Detection of Paracetamol and Salbutamol. ACS Appl. Nano Mater. 2022, 5, 1263–1275. [Google Scholar] [CrossRef]
- Koventhan, C.; Pandiyan, R.; Chen, S.-M.; Lo, A.-Y. Nickel molybdate/cobalt molybdate nanoflakes by one-pot synthesis approach for electrochemical detection of antipsychotic drug chlorpromazine in biological and environmental samples. J. Environ. Chem. Eng. 2023, 11, 110121. [Google Scholar] [CrossRef]
- Topkaya, S.N.; Kaya, H.O.; Cetin, A.E. Electrochemical Detection of Linagliptin and its Interaction with DNA. Turk. J. Pharm. Sci. 2021, 18, 645–651. [Google Scholar] [CrossRef]
- Suprun, E.V.; Kutdusova, G.R.; Khmeleva, S.A.; Radko, S.P. Towards deeper understanding of DNA electrochemical oxidation on carbon electrodes. Electrochem. Commun. 2021, 124, 106947. [Google Scholar] [CrossRef]
- Špaček, J.; Fojta, M.; Wang, J. Electrochemical Reduction and Oxidation of Six Natural 2′-Deoxynucleosides at a Pyrolytic Graphite Electrode in the Presence or Absence of Ambient Oxygen. Electroanalysis 2019, 31, 2057–2066. [Google Scholar] [CrossRef]
- Hasoň, S.; Fojta, M.; Ostatná, V. Label-free electrochemical analysis of purine nucleotides and nucleobases at disposable carbon electrodes in microliter volumes. J. Electroanal. Chem. 2019, 847, 113252. [Google Scholar] [CrossRef]
- Vidláková, P.; Pivoňková, H.; Kejnovská, I.; Trnková, L.; Vorlíčková, M.; Fojta, M.; Havran, L. G-quadruplex-based structural transitions in 15-mer DNA oligonucleotides varying in lengths of internal oligo(dG) stretches detected by voltammetric techniques. Anal. Bioanal. Chem. 2015, 407, 5817–5826. [Google Scholar] [CrossRef]
- Stempkowska, I.; Ligaj, M.; Jasnowska, J.; Langer, J.; Filipiak, M. Electrochemical response of oligonucleotides on carbon paste electrode. Bioelectrochemistry 2007, 70, 488–494. [Google Scholar] [CrossRef]
- De-Los-Santos-Álvarez, N.; De-Los-Santos-Álvarez, P.; Lobo-Castañón, M.J.; López, R.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Electrochemical oxidation of guanosine and adenosine: Two convergent pathways. Electrochem. Commun. 2007, 9, 1862–1866. [Google Scholar] [CrossRef]
- Li, Q.; Batchelor-McAuley, C.; Compton, R.G. Electrochemical Oxidation of Guanine: Electrode Reaction Mechanism and Tailoring Carbon Electrode Surfaces To Switch between Adsorptive and Diffusional Responses. J. Phys. Chem. B 2010, 114, 7423–7428. [Google Scholar] [CrossRef]
- Gonçalves, L.M.; Batchelor-McAuley, C.; Barros, A.A.; Compton, R.G. Electrochemical Oxidation of Adenine: A Mixed Adsorption and Diffusion Response on an Edge-Plane Pyrolytic Graphite Electrode. J. Phys. Chem. C 2010, 114, 14213–14219. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Dogan-Topal, B.; Rodriguez, E.P.; Bozal-Palabiyik, B.; Ozkan, S.A.; Uslu, B. Advances in electrochemical DNA biosensors and their interaction mechanism with pharmaceuticals. J. Electroanal. Chem. 2016, 775, 8–26. [Google Scholar] [CrossRef]
- Koyuncu Zeybek, D.; Demir, B.; Zeybek, B.; Pekyardımcı, Ş. A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly(bromocresol purple). Talanta 2015, 144, 793–800. [Google Scholar] [CrossRef]
- Altay, C.; Eksin, E.; Congur, G.; Erdem, A. Electrochemical monitoring of the interaction between Temozolamide and nucleic acids by using disposable pencil graphite electrodes. Talanta 2015, 144, 809–815. [Google Scholar] [CrossRef]
- Bilge, S.; Dogan-Topal, B.; Taskin Tok, T.; Atici, E.B.; Sınağ, A.; Ozkan, S.A. Investigation of the interaction between anticancer drug ibrutinib and double-stranded DNA by electrochemical and molecular docking techniques. Microchem. J. 2022, 180, 107622. [Google Scholar] [CrossRef]
- Shakeel, M.; Butt, T.M.; Zubair, M.; Siddiqi, H.M.; Janjua, N.K.; Akhter, Z.; Yaqub, A.; Mahmood, S. Electrochemical investigations of DNA-Intercalation potency of bisnitrophenoxy compounds with different alkyl chain lengths. Heliyon 2020, 6, e04124. [Google Scholar] [CrossRef]
- Reinert, K.E. DNA-helix bending, stiffening and elongation on ligand binding; analysis for several DNA-drug systems, general viscometric DNA response and stereochemical implications. J. Biomol. Struct. Dyn. 1991, 9(2), 331–352. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Oliveira-Brett, A.M. In situ electrochemical evaluation of dsDNA interaction with the anticancer drug danusertib nitrenium radical product using the DNA-electrochemical biosensor. Bioelectrochemistry 2016, 107, 50–57. [Google Scholar] [CrossRef]
- De la Cruz Morales, K.; Alarcón-Angeles, G.; Merkoçi, A. Nanomaterial-based Sensors for the Study of DNA Interaction with Drugs. Electroanalysis 2019, 31, 1845–1867. [Google Scholar] [CrossRef]
- Bilge, S.; Topal, B.D.; Caglayan, M.G.; Unal, M.A.; Nazır, H.; Atici, E.B.; Sınağ, A.; Ozkan, S.A. Human hair rich in pyridinic nitrogen-base DNA biosensor for direct electrochemical monitoring of palbociclib-DNA interaction. Bioelectrochemistry 2022, 148, 108264. [Google Scholar] [CrossRef]
- Bagni, G.; Osella, D.; Sturchio, E.; Mascini, M. Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal. Chim. Acta 2006, 573–574, 81–89. [Google Scholar] [CrossRef]
- Muti, M.; Muti, M. Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant. Talanta 2018, 178, 1033–1039. [Google Scholar] [CrossRef]
- Kaya, H.O.; Albayrak, G.; Isbilir, H.; Kurul, F.; Baykan, S.; Hartati, Y.W.; Topkaya, S.N. Electrochemical profiling of natural furanocoumarins: DNA interaction dynamics of oxypeucedanin and prantschimgin. ADMET DMPK 2024, 12, 319–334. [Google Scholar] [CrossRef]
- Keciba, A.; Bakirhan, N.K.; Gündüz, M.G.; Doulache, M.; Saidat, B.; Atici, E.B.; Ozkan, S.A. Electrochemical and theoretical investigations on the binding of anticancer drug olaparib to human serum albumin. J. Electrochem. Soc. 2024, 171, 066507. [Google Scholar] [CrossRef]
- Abd Elhameed, A.A.; El-Gohary, N.S.; El-Bendary, E.R.; Shaaban, M.I.; Bayomi, S.M. Synthesis and biological screening of new thiazolo[4,5-d]pyrimidine and dithiazolo[3,2-a:5′,4′-e]pyrimidinone derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Bioorganic. Chem. 2018, 81, 299–310. [Google Scholar] [CrossRef]
Drug Candidate Molecule | Equation Number | Obtained Equation |
---|---|---|
TP-NB | (1) | Ip (µA) = 2.9478ν1/2 − 2.8108 R2 = 0.993 |
TP-NB | (2) | Epc = −0.043 logν – 0.4646 R2 = 0.9796 |
TP-NB | (3) | log (Ip (µA)) = 0.5661 log(V/s) + 1.9847 R2 = 0.9908 |
TP-PC | (4) | Ip (µA) = 6.384ν1/2 – 11.673 R2 = 0.9922 |
TP-PC | (5) | Ep = −0.0599 log ν – 0.4986 R2 = 0.9966 |
TP-PC | (6) | log (Ip (µA)) = 0.6823log (V/s) +2.3894 R2 = 0.9961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, H.O.; Bozdemir, C.; İstanbullu, H.; Topkaya, S.N. Probing Redox Responses and DNA Interactions in Drug Discovery. Drugs Drug Candidates 2025, 4, 20. https://doi.org/10.3390/ddc4020020
Kaya HO, Bozdemir C, İstanbullu H, Topkaya SN. Probing Redox Responses and DNA Interactions in Drug Discovery. Drugs and Drug Candidates. 2025; 4(2):20. https://doi.org/10.3390/ddc4020020
Chicago/Turabian StyleKaya, Hüseyin Oğuzhan, Ceylin Bozdemir, Hüseyin İstanbullu, and Seda Nur Topkaya. 2025. "Probing Redox Responses and DNA Interactions in Drug Discovery" Drugs and Drug Candidates 4, no. 2: 20. https://doi.org/10.3390/ddc4020020
APA StyleKaya, H. O., Bozdemir, C., İstanbullu, H., & Topkaya, S. N. (2025). Probing Redox Responses and DNA Interactions in Drug Discovery. Drugs and Drug Candidates, 4(2), 20. https://doi.org/10.3390/ddc4020020