Topic Editors

Prof. Dr. Leszek Sobkowiak
Department of Hydrology and Water Management, Adam Mickiewicz University, 61-712 Poznań, Poland
IHE Delft Institute for Water Education, IHE Delft & Delft University of Technology, Delft, The Netherlands
CSIRO Land and Water, GPO Box 1700, Canberra, ACT 2601, Australia

Climate Change and Human Impact on Freshwater Water Resources: Rivers and Lakes

Abstract submission deadline
30 July 2024
Manuscript submission deadline
30 September 2024
Viewed by
6912

Topic Information

Dear Colleagues,

The different patterns of phenomena observed in rivers (water stages, discharges, water temperature and chemistry, ice phenomena, etc.) in an average annual cycle, determined by climate and catchment properties, are relatively stable. Under the influence of changing climatic conditions and increasing human impact, a flow regime might destabilize and turn to another with sometimes quite different seasonal patterns, thus disturbing the established hydroecological conditions and availability of water resources. Depending on the sensitivity of a particular river regime model, its changes are temporarily and spatially diversified. In order to identify a change in any pattern (regardless of the reason), it is first necessary to adequately describe its initial state and the state after the transformation. There are diverse pattern-recognition methods, and both supervised and nonsupervised approaches can be applied to describe the flow regime patterns.

The hydrological regime of lakes can be analyzed in terms of their thermal conditions, formation of ice, and water levels. The quantitative, physical, and biological transformation of lake ecosystems may result from both natural (changes in precipitation, evaporation etc.) and human-induced (water intakes and discharges, hydraulic structures) processes. The regime of lakes in many regions of the world has been destabilized by intensive land use and regulation of water relations. Fluctuations in water levels, and thus changes in the lake area and the amount of stored water in the lake, are crucial in many physical–chemical (mixing, dissolution of substances, water transparency, etc.), biological (extent of ecotone zones, extent of photic zone, etc.) or economic (possibility of water withdrawals for industrial, domestic, agricultural purposes, etc.) processes.

The main aim of this Topic is to share the results of research on the impact of climate change and human activity on the characteristics of the flow regime of rivers in different regions of the world, mainly in terms of the transformation of the flow regime characteristics, their stability and predictability, and quantitative and qualitative assessments of water resources. Papers focusing on methods of detection changes and classifying the river regimes are particularly invited.

At the same time, this Topic addresses the impact of climate change and human activity on the lake regime characteristics in various regions of the world, mainly in terms of long-term changes in the amount of water resources, seasonal changes in water levels, and thermal and ice conditions.

Prof. Dr. Leszek Sobkowiak
Prof. Dr. Arthur Mynett
Dr. David Post
Topic Editors

Keywords

  • flow regime
  • flow seasonality
  • thermal conditions
  • water chemistry
  • ice phenomena
  • climate change
  • human activity
  • methods of detection changes and classifying river regimes
  • regime of lake water levels
  • thermal conditions
  • thermal stratification
  • ice phenomena
  • lake ecosystems
  • changes in lake water resources
  • changes in lake area

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Energies
energies
3.2 5.5 2008 16.1 Days CHF 2600 Submit
Hydrology
hydrology
3.2 4.1 2014 17.8 Days CHF 1800 Submit
Remote Sensing
remotesensing
5.0 7.9 2009 23 Days CHF 2700 Submit
Water
water
3.4 5.5 2009 16.5 Days CHF 2600 Submit
Climate
climate
3.7 5.2 2013 19.7 Days CHF 1800 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
24 pages, 8029 KiB  
Article
Analyses on Characteristics of Spatial Distribution and Matching of the Human–Land–Water–Heat System on the Yunnan Plateau
by Jinming Chen, Xiao Yang, Haiya Dao, Haowen Gu, Gang Chen, Changshu Mao, Shihan Bai, Shixiang Gu, Zuhao Zhou and Ziqi Yan
Water 2024, 16(6), 867; https://doi.org/10.3390/w16060867 - 18 Mar 2024
Viewed by 619
Abstract
Water, soil, and heat are strategic supporting elements for human survival and social development. The degree of matching between human-land-water-heat elements directly influences the sustainable development of a region. However, the current evaluation of the matching of human-land-water-heat elements overlooks the influence of [...] Read more.
Water, soil, and heat are strategic supporting elements for human survival and social development. The degree of matching between human-land-water-heat elements directly influences the sustainable development of a region. However, the current evaluation of the matching of human-land-water-heat elements overlooks the influence of elevation factors on the matching results, especially evident in mountainous areas. Taking the Yunnan Plateau with distinctive mountainous features as the research subject, divided into 11 elevation ranges, the Lorenz Gini coefficient, asymmetry coefficient, matching distance, and imbalance index are used to assess the spatial matching and balance of human-land-water-heat elements. A projection tracing model is employed to analyze its water resource carrying capacity. Analyses revealed that the Gini coefficient of monthly precipitation from the 1950s to 2022 on the Yunnan Plateau increases with increasing latitude, whereas the correlation with elevation is notably lower. The asymmetry coefficient increases gradually from west to east with change in longitude. The mismatch of the human–land–water–heat system in regions at different elevations is in the order 1800–2000 m > 2000–2200 m > 1400–1600 m > 800 m > other areas. The matching of the human–land–water–heat system in different wet–dry years and seasons also fluctuates with elevation, resulting in serious seasonal drought and water shortage problems in mountainous areas with elevations of 1200–1600, 1800–2000 m, and >2600 m. The spatial equilibrium of temperature and precipitation in regions of different elevations is best, followed by that of cultivated land, while that of the population is the worst. The Gini coefficients for different water cycle processes of precipitation, surface runoff, and regulating storage capacity for water supply continue to increase. Specifically, the Gini coefficient of industrial water supply is the highest, reaching 0.576, and that of agricultural irrigation is the lowest (0.424). Through artificial regulation of lake and reservoir water, seasonal changes in the demand for agricultural irrigation water are offset to achieve a demand–supply balance and matching of land and water resources. The water resource capacity of different elevation ranges is evenly underloaded. However, the potential of the water resource capacity varies obviously with elevation in the order 2000–2200 m < 1800–2000 m < 1600–8000 m < 1400–1600 m < other areas. It appears that the greater the human–land–water–heat system mismatch, the smaller the regional potential of the water resource capacity. Full article
Show Figures

Figure 1

21 pages, 7741 KiB  
Article
A Thermal Regime and a Water Circulation in a Very Deep Lake: Lake Tazawa, Japan
by Kazuhisa A. Chikita, Hideo Oyagi and Kazuhiro Amita
Hydrology 2024, 11(3), 40; https://doi.org/10.3390/hydrology11030040 - 16 Mar 2024
Viewed by 900
Abstract
A thermal system in the very deep Lake Tazawa (maximum depth, 423 m) was investigated by estimating the heat budget. In the heat budget estimate, the net heat input at the lake’s surface and the heat input by river inflow and groundwater inflow [...] Read more.
A thermal system in the very deep Lake Tazawa (maximum depth, 423 m) was investigated by estimating the heat budget. In the heat budget estimate, the net heat input at the lake’s surface and the heat input by river inflow and groundwater inflow were considered. Then, the heat loss by snowfall onto the lake’s surface was taken into account. Meanwhile, the lake water temperature was monitored at 0.2 m to the bottom by mooring temperature loggers for more than two years. The heat storage change of the lake from the loggers was calibrated by frequent vertical measurements of water temperature at every 0.1 m pitch by a profiler with high accuracy (±0.01 °C). The heat storage change (W/m2) obtained by the temperature loggers reasonably accorded to that from the heat budget estimate. In the heat budget, the net heat input at lake surface dominated the heat storage change, but significant heat loss by river inflow sporadically occurred, caused by the relatively large discharge from a reservoir in the upper region. How deeply the vertical water circulation in the lake occurs in winter was judged according to the differences between water temperatures at 0.2 m depth and at the bottom and between vertical profiles of dissolved oxygen over winter. It is strongly suggested that the whole water circulation process does not occur every winter, and if it does, it is very weak. A consistent increase in the water temperature at the bottom is probably due to the conservation of geothermal heat by high frequency of incomplete vertical water circulation. Full article
Show Figures

Figure 1

24 pages, 5186 KiB  
Article
Assessing the Impacts of Climate Change and Water Extraction on Thermal Stratification and Water Quality of a Subtropical Lake Using the GLM-AED Model
by Chao Deng, Hong Zhang and David P. Hamilton
Water 2024, 16(1), 151; https://doi.org/10.3390/w16010151 - 30 Dec 2023
Viewed by 985
Abstract
This study combined a catchment model and one-dimensional lake model (GLM-AED) to simulate the response of hydrodynamics and water quality of subtropical Advancetown Lake (South-East Queensland, Australia) to future changing climates from 2040 to 2069 and 2070 to 2099 under Representative Concentration Pathway [...] Read more.
This study combined a catchment model and one-dimensional lake model (GLM-AED) to simulate the response of hydrodynamics and water quality of subtropical Advancetown Lake (South-East Queensland, Australia) to future changing climates from 2040 to 2069 and 2070 to 2099 under Representative Concentration Pathway (RCP) 4.5 and 8.5 and increased water demand from a 50% increase in population over current levels. The simulation adequately reproduced water temperature (RMSE of 0.6 °C), dissolved oxygen (DO) (RMSE of 2 mg/L), and other water quality variables, such as nitrogen, phosphorus, and chlorophyll a (Chl-a). Warming temperatures dominated the change in thermal structure and hydrodynamic status of the lake under future climate change conditions. Projected changes in precipitation and hydrological response from the upstream catchment might, however, partly offset the warming temperatures under future climate change. Increased water withdrawal due to population growth, which involved water extraction from the epilimnion, showed antagonistic effects on water stability compared to those from climate change. Under a high emission scenario of RCP8.5 during the 2080s, there is an increased likelihood of winter turnover failure in Advancetown Lake. Nutrient concentrations were simulated to decrease from reduced catchment loads under future climate change conditions. However, Chl-a concentrations were simulated to increase, especially during the period after winter turnover, under these future conditions. The depth of the hypoxia front during stratification is expected to decrease and move towards the water surface, attributable to the warming water temperatures and prolonged thermal stratification, which might affect biogeochemical processes and exchange fluxes between the hypolimnion and bottom sediments. These potential changes may present challenges for water resource management under future conditions of climate change and population growth. Full article
Show Figures

Figure 1

12 pages, 2923 KiB  
Article
Human Activities Increased Microplastics Contamination in the Himalaya Mountains
by Bangshuai Han, Moayad Yacoub, Aihua Li, Kirsten Nicholson, Joshua Gruver, Klaus Neumann and Subodh Sharma
Hydrology 2024, 11(1), 4; https://doi.org/10.3390/hydrology11010004 - 29 Dec 2023
Cited by 1 | Viewed by 2138
Abstract
Microplastic pollution is an emerging environmental concern, and has been found in remote regions, including the high Himalaya mountains. However, the abundance and sources of microplastics in the region are not well documented. This research investigated the abundance, types, and potential sources of [...] Read more.
Microplastic pollution is an emerging environmental concern, and has been found in remote regions, including the high Himalaya mountains. However, the abundance and sources of microplastics in the region are not well documented. This research investigated the abundance, types, and potential sources of microplastics in the Sagarmatha National Park (SNP), a rural and sparsely populated region of Nepal on the southern side of the Himalaya mountains. Water samples were collected from streams and tributaries in SNP in May of 2022. The average microplastic concentration among all samples was 2.0 ± 1.7 pieces/L, similar to that of water samples collected in other high mountain areas and is in the lower range of that found in water samples across the globe. Microplastic abundance is higher in water samples collected near settlements than in streams far from human settlements, indicating the impact of human activities. The presence of microplastics in all samples, including headwaters immediately beneath glaciers, illustrates the widespread distribution of microplastics and suggests the potential for airborne sources. While the concentration of microplastics does not change dramatically from upstream tributaries to downstream rivers, the total load of microplastics increases due to higher discharge downstream. This research demonstrates the anthropogenic and air-borne influences on microplastics contamination on the southern side of the Himalayan range and contributes to filling the data gaps towards a better understanding of the global fate and transport of microplastics. Full article
Show Figures

Figure 1

17 pages, 8038 KiB  
Article
Macroinvertebrate Spatial Diversity Patterns of Shore Habitats in Italian High-Altitude Natural and Permanent Lakes and Ponds
by Angela Boggero, Silvia Zaupa, Giulia Cesarini, Matteo Ruocco, Ivano Ansaloni, Daniela Prevedelli and Riccardo Fornaroli
Water 2023, 15(21), 3814; https://doi.org/10.3390/w15213814 - 31 Oct 2023
Viewed by 1707
Abstract
A comparative analysis of environmental conditions between Alpine and Apennine lakes/ponds which represent different faces of European mountain regions was conducted. The data set was created on the basis of previous works carried out by national and international institutions including biological, physical–chemical, geographic, [...] Read more.
A comparative analysis of environmental conditions between Alpine and Apennine lakes/ponds which represent different faces of European mountain regions was conducted. The data set was created on the basis of previous works carried out by national and international institutions including biological, physical–chemical, geographic, and precipitation data from 27 lakes/ponds placed at altitudes ranging from 2334 ± 294 m a.s.l. (in the Alps) and 1541 ± 154 m a.s.l. (in the Apennines), with mean maximum depths of about 5.5 ± 4.6 m. A specific focus was dedicated to chironomids as outstanding sentinels for local and global changes in habitat conditions. Species richness and Taxonomic Distinctness Indices were applied to lakes/ponds macroinvertebrates to highlight differences in the biodiversity of the two areas. Subsequently, associations between descriptors of the mountain region climate, lithology, water chemistry, lake morphology, geography, macroinvertebrate assemblage richness, and distinctness were examined through Principal Component Analysis, Analysis of Variance, and Non-metric Multi-dimensional Scaling. Results showed strong positive correlations between mean annual precipitation and temperature with lake macroinvertebrate biodiversity as a whole and with chironomid in particular. Thus, these shore habitats face a threat under climate change conditions (impacting thermal and precipitation regimes). These results are also central in showing that even small ecosystems are important sources of biodiversity for the lower altitudes, stressing the urgency of including them within targeted monitoring and action plans to preserve their peculiar habitat, flora, and fauna. Full article
Show Figures

Figure 1

Back to TopTop