Topic Editors

College of Plant Protection, Yangzhou University, Yangzhou, China
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia
Dr. Kwok Pan Chun
CATE School of Architecture and Environment, University of the West of England, Bristol BS16 1QY, UK

Climate Change Impacts and Adaptation: Interdisciplinary Perspectives, 2nd Edition

Abstract submission deadline
31 March 2026
Manuscript submission deadline
30 June 2026
Viewed by
1394

Topic Information

Dear Colleagues,

With the increasing concentration of greenhouse gases in the atmosphere, climate change is now an indisputable fact, posing great challenges to the environment, economies, and communities. These challenges are further compounded by inaction, which can lead to severe impacts on human health, food security, and global stability. Fortunately, a number of studies have been made in acquiring knowledge of climate change and its impacts on the ecosystem and national sectors such as agriculture, forestry, water resources, etc. However, there are still a lot of uncertainties that impact assessment results and practical adaptive measures due to limited data, methodology, and the scale of study. Therefore, case studies should be strengthened and broadened to reduce the uncertainties and develop practical adaptive measures to cope with climate change.

This Special Issue seeks to bring together interdisciplinary perspectives to address the ever-expanding importance of climate change impacts and adaptation. Despite a wide range of research undertaken by countries, organizations and industries to address climate change, a great deal of very important work remains to be carried out to effectively assess the impacts of climate change and to understand the extent to which adaptation measures can reduce the negative impacts of climate change.

For this Special Issue, we warmly invite scientists working in climatology, ecology, geography, remote sensing and GIS, environmental science, and social science to contribute novel theories, observations, and modeling studies on climate change impacts and adaptation across different time scales (historical to future) and spatial scales (regional to global). Contributions can include but are not limited to the following topics: observation-based regional climate change analysis, detection and attribution of regional climate change, the measurement and modeling of land surface–atmosphere interaction, impacts and risks of climate change on different regions (or sectors), meteorological disaster risk management, climate change and sustainable development, international climate governance, etc.

Dr. Cheng Li
Prof. Dr. Fei Zhang
Dr. Mou Leong Tan
Dr. Kwok Pan Chun
Topic Editors

Keywords

  • regional climate change
  • land–atmosphere interactions
  • greenhouse gas emissions
  • climate and vegetation relationships
  • impacts of climate change
  • risk management
  • climate change adaptation
  • climate governance
  • climate change education
  • remote sensing and GIS
  • machine learning and numerical modeling methods

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Agronomy
agronomy
3.4 6.7 2011 17.2 Days CHF 2600 Submit
Applied Sciences
applsci
2.5 5.5 2011 19.8 Days CHF 2400 Submit
Climate
climate
3.2 5.7 2013 21.6 Days CHF 1800 Submit
Forests
forests
2.5 4.6 2010 17.1 Days CHF 2600 Submit
ISPRS International Journal of Geo-Information
ijgi
2.8 7.2 2012 34.2 Days CHF 1900 Submit
Sustainability
sustainability
3.3 7.7 2009 19.3 Days CHF 2400 Submit
Plants
plants
4.1 7.6 2012 17.7 Days CHF 2700 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (4 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
24 pages, 6762 KiB  
Article
Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration
by Yuzhou Zhang, Wanmei Zhao and Jianxin Yang
Sustainability 2025, 17(13), 6119; https://doi.org/10.3390/su17136119 - 3 Jul 2025
Viewed by 2
Abstract
Against the backdrop of global climate change and rapid urbanization, understanding the spatiotemporal dynamics and driving mechanisms of vegetation net primary productivity (NPP) is critical for ensuring regional ecological security and achieving carbon neutrality goals. This study focuses on the Yangtze River Delta [...] Read more.
Against the backdrop of global climate change and rapid urbanization, understanding the spatiotemporal dynamics and driving mechanisms of vegetation net primary productivity (NPP) is critical for ensuring regional ecological security and achieving carbon neutrality goals. This study focuses on the Yangtze River Delta Urban Agglomeration (YRDUA) and integrates multi-source remote sensing data with socioeconomic statistics. By combining interpretable machine learning (XGBoost-SHAP) with multiscale geographically weighted regression (MGWR), and incorporating Theil–Sen trend analysis and Mann–Kendall significance testing, we systematically analyze the spatiotemporal variations in NPP and its multiscale driving mechanisms from 2001 to 2020. The results reveal the following: (1) Total NPP in the YRDUA shows an increasing trend, with approximately 24.83% of the region experiencing a significant rise and only 2.75% showing a significant decline, indicating continuous improvement in regional ecological conditions. (2) Land use change resulted in a net NPP loss of 2.67 TgC, yet ecological restoration and advances in agricultural technology effectively mitigated negative impacts and became the main contributors to NPP growth. (3) The results from XGBoost and MGWR are complementary, highlighting the scale-dependent effects of driving factors—at the regional scale, natural factors such as elevation (DEM), precipitation (PRE), and vegetation cover (VFC) have positive impacts on NPP, while the human footprint (HF) generally exerts a negative effect. However, in certain areas, a dose–response effect is observed, in which moderate human intervention can enhance ecological functions. (4) The spatial heterogeneity of NPP is mainly driven by nonlinear interactions between natural and anthropogenic factors. Notably, the interaction between DEM and climatic variables exhibits threshold responses and a “spatial gradient–factor interaction” mechanism, where the same driver may have opposite effects under different geomorphic conditions. Therefore, a well-balanced combination of land use transformation and ecological conservation policies is crucial for enhancing regional ecological functions and NPP. These findings provide scientific support for ecological management and the formulation of sustainable development strategies in urban agglomerations. Full article
Show Figures

Figure 1

17 pages, 897 KiB  
Article
The Gender–Climate–Security Nexus: A Case Study of Plateau State
by T. Oluwaseyi Ishola and Isaac Luginaah
Climate 2025, 13(7), 136; https://doi.org/10.3390/cli13070136 - 30 Jun 2025
Viewed by 7
Abstract
This study investigates the gendered nexus between climate change, food insecurity, and conflict in Plateau State, Nigeria. This region in north-central Nigeria is marked by recurring farmer–herder clashes and climate-induced environmental degradation. Drawing on qualitative methods, including interviews, gender-disaggregated focus groups, and key [...] Read more.
This study investigates the gendered nexus between climate change, food insecurity, and conflict in Plateau State, Nigeria. This region in north-central Nigeria is marked by recurring farmer–herder clashes and climate-induced environmental degradation. Drawing on qualitative methods, including interviews, gender-disaggregated focus groups, and key informant discussions, the research explores how climate variability and violent conflict interact to exacerbate household food insecurity. The methodology allows the capture of nuanced perspectives and lived experiences, particularly emphasizing the differentiated impacts on women and men. The findings reveal that irregular rainfall patterns, declining agricultural yields, and escalating violence have disrupted traditional farming systems and undermined rural livelihoods. The study also shows that women, though they are responsible for household food management, face disproportionate burdens due to restricted mobility, limited access to resources, and a heightened exposure to gender-based violence. Grounded in Conflict Theory, Frustration–Aggression Theory, and Feminist Political Ecology, the analysis shows how intersecting vulnerabilities, such as gender, age, and socioeconomic status, shape experiences of food insecurity and adaptation strategies. Women often find creative and local ways to cope with challenges, including seed preservation, rationing, and informal trade. However, systemic barriers continue to hinder sustainable progress. This study emphasized the need for integrating gender-sensitive interventions into policy frameworks, such as land tenure reforms, targeted agricultural support for women, and improved security measures, to effectively mitigate food insecurity and promote sustainable livelihoods, especially in conflict-affected regions. Full article
Show Figures

Figure 1

19 pages, 1200 KiB  
Article
Effects of Rice–Fish Coculture on Greenhouse Gas Emissions: A Case Study in Terraced Paddy Fields of Qingtian, China
by Qixuan Li, Lina Xie, Shiwei Lin, Xiangbing Cheng, Qigen Liu and Yalei Li
Agronomy 2025, 15(6), 1480; https://doi.org/10.3390/agronomy15061480 - 18 Jun 2025
Viewed by 359
Abstract
Rice–fish coculture, a traditional integrated agriculture–aquaculture system, has been recognized as a “Globally Important Agricultural Heritage System” due to its ecological and socio-economic benefits. However, the impact of rice–fish coculture on greenhouse gas emissions remains controversial. This study investigated the effects of rice–fish [...] Read more.
Rice–fish coculture, a traditional integrated agriculture–aquaculture system, has been recognized as a “Globally Important Agricultural Heritage System” due to its ecological and socio-economic benefits. However, the impact of rice–fish coculture on greenhouse gas emissions remains controversial. This study investigated the effects of rice–fish coculture on methane (CH4) and nitrous oxide (N2O) emissions in the Qingtian rice–fish system, a 1200-year-old terraced paddy field system in Zhejiang Province, China. A field experiment with two treatments, rice–fish coculture (RF) and rice monoculture (RM), was conducted to examine the relationships between fish activities, water and soil properties, microbial communities, and greenhouse gas fluxes. Results showed that the RF system had significantly higher CH4 emissions, particularly during the early rice growth stage, compared to the RM system. This increase was attributed to the lower dissolved oxygen levels and higher methanogen abundance in the RF system, likely driven by the grazing, “muddying”, and burrowing activities of fish. In contrast, no significant differences in N2O emissions were observed between the two systems. Redundancy analysis revealed that water variables contributed more to the variation in greenhouse gas emissions than soil variables. Microbial community analysis indicated that the RF system supported a more diverse microbial community involved in methane cycling processes. These findings provide new insights into the complex interactions between fish activities, environmental factors, and microbial communities in regulating greenhouse gas emissions from rice–fish coculture systems. The results suggest that optimizing water management strategies and exploring the potential of microbial community manipulation could help mitigate greenhouse gas emissions while maintaining the ecological and socio-economic benefits of these traditional integrated agriculture–aquaculture systems. Full article
Show Figures

Figure 1

32 pages, 11121 KiB  
Article
Construction of a Cold Island Spatial Pattern from the Perspective of Landscape Connectivity to Alleviate the Urban Heat Island Effect
by Qianli Ouyang, Bohong Zheng, Junyou Liu, Xi Luo, Shengyan Wu and Zhaoqian Sun
ISPRS Int. J. Geo-Inf. 2025, 14(6), 209; https://doi.org/10.3390/ijgi14060209 - 23 May 2025
Viewed by 596
Abstract
This study presents an innovative approach to mitigating the urban heat island (UHI) effect by constructing a cold island spatial pattern (CSP) from the perspective of landscape connectivity, integrating three-dimensional (3D) urban morphology and meteorological factors for the first time. Unlike traditional studies [...] Read more.
This study presents an innovative approach to mitigating the urban heat island (UHI) effect by constructing a cold island spatial pattern (CSP) from the perspective of landscape connectivity, integrating three-dimensional (3D) urban morphology and meteorological factors for the first time. Unlike traditional studies that focus on isolated patches or single-city scales, we propose a hierarchical framework for urban agglomerations, combining morphological spatial pattern analysis (MSPA), landscape connectivity assessment, and circuit theory to a construct CSP at the scale of urban agglomeration. By incorporating wind environment data and 3D building features (e.g., height, density) into the resistance surface, we enhance the accuracy of cooling network identification, revealing 39 cold island sources, 89 cooling corridors, and optimal corridor widths (600 m) in the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXUA). Ultimately, a three-tiered heat island mitigation framework for urban agglomerations was established based on the CSP. This study offers an innovative perspective on urban climate adaptability planning within the context of contemporary urbanization. Our methodology and findings provide critical insights for future studies to integrate multiscale, multidimensional, and climate-adaptive approaches in urban thermal environment governance, fostering sustainable urbanization under escalating climate challenges. Full article
Show Figures

Figure 1

Back to TopTop