Efficient Enrichment of Total Flavonoids and Antibacterial Activity of the Ethyl Acetate Fraction of Croton blanchetianus Baill. (Euphorbiaceae) Leaves
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Analysis
2.2. Antibacterial Activity
2.3. Synergistic Effect
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of the Flavonoid-Rich Fraction of Croton blanchetianus
3.3. Phytochemical Analysis
3.3.1. Analysis by Thin Layer Chromatography (TLC)
3.3.2. Total Flavonoid Content (TFC)
3.4. Evaluation of Antibacterial Activity
3.4.1. Determination of Minimal Inhibitory (MIC) and Bactericidal (MBC) Concentrations
3.4.2. Growth Curve
3.4.3. Integrity of Cell Membrane
Efflux of Potassium Ions Through the Membrane
Leakage of DNA and RNA Through the Membrane
Leakage of Proteins Through the Membrane
3.4.4. Synergism Assay
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Nwobodo, D.C.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Saad, A.M.; Mohammed, D.M.; Korma, S.A.; Alshahrani, M.Y.; Ahmed, A.E.; Ibrahim, E.H.; Salem, H.M.; Alkafaas, S.S.; Saif, A.M.; et al. Medicinal plants: Bioactive compounds, biological activities, combating multidrug-resistant microorganisms, and human health benefits-a comprehensive review. Front. Immunol. 2025, 16, 1491777. [Google Scholar] [CrossRef] [PubMed]
- Thebti, A.; Meddeb, A.; Ben Salem, I.; Bakary, C.; Ayari, S.; Rezgui, F.; Essafi-Benkhadir, K.; Boudabous, A.; Ouzari, H.I. Antimicrobial activities and mode of flavonoid actions. Antibiotics 2023, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, A.S.; Sousa, V.F.O.; Santos, G.L.; Rodrigues, M.H.B.S.; Maracajá, P.B.; Silva, R.A.; Ribeiro, M.D.S. Ethnoknowledge: Use of medicinal plants in communities. J. Exp. Agric. Int. 2018, 23, 1–12. [Google Scholar] [CrossRef]
- Macedo, J.G.F.; Menezes, I.R.A.D.; Ribeiro, D.A.; Santos, M.O.; Mâcedo, D.G.; Macêdo, M.J.F.; de Almeida, B.V.; de Oliveira, L.G.S.; Leite, C.P.; de Almeida Souza, P.P. Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: Comparative study. Evid. Based. Complement. Alternat. Med. 2018, 2018, 6769193. [Google Scholar] [CrossRef]
- Silva, B.R.B.; Almeida, C.F.C.B.R. Estudo etnobotânico de plantas medicinais da mata ciliar do submédio São Francisco, Nordeste do Brasil. Rev. Ouricuri. 2020, 10, 011–026. [Google Scholar]
- Oliveira, A.M.; Widmer, R.; Nascimento, M.F.; Costa, W.K.; Paiva, P.M.G.; Napoleão, T.H. Flavonoid-Rich Fraction from Croton blanchetianus (Euphorbiaceae) Leaves Exerts Peripheral and Central Analgesic Effects by Acting via the Opioid and Cholinergic Systems. Chem. Biodivers. 2022, 19, e202100853. [Google Scholar] [CrossRef]
- Cruz, B.G.; Santos, H.S.; Bandeira, P.N.; Rodrigues, T.H.S.; Matos, M.G.C.; Nascimento, M.F.; Carvalho, G.G.C.; Braz-Filho, R.; Teixeira, A.M.R.; Tintino, S.R.; et al. Evaluation of antibacterial and enhancement of antibiotic action by of flavonoid kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis Müll. Microb. Pathog. 2020, 143, 104144. [Google Scholar] [CrossRef] [PubMed]
- Neri, T.S.; Silva, K.W.L.; Maior, L.P.S.; Oliveira-Silva, S.K.; Azevedo, P.V.M.; Gomes, D.C.S.; Souza, G.S.; Pavão, J.M.S.J.; Costa, J.G.; Cunha, A.L.; et al. Phytochemical characterization, antioxidant potential and antibacterial activity of the Croton argyrophylloides Muell. Arg. (Euphorbiaceae). Braz. J. Biol. 2021, 83, e236649. [Google Scholar] [CrossRef] [PubMed]
- Brito, S.B.D.; Alcântara, F.A.D.O.; Leal, A.L.A.B.; Veloso, K.H.D.S.; Sousa, L.D.R.; Oliveira, A.P.D.; Santos, A.D.d.C.; Dutra, L.M.; Almeida, J.R.G.d.S.; Nogueira, C.E.S.; et al. Modulatory Effect of Croton heliotropiifolius Kunth Ethanolic Extract on Norfloxacin Resistance in Staphylococcus aureus. Drugs Drug Candidates 2023, 3, 1–12. [Google Scholar] [CrossRef]
- Sánchez, I.C.; Segura Caro, J.A.; Galeano, E.; Alzate, F.; Ossa-Giraldo, A.C. Essential oils from Colombian Croton spp. exhibit antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-and streptomycin-resistant Escherichia coli. Sci. Rep. 2024, 14, 30643. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.; Freitas, A.F.S.; Costa, W.K.; Machado, J.C.B.; Bezerra, I.C.F.; Ferreira, M.R.A.; Paiva, P.M.G.; Napoleão, T.H.; Soares, L.A.L. Flavonoid-rich fraction of Croton blanchetianus Baill. (Euphorbiaceae) leaves: Chemical profile, acute and subacute toxicities, genotoxicity and antioxidant potential. S. Afr. J. Bot. 2022, 144, 238–249. [Google Scholar] [CrossRef]
- Dantas, T.S.; Silva, W.A.V.; Machado, J.C.B.; Santos, E.C.F.; Lima, J.S.; Amaral, E.V.F.; Ribeiro, K.A.; da Silva, M.S.; da Cruz, R.C.D.; de Souza, I.A.; et al. Gastroprotective and antifungal evaluation of spray-dried extract and effervescent pre-formulation from Croton blanchetianus Baill leaves. J. Biol. Act. Prod. Nat. 2023, 13, 522–536. [Google Scholar] [CrossRef]
- Bezerra Filho, C.M.; Silva, L.C.N.; Silva, M.V.; Løbner-Olesen, A.; Struve, C.; Krogfelt, K.A.; Correia, M.T.D.S.; Oliva, M.L.V. Antimicrobial and Antivirulence Action of Eugenia brejoensis Essential Oil in vitro and in vivo Invertebrate Models. Front. Microbiol. 2020, 11, 424. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef]
- Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Panda, S.K.; Dutta, S.K.; Bastia, A.K. Antibacterial activity of Croton roxburghii balak. against the enteric pathogens. J. Adv. Pharm. Technol. Res. 2010, 1, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.V.; Melo, G.F.A.; Madruga, M.S.; Costa, J.G.M.; Junior, F.G.; Neto, V.Q. Chemical composition and antibacterial activity of essential oil of a Croton rhamnifolioides leaves Pax & Hoffm. Semin. Ciências Agrárias 2013, 34, 2853–2863. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Cox, S.; Mann, C.; Markham, J.; Gustafson, J.; Warmington, J.; Wyllie, S. Determining the Antimicrobial Actions of Tea Tree Oil. Molecules 2001, 6, 87–91. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.; Dai, J.; Cui, H.; Lin, L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crop. Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Lavor, A.K.L.S.; Matias, E.F.; Alves, E.F.; Santos, B.S.; Figueredo, F.G.; Lima, L.F.; Leite, K.F.; Sobral-Souza, C.E.; Andrade, J.C.; Alencar, L.B.B.; et al. Association between drugs and herbal products: In vitro enhancement of the antibiotic activity by fractions from leaves of Croton campestris A. (Euphorbiaceae). Eur. J. Integr. Med. 2014, 6, 301–306. [Google Scholar] [CrossRef]
- Abreu, A.C.; Mcbain, A.J.; Simões, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012, 29, 1007–1021. [Google Scholar] [CrossRef]
- Wang, S.Y.; Sun, Z.L.; Liu, T.; Gibbons, S.; Zhang, W.J.; Qing, M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother. Res. 2014, 28, 1071–1076. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, L.; Liu, Y.; Shi, L.; Wan, S.; Wang, L. Evaluation of antimicrobial activity of water-soluble flavonoids extract from Vaccinium bracteatum Thunb. leaves. Food Sci. Biotechnol. 2019, 28, 1853–1859. [Google Scholar] [CrossRef]
- Obey, J.K.; von Wright, A.; Orjala, J.; Kauhanen, J.; Tikkanen-Kaukanen, C. Antimicrobial activity of Croton macrostachyus stem bark extracts against several human pathogenic bacteria. J. Pathog. 2016, 2016, 1453428. [Google Scholar] [CrossRef]
- Leite, T.R.; Silva, M.A.P.D.; Santos, A.C.B.D.; Coutinho, H.D.M.; Duarte, A.E.; Costa, J.G.M.D. Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm. Biol. 2017, 55, 2015–2019. [Google Scholar] [CrossRef]
- Meng, X.; Li, D.; Zhou, D.; Wang, D.; Liu, Q.; Fan, S. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae. J. Ethnopharmacol. 2016, 194, 698–705. [Google Scholar] [CrossRef]
- Huang, J.; Qian, C.; Xu, H.; Huang, Y. Antibacterial activity of Artemisia asiática essential oil against some common respiratory infection causing bacterial strains and its mechanism of action in Haemophilus influenzae. Microb. Pathog. 2018, 114, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.T.; Bezerra, I.C.; Ferreira, M.R.; Soares, L.A.L. Spectrophotometric quantification of flavonoids in herbal material, crude extract, and fractions from leaves of Eugenia uniflora Linn. Pharmacogn. Res. 2017, 9, 253. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, I.C.; Ramos, R.T.D.M.; Ferreira, M.R.; Soares, L.A.L. Chromatographic profiles of extractives from leaves of Eugenia uniflora. Rev. Bras. Farmacogn. 2018, 28, 92–101. [Google Scholar] [CrossRef]
- İşçan, G.; Kirimer, N.; Kürkcüoljlu, M.; Başer, H.C.; Demirci, F. Antimicrobial Screening of Mentha piperita Essential Oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, D.; Yang, L.; Liu, Z.; Zhang, Y. A Modified and Improved Assay Based on Microbial Test System (MTS) to Evaluate Antioxidant Activity. Food Anal. Methods 2015, 9, 895–904. [Google Scholar] [CrossRef]
- Cox, C.D.; Nakayama, Y.; Nomura, T.; Martinac, B. The evolutionary ‘tinkering’ of MscS-like channels: Generation of structural and functional diversity. Pflügers Arch.-Eur. J. Physiol. 2015, 467, 3–13. [Google Scholar] [CrossRef]
- Chen, C.Z.; Cooper, S.L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002, 23, 3359–3368. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Mezrioui, N.; Setzer, W.; Abbad, A.; Hassani, L. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crop. Prod. 2019, 137, 396–400. [Google Scholar] [CrossRef]


| Strains | EAF | Chloramphenicol | ||
|---|---|---|---|---|
| MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | |
| S. aureus ATCC 29213 | 4 | 16 | 8 | 32 |
| S. aureus UFPEDA 659 | 32 | 64 | 4 | 32 |
| S. aureus UFPEDA 671 | 16 | 64 | 32 | 64 |
| S. aureus UFPEDA 691 | 16 | 64 | 64 | 128 |
| S. aureus UFPEDA 705 | 16 | 32 | 8 | 32 |
| S. aureus UFPEDA 731 | 32 | 64 | 128 | 256 |
| S. aureus UFPEDA 802 | 32 | 64 | 256 | 512 |
| Strains | FIC | ΣFIC | Effect | |
|---|---|---|---|---|
| EAF | CLO | |||
| S. aureus ATCC 29213 | 0.125 | 0.06 | 0.18 | Total synergism |
| S. aureus UFPEDA 659 | 0.5 | 0.06 | 0.56 | Partial synergism |
| S. aureus UFPEDA 671 | 0.5 | 0.25 | 0.75 | Partial synergism |
| S. aureus UFPEDA 691 | 0.5 | 0.5 | 1 | No synergism |
| S. aureus UFPEDA 705 | 0.25 | 0.12 | 0.37 | Total synergism |
| S. aureus UFPEDA 731 | 1 | 1 | 2 | Antagonist |
| S. aureus UFPEDA 802 | 1 | 2 | 3 | Antagonist |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho, P.A.F.; Costa, W.K.; Correia, M.T.d.S.; da Silva, W.A.V.; Ferreira, M.R.A.; Soares, L.A.L.; Bezerra, J.J.L.; de Oliveira, A.M. Efficient Enrichment of Total Flavonoids and Antibacterial Activity of the Ethyl Acetate Fraction of Croton blanchetianus Baill. (Euphorbiaceae) Leaves. Drugs Drug Candidates 2025, 4, 45. https://doi.org/10.3390/ddc4040045
Marinho PAF, Costa WK, Correia MTdS, da Silva WAV, Ferreira MRA, Soares LAL, Bezerra JJL, de Oliveira AM. Efficient Enrichment of Total Flavonoids and Antibacterial Activity of the Ethyl Acetate Fraction of Croton blanchetianus Baill. (Euphorbiaceae) Leaves. Drugs and Drug Candidates. 2025; 4(4):45. https://doi.org/10.3390/ddc4040045
Chicago/Turabian StyleMarinho, Pedro Artur Ferreira, Wêndeo Kennedy Costa, Maria Tereza dos Santos Correia, Wliana Alves Viturino da Silva, Magda Rhayanny Assunção Ferreira, Luiz Alberto Lira Soares, José Jailson Lima Bezerra, and Alisson Macário de Oliveira. 2025. "Efficient Enrichment of Total Flavonoids and Antibacterial Activity of the Ethyl Acetate Fraction of Croton blanchetianus Baill. (Euphorbiaceae) Leaves" Drugs and Drug Candidates 4, no. 4: 45. https://doi.org/10.3390/ddc4040045
APA StyleMarinho, P. A. F., Costa, W. K., Correia, M. T. d. S., da Silva, W. A. V., Ferreira, M. R. A., Soares, L. A. L., Bezerra, J. J. L., & de Oliveira, A. M. (2025). Efficient Enrichment of Total Flavonoids and Antibacterial Activity of the Ethyl Acetate Fraction of Croton blanchetianus Baill. (Euphorbiaceae) Leaves. Drugs and Drug Candidates, 4(4), 45. https://doi.org/10.3390/ddc4040045

