cancers-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1339 KB  
Review
Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy
by Nader El-Sayes, Alyssa Vito and Karen Mossman
Cancers 2021, 13(4), 806; https://doi.org/10.3390/cancers13040806 - 15 Feb 2021
Cited by 126 | Viewed by 18196
Abstract
Throughout the history of oncology research, tumor heterogeneity has been a major hurdle for the successful treatment of cancer. As a result of aberrant changes in the tumor microenvironment such as high mutational burden, hypoxic conditions and abnormal vasculature, several malignant subpopulations often [...] Read more.
Throughout the history of oncology research, tumor heterogeneity has been a major hurdle for the successful treatment of cancer. As a result of aberrant changes in the tumor microenvironment such as high mutational burden, hypoxic conditions and abnormal vasculature, several malignant subpopulations often exist within a single tumor mass. Therapeutic intervention can also increase selective pressure towards subpopulations with acquired resistance. This phenomenon is often the cause of relapse in previously responsive patients, drastically changing the expected outcome of therapy. In the case of cancer immunotherapy, tumor heterogeneity is a substantial barrier as acquired resistance often takes the form of antigen escape and immunosuppression. In an effort to combat intrinsic resistance mechanisms, therapies are often combined as a multi-pronged approach to target multiple pathways simultaneously. These multi-therapy regimens have long been a mainstay of clinical oncology with chemotherapy cocktails but are more recently being investigated in the emerging landscape of immunotherapy. Furthermore, as high throughput technology becomes more affordable and accessible, researchers continue to deepen their understanding of the factors that influence tumor heterogeneity and shape the TME over the course of treatment regimens. In this review, we will investigate the factors that give rise to tumor heterogeneity and the impact it has on the field of immunotherapy. We will discuss how tumor heterogeneity causes resistance to various treatments and review the strategies currently being employed to overcome this challenging clinical hurdle. Finally, we will outline areas of research that should be prioritized to gain a better understanding of tumor heterogeneity and develop appropriate solutions. Full article
(This article belongs to the Special Issue Mechanisms of Cancer Immunotherapy and Immune-Escape)
Show Figures

Figure 1

22 pages, 10975 KB  
Review
Clinical Candidates Targeting the ATR–CHK1–WEE1 Axis in Cancer
by Lukas Gorecki, Martin Andrs and Jan Korabecny
Cancers 2021, 13(4), 795; https://doi.org/10.3390/cancers13040795 - 14 Feb 2021
Cited by 62 | Viewed by 10754
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish [...] Read more.
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

25 pages, 1236 KB  
Review
Preclinical and Clinical Status of PSMA-Targeted Alpha Therapy for Metastatic Castration-Resistant Prostate Cancer
by Asta Juzeniene, Vilde Yuli Stenberg, Øyvind Sverre Bruland and Roy Hartvig Larsen
Cancers 2021, 13(4), 779; https://doi.org/10.3390/cancers13040779 - 13 Feb 2021
Cited by 69 | Viewed by 8962
Abstract
Bone, lymph node, and visceral metastases are frequent in castrate-resistant prostate cancer patients. Since such patients have only a few months’ survival benefit from standard therapies, there is an urgent need for new personalized therapies. The prostate-specific membrane antigen (PSMA) is overexpressed in [...] Read more.
Bone, lymph node, and visceral metastases are frequent in castrate-resistant prostate cancer patients. Since such patients have only a few months’ survival benefit from standard therapies, there is an urgent need for new personalized therapies. The prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer and is a molecular target for imaging diagnostics and targeted radionuclide therapy (theragnostics). PSMA-targeted α therapies (PSMA-TAT) may deliver potent and local radiation more selectively to cancer cells than PSMA-targeted β therapies. In this review, we summarize both the recent preclinical and clinical advances made in the development of PSMA-TAT, as well as the availability of therapeutic α-emitting radionuclides, the development of small molecules and antibodies targeting PSMA. Lastly, we discuss the potentials, limitations, and future perspectives of PSMA-TAT. Full article
(This article belongs to the Collection Prostate Cancer—from Molecular Mechanisms to Clinical Care)
Show Figures

Figure 1

14 pages, 2365 KB  
Article
Prognostic Significance of Gene Expression and DNA Methylation Markers in Circulating Tumor Cells and Paired Plasma Derived Exosomes in Metastatic Castration Resistant Prostate Cancer
by Martha Zavridou, Areti Strati, Evangelos Bournakis, Stavroula Smilkou, Victoria Tserpeli and Evi Lianidou
Cancers 2021, 13(4), 780; https://doi.org/10.3390/cancers13040780 - 13 Feb 2021
Cited by 56 | Viewed by 5592
Abstract
Liquid biopsy, based on the analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), provides non-invasive real-time monitoring of tumor evolution and therapeutic efficacy. We performed for the first time a direct comparison study on gene expression and DNA methylation markers [...] Read more.
Liquid biopsy, based on the analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), provides non-invasive real-time monitoring of tumor evolution and therapeutic efficacy. We performed for the first time a direct comparison study on gene expression and DNA methylation markers in CTCs and paired plasma-derived exosomes and evaluated their prognostic significance in metastatic castration resistant prostate cancer. This prospective liquid biopsy (LB) study was based on a group of 62 metastatic castration resistant prostate cancer (mCRPC) patients and 10 healthy donors (HD) as controls. Identical blood draws were used to: (a) enumerate CTC and tumor-derived extracellular vesicles (tdEVs) using CellSearch (CS) and (b) analyze CTCs and paired plasma-derived exosomes at the gene expression and DNA methylation level. CTCs were enumerated using CellSearch in 57/62 patients, with values ranging from 5 to 854 cells/7.5 mL PB. Our results revealed for the first time a significantly higher positivity of gene expression markers (CK-8, CK-18, TWIST1, PSMA, AR-FL, AR-V7, AR-567 and PD-L1 mRNA) in EpCAM-positive CTCs compared to plasma-derived exosomes. GSTP1, RASSF1A and SCHLAFEN were methylated both in CTC and exosomes. In CTCs, Kaplan–Meier analysis revealed that CK-19 (p = 0.009), PSMA (p = 0.001), TWIST1 (p = 0.001) expression and GSTP1 (p = 0.001) methylation were correlated with OS, while in exosomes GSTP1 (p = 0.007) and RASSF1A (p = 0.001) methylation was correlated with OS. Our direct comparison study of CTCs and exosomes at gene expression and DNA methylation level, revealed for the first time a significantly higher positivity in EpCAM-positive CTCs compared to plasma-derived exosomes. Future perspective of this study should be the evaluation of clinical utility of molecular biomarkers in CTCs and exosomes on independent multicentric cohorts with mCRPC patients. Full article
(This article belongs to the Special Issue Tumor Evolution: Progression, Metastasis and Therapeutic Response)
Show Figures

Figure 1

24 pages, 1366 KB  
Review
Senolytics for Cancer Therapy: Is All that Glitters Really Gold?
by Valerie J. Carpenter, Tareq Saleh and David A. Gewirtz
Cancers 2021, 13(4), 723; https://doi.org/10.3390/cancers13040723 - 10 Feb 2021
Cited by 90 | Viewed by 9773
Abstract
Senolytics represent a group of mechanistically diverse drugs that can eliminate senescent cells, both in tumors and in several aging-related pathologies. Consequently, senolytic use has been proposed as a potential adjuvant approach to improve the response to senescence-inducing conventional and targeted cancer therapies. [...] Read more.
Senolytics represent a group of mechanistically diverse drugs that can eliminate senescent cells, both in tumors and in several aging-related pathologies. Consequently, senolytic use has been proposed as a potential adjuvant approach to improve the response to senescence-inducing conventional and targeted cancer therapies. Despite the unequivocal promise of senolytics, issues of universality, selectivity, resistance, and toxicity remain to be further clarified. In this review, we attempt to summarize and analyze the current preclinical literature involving the use of senolytics in senescent tumor cell models, and to propose tenable solutions and future directions to improve the understanding and use of this novel class of drugs. Full article
(This article belongs to the Special Issue Cancer Therapy-Induced Senescence: The Good, the Bad and the Ugly)
Show Figures

Figure 1

16 pages, 1326 KB  
Review
PARP Inhibitors in Small-Cell Lung Cancer: Rational Combinations to Improve Responses
by Erik H. Knelson, Shetal A. Patel and Jacob M. Sands
Cancers 2021, 13(4), 727; https://doi.org/10.3390/cancers13040727 - 10 Feb 2021
Cited by 47 | Viewed by 6479
Abstract
Despite recent advances in first-line treatment for small-cell lung cancer (SCLC), durable responses remain rare. The DNA repair enzyme poly-(ADP)-ribose polymerase (PARP) was identified as a therapeutic target in SCLC using unbiased preclinical screens and confirmed in human and mouse models. Early trials [...] Read more.
Despite recent advances in first-line treatment for small-cell lung cancer (SCLC), durable responses remain rare. The DNA repair enzyme poly-(ADP)-ribose polymerase (PARP) was identified as a therapeutic target in SCLC using unbiased preclinical screens and confirmed in human and mouse models. Early trials of PARP inhibitors, either alone or in combination with chemotherapy, showed promising but limited responses, suggesting that selecting patient subsets and treatment combinations will prove critical to further clinical development. Expression of SLFN11 and other components of the DNA damage response (DDR) pathway appears to select for improved responses. Combining PARP inhibitors with agents that damage DNA and inhibit DDR appears particularly effective in preclinical and early trial data, as well as strategies that enhance antitumor immunity downstream of DNA damage. A robust understanding of the mechanisms of DDR in SCLC, which exhibits intrinsic replication stress, will improve selection of agents and predictive biomarkers. The most effective combinations will target multiple nodes in the DNA damage/DDR/immune activation cascade to minimize toxicity from synthetic lethality. Full article
(This article belongs to the Special Issue Small Cell Lung Cancer: A New Era Is Beginning?)
Show Figures

Figure 1

20 pages, 3480 KB  
Article
Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression
by Christopher Groth, Ludovica Arpinati, Merav E. Shaul, Nina Winkler, Klara Diester, Nicolas Gengenbacher, Rebekka Weber, Ihor Arkhypov, Samantha Lasser, Vera Petrova, Hellmut G. Augustin, Peter Altevogt, Jochen Utikal, Zvi G. Fridlender and Viktor Umansky
Cancers 2021, 13(4), 726; https://doi.org/10.3390/cancers13040726 - 10 Feb 2021
Cited by 24 | Viewed by 5001
Abstract
Background: Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC [...] Read more.
Background: Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC subsets to melanoma progression is not clear. Here, we compared both subsets regarding their immunosuppressive capacity and recruitment mechanisms. Furthermore, we inhibited PMN-MDSC migration in vivo to determine its effect on tumor progression. Methods: Using the RET transgenic melanoma mouse model, we investigated the immunosuppressive function of MDSC subsets and chemokine receptor expression on these cells. The effect of CXCR2 inhibition on PMN-MDSC migration and tumor progression was studied in RET transgenic mice and in C57BL/6 mice after surgical resection of primary melanomas. Results: Immunosuppressive capacity of intratumoral M- and PMN-MDSC was comparable in melanoma bearing mice. Anti-CXCR2 therapy prolonged survival of these mice and decreased the occurrence of distant metastasis. Furthermore, this therapy reduced the infiltration of melanoma lesions and pre-metastatic sites with PMN-MDSC that was associated with the accumulation of natural killer (NK) cells. Conclusions: We provide evidence for the tumorpromoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice. Full article
Show Figures

Figure 1

17 pages, 1321 KB  
Review
Interplay between the Gut Microbiota and Inflammatory Mediators in the Development of Colorectal Cancer
by Gwangbeom Heo, Yunna Lee and Eunok Im
Cancers 2021, 13(4), 734; https://doi.org/10.3390/cancers13040734 - 10 Feb 2021
Cited by 24 | Viewed by 4975
Abstract
Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to [...] Read more.
Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to colorectal cancer through an association with inflammatory mediators such as tumor necrosis factor, nuclear factor kappa B, interleukins, and interferons. This association may be a potential therapeutic target, since therapeutic interventions targeting the gut microbiota have been actively investigated in both the laboratory and in clinics and include fecal microbiota transplantation and probiotics. Full article
(This article belongs to the Special Issue Microbiota in Colorectal Cancer)
Show Figures

Figure 1

34 pages, 15361 KB  
Review
Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research
by Fahriye Duzagac, Gloria Saorin, Lorenzo Memeo, Vincenzo Canzonieri and Flavio Rizzolio
Cancers 2021, 13(4), 737; https://doi.org/10.3390/cancers13040737 - 10 Feb 2021
Cited by 73 | Viewed by 12596
Abstract
Organ-like cell clusters, so-called organoids, which exhibit self-organized and similar organ functionality as the tissue of origin, have provided a whole new level of bioinspiration for ex vivo systems. Microfluidic organoid or organs-on-a-chip platforms are a new group of micro-engineered promising models that [...] Read more.
Organ-like cell clusters, so-called organoids, which exhibit self-organized and similar organ functionality as the tissue of origin, have provided a whole new level of bioinspiration for ex vivo systems. Microfluidic organoid or organs-on-a-chip platforms are a new group of micro-engineered promising models that recapitulate 3D tissue structure and physiology and combines several advantages of current in vivo and in vitro models. Microfluidics technology is used in numerous applications since it allows us to control and manipulate fluid flows with a high degree of accuracy. This system is an emerging tool for understanding disease development and progression, especially for personalized therapeutic strategies for cancer treatment, which provide well-grounded, cost-effective, powerful, fast, and reproducible results. In this review, we highlight how the organoid-on-a-chip models have improved the potential of efficiency and reproducibility of organoid cultures. More widely, we discuss current challenges and development on organoid culture systems together with microfluidic approaches and their limitations. Finally, we describe the recent progress and potential utilization in the organs-on-a-chip practice. Full article
(This article belongs to the Special Issue Cancer Organoids in Basic Science and Translational Medicine)
Show Figures

Figure 1

24 pages, 1625 KB  
Review
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma
by Louise Marchandet, Morgane Lallier, Céline Charrier, Marc Baud’huin, Benjamin Ory and François Lamoureux
Cancers 2021, 13(4), 683; https://doi.org/10.3390/cancers13040683 - 8 Feb 2021
Cited by 97 | Viewed by 6499
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is [...] Read more.
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development. Full article
(This article belongs to the Special Issue Research Advances and Therapeutic Strategies of Human Osteosarcoma)
Show Figures

Figure 1

17 pages, 3954 KB  
Article
Soluble PD-L1 Is an Independent Prognostic Factor in Clear Cell Renal Cell Carcinoma
by Gorka Larrinaga, Jon Danel Solano-Iturri, Peio Errarte, Miguel Unda, Ana Loizaga-Iriarte, Amparo Pérez-Fernández, Enrique Echevarría, Aintzane Asumendi, Claudia Manini, Javier C. Angulo and José I. López
Cancers 2021, 13(4), 667; https://doi.org/10.3390/cancers13040667 - 7 Feb 2021
Cited by 42 | Viewed by 3955
Abstract
(1). Background: Immunohistochemical (IHC) evaluation of programmed death-1 (PD-1) and its ligand (PD-L1) is being used to evaluate advanced malignancies with potential response to immune checkpoint inhibitors. We evaluated both plasma and tissue expression of PD-1 and PD-L1 in the same cohort [...] Read more.
(1). Background: Immunohistochemical (IHC) evaluation of programmed death-1 (PD-1) and its ligand (PD-L1) is being used to evaluate advanced malignancies with potential response to immune checkpoint inhibitors. We evaluated both plasma and tissue expression of PD-1 and PD-L1 in the same cohort of patients, including non-metastatic and metastatic clear cell renal cell carcinoma (CCRCC). Concomitant plasma and tissue expression of PD-1 and PD-L1 was evaluated with emphasis on diagnostic and prognostic implications. (2) Methods: we analyzed PD-1 and PD-L1 IHC expression in tumor tissues and soluble forms (sPD-1 and sPD-L1) in plasma from 89 patients with CCRCC, of which 23 were metastatic and 16 received systemic therapy. The primary endpoint was evaluation of overall survival using Kaplan-Meier analysis and the Cox regression model. Plasma samples from healthy volunteers were also evaluated. (3) Results: Interestingly, sPD-1 and sPD-L1 levels were lower in cancer patients than in controls. sPD-1 and sPD-L1 levels and their counterpart tissue expression both at the tumor center and infiltrating front were not associated. Higher expression of both PD-1 and PD-L1 were associated with tumor grade, necrosis and tumor size. PD-1 was associated to tumor stage (pT) and PD-L1 to metastases. sPD-1 and sPD-L1 were not associated with clinico-pathological parameters, although both were higher in patients with synchronous metastases compared to metachronous ones and sPD-L1 was also higher for metastatic patients compared to non-metastatic patients. sPD-1 was also associated with the International Metastatic Renal Cell Cancer Database Consortium (IMDC) prognostic groups in metastatic CCRCC and also to the Morphology, Attenuation, Size and Structure (MASS) response criteria in metastatic patients treated with systemic therapy, mainly tyrosine-kinase inhibitors. Regarding prognosis, PD-L1 immunostaining at the tumor center with and without the tumor front was associated with worse survival, and so was sPD-L1 at a cut-off >793 ng/mL. Combination of positivity at both the tissue and plasma level increased the level of significance to predict prognosis. (4) Conclusions: Our findings corroborate the role of PD-L1 IHC to evaluate prognosis in CCRCC and present novel data on the usefulness of plasma sPD-L1 as a promising biomarker of survival in this neoplasia. Full article
(This article belongs to the Special Issue Clear Cell Renal Cell Carcinoma 20212022)
Show Figures

Graphical abstract

29 pages, 1712 KB  
Review
Focal Adhesion Kinase Fine Tunes Multifaced Signals toward Breast Cancer Progression
by Damiano Cosimo Rigiracciolo, Francesca Cirillo, Marianna Talia, Lucia Muglia, Jorge Silvio Gutkind, Marcello Maggiolini and Rosamaria Lappano
Cancers 2021, 13(4), 645; https://doi.org/10.3390/cancers13040645 - 5 Feb 2021
Cited by 41 | Viewed by 7560
Abstract
Breast cancer represents the most common diagnosed malignancy and the main leading cause of tumor-related death among women worldwide. Therefore, several efforts have been made in order to identify valuable molecular biomarkers for the prognosis and prediction of therapeutic responses in breast tumor [...] Read more.
Breast cancer represents the most common diagnosed malignancy and the main leading cause of tumor-related death among women worldwide. Therefore, several efforts have been made in order to identify valuable molecular biomarkers for the prognosis and prediction of therapeutic responses in breast tumor patients. In this context, emerging discoveries have indicated that focal adhesion kinase (FAK), a non-receptor tyrosine kinase, might represent a promising target involved in breast tumorigenesis. Of note, high FAK expression and activity have been tightly correlated with a poor clinical outcome and metastatic features in several tumors, including breast cancer. Recently, a role for the integrin-FAK signaling in mechanotransduction has been suggested and the function of FAK within the breast tumor microenvironment has been ascertained toward tumor angiogenesis and vascular permeability. FAK has been also involved in cancer stem cells (CSCs)-mediated initiation, maintenance and therapeutic responses of breast tumors. In addition, the potential of FAK to elicit breast tumor-promoting effects has been even associated with the capability to modulate immune responses. On the basis of these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. Here, we recapitulate the multifaceted action exerted by FAK and its prognostic significance in breast cancer. Moreover, we highlight the recent clinical evidence regarding the usefulness of FAK inhibitors in the treatment of breast tumors. Full article
Show Figures

Figure 1

15 pages, 2272 KB  
Article
Mutational Landscape of Virus- and UV-Associated Merkel Cell Carcinoma Cell Lines Is Comparable to Tumor Tissue
by Kai Horny, Patricia Gerhardt, Angela Hebel-Cherouny, Corinna Wülbeck, Jochen Utikal and Jürgen C. Becker
Cancers 2021, 13(4), 649; https://doi.org/10.3390/cancers13040649 - 5 Feb 2021
Cited by 18 | Viewed by 4185
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive cutaneous malignancy that is either associated with the integration of the Merkel cell polyomavirus or chronic UV exposure. These two types of carcinogenesis are reflected in characteristic mutational features present in MCC tumor lesions. [...] Read more.
Merkel cell carcinoma (MCC) is a rare, highly aggressive cutaneous malignancy that is either associated with the integration of the Merkel cell polyomavirus or chronic UV exposure. These two types of carcinogenesis are reflected in characteristic mutational features present in MCC tumor lesions. However, the genomic characteristics of MCC cell lines used as preclinical models are not well established. Thus, we analyzed the exomes of three virus-negative and six virus-positive MCC cell lines, all showing a classical neuroendocrine growth pattern. Virus-negative cell lines are characterized by a high tumor mutational burden (TMB), UV-light-induced DNA damage, functionally relevant coding mutations, e.g., in RB1 and TP53, and large amounts of copy number variations (CNVs). In contrast, virus-positive cell lines have a low TMB with few coding mutations and lack prominent mutational signatures, but harbor characteristic CNVs. One of the virus-negative cell lines has a local MYC amplification associated with high MYC mRNA expression. In conclusion, virus-positive and -negative MCC cell lines with a neuroendocrine growth pattern resemble mutational features observed in MCC tissue samples, which strengthens their utility for functional studies. Full article
(This article belongs to the Special Issue The Biological and Clinical Aspects of Merkel Cell Carcinoma)
Show Figures

Figure 1

33 pages, 1094 KB  
Review
Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy
by María Florencia Mercogliano, Sofía Bruni, Florencia Mauro, Patricia Virginia Elizalde and Roxana Schillaci
Cancers 2021, 13(3), 564; https://doi.org/10.3390/cancers13030564 - 2 Feb 2021
Cited by 86 | Viewed by 10207
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) [...] Read more.
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects. Full article
(This article belongs to the Special Issue Challenges and Opportunities for Effective Cancer Immunotherapies)
Show Figures

Figure 1

16 pages, 1830 KB  
Review
The Role of Hypoxia in Glioblastoma Radiotherapy Resistance
by Agathe L. Chédeville and Patricia A. Madureira
Cancers 2021, 13(3), 542; https://doi.org/10.3390/cancers13030542 - 1 Feb 2021
Cited by 74 | Viewed by 6063
Abstract
Glioblastoma (GB) (grade IV astrocytoma) is the most malignant type of primary brain tumor with a 16 months median survival time following diagnosis. Despite increasing attention regarding the development of targeted therapies for GB that resulted in around 450 clinical trials currently undergoing, [...] Read more.
Glioblastoma (GB) (grade IV astrocytoma) is the most malignant type of primary brain tumor with a 16 months median survival time following diagnosis. Despite increasing attention regarding the development of targeted therapies for GB that resulted in around 450 clinical trials currently undergoing, radiotherapy still remains the most clinically effective treatment for these patients. Nevertheless, radiotherapy resistance (radioresistance) is commonly observed in GB patients leading to tumor recurrence and eventually patient death. It is therefore essential to unravel the molecular mechanisms underpinning GB cell radioresistance in order to develop novel strategies and combinational therapies focused on enhancing tumor cell sensitivity to radiotherapy. In this review, we present a comprehensive examination of the current literature regarding the role of hypoxia (O2 partial pressure less than 10 mmHg), a main GB microenvironmental factor, in radioresistance with the ultimate goal of identifying potential molecular markers and therapeutic targets to overcome this issue in the future. Full article
Show Figures

Figure 1

13 pages, 632 KB  
Review
PD-L1, TMB, MSI, and Other Predictors of Response to Immune Checkpoint Inhibitors in Biliary Tract Cancer
by Alessandro Rizzo, Angela Dalia Ricci and Giovanni Brandi
Cancers 2021, 13(3), 558; https://doi.org/10.3390/cancers13030558 - 1 Feb 2021
Cited by 217 | Viewed by 10854
Abstract
Biliary tract cancer (BTC) represents the second most frequently diagnosed primary liver cancer worldwide following hepatocellular carcinoma, and the overall survival of patients with unresectable disease remains poor. In recent years, the advent of immune checkpoint inhibitors (ICIs) has revolutionized the therapeutic landscape [...] Read more.
Biliary tract cancer (BTC) represents the second most frequently diagnosed primary liver cancer worldwide following hepatocellular carcinoma, and the overall survival of patients with unresectable disease remains poor. In recent years, the advent of immune checkpoint inhibitors (ICIs) has revolutionized the therapeutic landscape of several malignancies with these agents, which have also been explored in advanced BTC, as monotherapy or in combination with other anticancer agents. However, clinical trials evaluating ICIs in BTC have shown conflicting results, and the clinical benefit provided by immunotherapy seems limited to a small subgroup of BTC patients. Thus, the identification of reliable predictors of the response to immunotherapy represents a significant challenge in this setting. This review provides an overview of the available evidence on the biomarkers predictive of the response to ICIs in patients with advanced BTC, especially focusing on programmed death-ligand 1 (PD-L1), tumor mutational burden (TMB), microsatellite instability (MSI), and other emerging biomarkers. Full article
(This article belongs to the Special Issue Surgical Treatment of Cholangiocarcinoma)
Show Figures

Figure 1

16 pages, 2888 KB  
Article
Type 2 Innate Lymphoid Cells Protect against Colorectal Cancer Progression and Predict Improved Patient Survival
by Qiutong Huang, Nicolas Jacquelot, Adele Preaudet, Soroor Hediyeh-zadeh, Fernando Souza-Fonseca-Guimaraes, Andrew N. J. McKenzie, Philip M. Hansbro, Melissa J. Davis, Lisa A. Mielke, Tracy L. Putoczki and Gabrielle T. Belz
Cancers 2021, 13(3), 559; https://doi.org/10.3390/cancers13030559 - 1 Feb 2021
Cited by 41 | Viewed by 6021
Abstract
Chronic inflammation of the gastrointestinal (GI) tract contributes to colorectal cancer (CRC) progression. While the role of adaptive T cells in CRC is now well established, the role of innate immune cells, specifically innate lymphoid cells (ILCs), is not well understood. To define [...] Read more.
Chronic inflammation of the gastrointestinal (GI) tract contributes to colorectal cancer (CRC) progression. While the role of adaptive T cells in CRC is now well established, the role of innate immune cells, specifically innate lymphoid cells (ILCs), is not well understood. To define the role of ILCs in CRC we employed complementary heterotopic and chemically-induced CRC mouse models. We discovered that ILCs were abundant in CRC tumours and contributed to anti-tumour immunity. We focused on ILC2 and showed that ILC2-deficient mice developed a higher tumour burden compared with littermate wild-type controls. We generated an ILC2 gene signature and using machine learning models revealed that CRC patients with a high intratumor ILC2 gene signature had a favourable clinical prognosis. Collectively, our results highlight a critical role for ILC2 in CRC, suggesting a potential new avenue to improve clinical outcomes through ILC2-agonist based therapeutic approaches. Full article
(This article belongs to the Special Issue NK/ILCs in Tumors)
Show Figures

Graphical abstract

22 pages, 26963 KB  
Review
Tumor Hypoxia as a Barrier in Cancer Therapy: Why Levels Matter
by Tord Hompland, Christina Sæten Fjeldbo and Heidi Lyng
Cancers 2021, 13(3), 499; https://doi.org/10.3390/cancers13030499 - 28 Jan 2021
Cited by 137 | Viewed by 12431
Abstract
Hypoxia arises in tumor regions with insufficient oxygen supply and is a major barrier in cancer treatment. The distribution of hypoxia levels is highly heterogeneous, ranging from mild, almost non-hypoxic, to severe and anoxic levels. The individual hypoxia levels induce a variety of [...] Read more.
Hypoxia arises in tumor regions with insufficient oxygen supply and is a major barrier in cancer treatment. The distribution of hypoxia levels is highly heterogeneous, ranging from mild, almost non-hypoxic, to severe and anoxic levels. The individual hypoxia levels induce a variety of biological responses that impair the treatment effect. A stronger focus on hypoxia levels rather than the absence or presence of hypoxia in our investigations will help development of improved strategies to treat patients with hypoxic tumors. Current knowledge on how hypoxia levels are sensed by cancer cells and mediate cellular responses that promote treatment resistance is comprehensive. Recently, it has become evident that hypoxia also has an important, more unexplored role in the interaction between cancer cells, stroma and immune cells, influencing the composition and structure of the tumor microenvironment. Establishment of how such processes depend on the hypoxia level requires more advanced tumor models and methodology. In this review, we describe promising model systems and tools for investigations of hypoxia levels in tumors. We further present current knowledge and emerging research on cellular responses to individual levels, and discuss their impact in novel therapeutic approaches to overcome the hypoxia barrier. Full article
(This article belongs to the Special Issue Novel Perspectives on Hypoxia in Cancer)
Show Figures

Figure 1

25 pages, 9574 KB  
Review
Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours
by Yordanos F.I. Setargew, Kaitlin Wyllie, Rhiannon D. Grant, Jessica L. Chitty and Thomas R. Cox
Cancers 2021, 13(3), 491; https://doi.org/10.3390/cancers13030491 - 27 Jan 2021
Cited by 71 | Viewed by 10718
Abstract
The lysyl oxidase (LOX) family of enzymes are a major driver in the biogenesis of desmoplastic matrix at the primary tumour and secondary metastatic sites. With the increasing interest in and development of anti-stromal therapies aimed at improving clinical outcomes of cancer patients, [...] Read more.
The lysyl oxidase (LOX) family of enzymes are a major driver in the biogenesis of desmoplastic matrix at the primary tumour and secondary metastatic sites. With the increasing interest in and development of anti-stromal therapies aimed at improving clinical outcomes of cancer patients, the Lox family has emerged as a potentially powerful clinical target. This review examines how lysyl oxidase family dysregulation in solid cancers contributes to disease progression and poor patient outcomes, as well as an evaluation of the preclinical landscape of LOX family targeting therapeutics. We also discuss the suitability of the LOX family as a diagnostic and/or prognostic marker in solid tumours. Full article
Show Figures

Figure 1

23 pages, 1197 KB  
Review
Radiotherapy–Immunotherapy Combination: How Will We Bridge the Gap Between Pre-Clinical Promise and Effective Clinical Delivery?
by Erminia Romano, Jamie Honeychurch and Timothy M. Illidge
Cancers 2021, 13(3), 457; https://doi.org/10.3390/cancers13030457 - 26 Jan 2021
Cited by 33 | Viewed by 5038
Abstract
Radiotherapy (RT) is highly effective at directly killing tumor cells and plays an important part in cancer treatments being delivered to around 50% of all cancer patients. The additional immunomodulatory properties of RT have been investigated, and if exploited effectively, have the potential [...] Read more.
Radiotherapy (RT) is highly effective at directly killing tumor cells and plays an important part in cancer treatments being delivered to around 50% of all cancer patients. The additional immunomodulatory properties of RT have been investigated, and if exploited effectively, have the potential to further improve the efficacy of RT and cancer outcomes. The initial results of combining RT with immunomodulatory agents have generated promising data in pre-clinical studies, which has in turn led to a large number of RT and immunotherapy clinical trials. The overarching aim of these combinations is to enhance anti-tumor immune responses and improve responses rates and patient outcomes. In order to maximize this undoubted opportunity, there remain a number of important questions that need to be addressed, including: (i) the optimal RT dose and fractionation schedule; (ii) the optimal RT target volume; (iii) the optimal immuno-oncology (IO) agent(s) to partner with RT; (iv) the optimal site(s)/route(s) of administration of IO agents; and finally, the optimal RT schedule. In this review, we will summarize progress to date and identify current gaps in knowledge that need to be addressed in order to facilitate effective clinical translation of RT and IO agent combinations. Full article
(This article belongs to the Special Issue Advances in Experimental Radiotherapy)
Show Figures

Figure 1

31 pages, 1200 KB  
Review
The CXCL12 Crossroads in Cancer Stem Cells and Their Niche
by Juan Carlos López-Gil, Laura Martin-Hijano, Patrick C. Hermann and Bruno Sainz, Jr.
Cancers 2021, 13(3), 469; https://doi.org/10.3390/cancers13030469 - 26 Jan 2021
Cited by 42 | Viewed by 8001
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of “stem”-like cells within the tumor with unique characteristics that allow them to maintain tumor growth, escape standard anti-tumor therapies and drive subsequent repopulation of the tumor. This is the result of their intrinsic [...] Read more.
Cancer stem cells (CSCs) are defined as a subpopulation of “stem”-like cells within the tumor with unique characteristics that allow them to maintain tumor growth, escape standard anti-tumor therapies and drive subsequent repopulation of the tumor. This is the result of their intrinsic “stem”-like features and the strong driving influence of the CSC niche, a subcompartment within the tumor microenvironment that includes a diverse group of cells focused on maintaining and supporting the CSC. CXCL12 is a chemokine that plays a crucial role in hematopoietic stem cell support and has been extensively reported to be involved in several cancer-related processes. In this review, we will provide the latest evidence about the interactions between CSC niche-derived CXCL12 and its receptors—CXCR4 and CXCR7—present on CSC populations across different tumor entities. The interactions facilitated by CXCL12/CXCR4/CXCR7 axes seem to be strongly linked to CSC “stem”-like features, tumor progression, and metastasis promotion. Altogether, this suggests a role for CXCL12 and its receptors in the maintenance of CSCs and the components of their niche. Moreover, we will also provide an update of the therapeutic options being currently tested to disrupt the CXCL12 axes in order to target, directly or indirectly, the CSC subpopulation. Full article
(This article belongs to the Special Issue Stem Cell in Cancer Therapy)
Show Figures

Figure 1

23 pages, 2008 KB  
Review
Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat
by Yuki Matsushita, Hayato Nakagawa and Kazuhiko Koike
Cancers 2021, 13(3), 474; https://doi.org/10.3390/cancers13030474 - 26 Jan 2021
Cited by 76 | Viewed by 12581
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules [...] Read more.
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called “lipid metabolic reprogramming”, can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research. Full article
Show Figures

Figure 1

12 pages, 2176 KB  
Article
Radiomics-Derived Data by Contrast Enhanced Magnetic Resonance in RAS Mutations Detection in Colorectal Liver Metastases
by Vincenza Granata, Roberta Fusco, Antonio Avallone, Alfonso De Stefano, Alessandro Ottaiano, Carolina Sbordone, Luca Brunese, Francesco Izzo and Antonella Petrillo
Cancers 2021, 13(3), 453; https://doi.org/10.3390/cancers13030453 - 25 Jan 2021
Cited by 61 | Viewed by 3771
Abstract
Purpose: To assess the association of RAS mutation status and radiomics-derived data by Contrast Enhanced-Magnetic Resonance Imaging (CE-MRI) in liver metastases. Materials and Methods: 76 patients (36 women and 40 men; 59 years of mean age and 36–80 years as range) [...] Read more.
Purpose: To assess the association of RAS mutation status and radiomics-derived data by Contrast Enhanced-Magnetic Resonance Imaging (CE-MRI) in liver metastases. Materials and Methods: 76 patients (36 women and 40 men; 59 years of mean age and 36–80 years as range) were included in this retrospective study. Texture metrics and parameters based on lesion morphology were calculated. Per-patient univariate and multivariate analysis were made. Wilcoxon-Mann-Whitney U test, receiver operating characteristic (ROC) analysis, pattern recognition approaches with features selection approaches were considered. Results: Significant results were obtained for texture features while morphological parameters had not significant results to classify RAS mutation. The results showed that using a univariate analysis was not possible to discriminate accurately the RAS mutation status. Instead, considering a multivariate analysis and classification approaches, a KNN exclusively with texture parameters as predictors reached the best results (AUC of 0.84 and an accuracy of 76.9% with 90.0% of sensitivity and 67.8% of specificity on training set and an accuracy of 87.5% with 91.7% of sensitivity and 83.3% of specificity on external validation cohort). Conclusions: Texture parameters derived by CE-MRI and combined using multivariate analysis and patter recognition approaches could allow stratifying the patients according to RAS mutation status. Full article
(This article belongs to the Special Issue Radiology and Imaging of Cancer)
Show Figures

Figure 1

25 pages, 1632 KB  
Review
The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma
by Alexander Ou, Martina Ott, Dexing Fang and Amy B. Heimberger
Cancers 2021, 13(3), 437; https://doi.org/10.3390/cancers13030437 - 24 Jan 2021
Cited by 91 | Viewed by 8257
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety [...] Read more.
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field. Full article
(This article belongs to the Special Issue Targeted Therapies for the Treatment of Glioblastoma)
Show Figures

Figure 1

15 pages, 1008 KB  
Review
Cancer Treatment-Induced Accelerated Aging in Cancer Survivors: Biology and Assessment
by Shuo Wang, Anna Prizment, Bharat Thyagarajan and Anne Blaes
Cancers 2021, 13(3), 427; https://doi.org/10.3390/cancers13030427 - 23 Jan 2021
Cited by 87 | Viewed by 7568
Abstract
Rapid improvements in cancer survival led to the realization that many modalities used to treat or control cancer may cause accelerated aging in cancer survivors. Clinically, “accelerated aging” phenotypes in cancer survivors include secondary cancers, frailty, chronic organ dysfunction, and cognitive impairment, all [...] Read more.
Rapid improvements in cancer survival led to the realization that many modalities used to treat or control cancer may cause accelerated aging in cancer survivors. Clinically, “accelerated aging” phenotypes in cancer survivors include secondary cancers, frailty, chronic organ dysfunction, and cognitive impairment, all of which can impact long-term health and quality of life in cancer survivors. The treatment-induced accelerated aging in cancer survivors could be explained by telomere attrition, cellular senescence, stem cell exhaustion, DNA damage, and epigenetic alterations. Several aging clocks and biomarkers of aging have been proposed to be potentially useful in estimating biological age, which can provide specific information about how old an individual is biologically independent of chronological age. Measuring biological age in cancer survivors may be important for two reasons. First, it can better predict the risk of cancer treatment-related comorbidities than chronological age. Second, biological age may provide additional value in evaluating the effects of treatments and personalizing cancer therapies to maximize efficacy of treatment. A deeper understanding of treatment-induced accelerated aging in individuals with cancer may lead to novel strategies that reduce the accelerated aging and improve the quality of life in cancer survivors. Full article
(This article belongs to the Special Issue Cancer Therapy-Induced Senescence: The Good, the Bad and the Ugly)
Show Figures

Figure 1

25 pages, 763 KB  
Review
Artificial Intelligence for Histology-Based Detection of Microsatellite Instability and Prediction of Response to Immunotherapy in Colorectal Cancer
by Lindsey A. Hildebrand, Colin J. Pierce, Michael Dennis, Munizay Paracha and Asaf Maoz
Cancers 2021, 13(3), 391; https://doi.org/10.3390/cancers13030391 - 21 Jan 2021
Cited by 75 | Viewed by 10022
Abstract
Microsatellite instability (MSI) is a molecular marker of deficient DNA mismatch repair (dMMR) that is found in approximately 15% of colorectal cancer (CRC) patients. Testing all CRC patients for MSI/dMMR is recommended as screening for Lynch Syndrome and, more recently, to determine eligibility [...] Read more.
Microsatellite instability (MSI) is a molecular marker of deficient DNA mismatch repair (dMMR) that is found in approximately 15% of colorectal cancer (CRC) patients. Testing all CRC patients for MSI/dMMR is recommended as screening for Lynch Syndrome and, more recently, to determine eligibility for immune checkpoint inhibitors in advanced disease. However, universal testing for MSI/dMMR has not been uniformly implemented because of cost and resource limitations. Artificial intelligence has been used to predict MSI/dMMR directly from hematoxylin and eosin (H&E) stained tissue slides. We review the emerging data regarding the utility of machine learning for MSI classification, focusing on CRC. We also provide the clinician with an introduction to image analysis with machine learning and convolutional neural networks. Machine learning can predict MSI/dMMR with high accuracy in high quality, curated datasets. Accuracy can be significantly decreased when applied to cohorts with different ethnic and/or clinical characteristics, or different tissue preparation protocols. Research is ongoing to determine the optimal machine learning methods for predicting MSI, which will need to be compared to current clinical practices, including next-generation sequencing. Predicting response to immunotherapy remains an unmet need. Full article
Show Figures

Figure 1

20 pages, 4721 KB  
Article
Senolytic Targeting of Bcl-2 Anti-Apoptotic Family Increases Cell Death in Irradiated Sarcoma Cells
by Julie Lafontaine, Guillaume B. Cardin, Nicolas Malaquin, Jean-Sébastien Boisvert, Francis Rodier and Philip Wong
Cancers 2021, 13(3), 386; https://doi.org/10.3390/cancers13030386 - 21 Jan 2021
Cited by 38 | Viewed by 5686
Abstract
Radiotherapy (RT) is a key component of cancer treatment. Most of the time, radiation is given after surgery but for soft-tissue sarcomas (STS), pre-surgical radiation is commonly utilized. However, despite improvements in RT accuracy, the rate of local recurrence remains high and is [...] Read more.
Radiotherapy (RT) is a key component of cancer treatment. Most of the time, radiation is given after surgery but for soft-tissue sarcomas (STS), pre-surgical radiation is commonly utilized. However, despite improvements in RT accuracy, the rate of local recurrence remains high and is the major cause of death for patients with STS. A better understanding of cell fates in response to RT could provide new therapeutic options to enhance tumour cell killing by RT and facilitate surgical resection. Here, we showed that irradiated STS cell cultures do not die but instead undergo therapy-induced senescence (TIS), which is characterized by proliferation arrest, senescence-associated β-galactosidase activity, secretion of inflammatory cytokines and persistent DNA damage. STS-TIS was also associated with increased levels of the anti-apoptotic Bcl-2 family of proteins which rendered cells targetable using senolytic Bcl-2 inhibitors. As oppose to radiation alone, the addition of senolytic agents Venetoclax (ABT-199) or Navitoclax (ABT-263) after irradiation induced a rapid apoptotic cell death in STS monolayer cultures and in a more complex three-dimensional culture model. Together, these data suggest a new promising therapeutic approach for sarcoma patients who receive neoadjuvant RT. The addition of senolytic agents to radiation treatments may significantly reduce tumour volume prior to surgery and thereby improve the clinical outcome of patients. Full article
(This article belongs to the Special Issue Sarcomas: New Biomarkers and Therapeutic Strategies)
Show Figures

Figure 1

22 pages, 721 KB  
Review
Cancer Stem Cells—Key Players in Tumor Relapse
by Monica Marzagalli, Fabrizio Fontana, Michela Raimondi and Patrizia Limonta
Cancers 2021, 13(3), 376; https://doi.org/10.3390/cancers13030376 - 20 Jan 2021
Cited by 117 | Viewed by 7261
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, [...] Read more.
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications. Full article
Show Figures

Figure 1

22 pages, 937 KB  
Review
ctDNA and Adjuvant Therapy for Colorectal Cancer: Time to Re-Invent Our Treatment Paradigm
by Mahendra Naidoo, Peter Gibbs and Jeanne Tie
Cancers 2021, 13(2), 346; https://doi.org/10.3390/cancers13020346 - 19 Jan 2021
Cited by 54 | Viewed by 10057
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. While there have been significant developments in the treatments for patients with metastatic CRC in recent years, improving outcomes in the adjuvant setting has been more challenging. Recent technological advances [...] Read more.
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. While there have been significant developments in the treatments for patients with metastatic CRC in recent years, improving outcomes in the adjuvant setting has been more challenging. Recent technological advances in circulating tumour DNA (ctDNA) assay with the ability to detect minimal residual disease (MRD) after curative intent surgery will fundamentally change how we assess recurrence risk and conduct adjuvant trials. Studies in non-metastatic CRC have now demonstrated the prognostic impact of ctDNA analysis after curative intent surgery over and above current standard of care clinicopathological criteria. This ability of ctDNA analysis to stratify patients into low- and very-high-risk groups provides a window of opportunity to personalise adjuvant treatment where escalation/de-escalation of adjuvant systemic therapy could potentially increase cure rates and also reduce treatment-related physical and financial toxicity. Emerging data suggest that conversion of ctDNA from detectable to undetectable after adjuvant chemotherapy may reflect treatment efficacy. This real-time assessment of treatment benefit could be used as a surrogate endpoint for adjuvant novel drug development. Several ctDNA-based randomized adjuvant trials are ongoing internationally to confirm the clinical utility of ctDNA in colorectal cancer. Full article
(This article belongs to the Special Issue Adjuvant Chemotherapy for Colorectal Cancer)
Show Figures

Figure 1

22 pages, 2037 KB  
Review
Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer
by Dhruv Bansal, Melissa A. Reimers, Eric M. Knoche and Russell K. Pachynski
Cancers 2021, 13(2), 334; https://doi.org/10.3390/cancers13020334 - 18 Jan 2021
Cited by 59 | Viewed by 7601
Abstract
Although most prostate cancers are localized, and the majority are curable, recurrences occur in approximately 35% of men. Among patients with prostate-specific antigen (PSA) recurrence and PSA doubling time (PSADT) less than 15 months after radical prostatectomy, prostate cancer accounted for approximately 90% [...] Read more.
Although most prostate cancers are localized, and the majority are curable, recurrences occur in approximately 35% of men. Among patients with prostate-specific antigen (PSA) recurrence and PSA doubling time (PSADT) less than 15 months after radical prostatectomy, prostate cancer accounted for approximately 90% of the deaths by 15 years after recurrence. An immunosuppressive tumor microenvironment (TME) and impaired cellular immunity are likely largely responsible for the limited utility of checkpoint inhibitors (CPIs) in advanced prostate cancer compared with other tumor types. Thus, for immunologically “cold” malignancies such as prostate cancer, clinical trial development has pivoted towards novel approaches to enhance immune responses. Numerous clinical trials are currently evaluating combination immunomodulatory strategies incorporating vaccine-based therapies, checkpoint inhibitors, and chimeric antigen receptor (CAR) T cells. Other trials evaluate the efficacy and safety of these immunomodulatory agents’ combinations with standard approaches such as androgen deprivation therapy (ADT), taxane-based chemotherapy, radiotherapy, and targeted therapies such as tyrosine kinase inhibitors (TKI) and poly ADP ribose polymerase (PARP) inhibitors. Here, we will review promising immunotherapies in development and ongoing trials for metastatic castration-resistant prostate cancer (mCRPC). These novel trials will build on past experiences and promise to usher a new era to treat patients with mCRPC. Full article
Show Figures

Figure 1

15 pages, 4977 KB  
Review
Recent Advances and Future Directions in Clinical Management of Head and Neck Squamous Cell Carcinoma
by Jameel Muzaffar, Shahla Bari, Kedar Kirtane and Christine H. Chung
Cancers 2021, 13(2), 338; https://doi.org/10.3390/cancers13020338 - 18 Jan 2021
Cited by 104 | Viewed by 8387
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common cancer arising in the head and neck region. The most common risk factors are smoking, excessive drinking, and human papillomavirus (HPV) infection. While the overall incidence of smoking is decreasing, the incidence [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is the most common cancer arising in the head and neck region. The most common risk factors are smoking, excessive drinking, and human papillomavirus (HPV) infection. While the overall incidence of smoking is decreasing, the incidence of HPV-related HNSCC is increasing in the United States and Western Europe, which led to a shift in understanding of the pathophysiology, treatment, and prognosis of this disease. The outcomes for non-metastatic HNSCC remains very encouraging and continues to improve. Advances in radiation technology and techniques, better organ preserving surgical options, and multidisciplinary treatment modalities have improved cure rates for locally advanced HNSCC patients. The treatment of metastatic disease, however, remains an area of need. The advancement of immune checkpoint inhibitors has provided significantly better outcomes, but only a small proportion of patients obtain benefits. Most recurrent and/or metastatic HNSCC patients continue to have poor survival. This has led to the vigorous investigation of new biomarkers and biomarker-based therapies. Novel therapeutic options including adaptive cellular therapy and therapeutic vaccines are also on the horizon. In this review, we highlight the latest advances in the field of HNSCC and the future direction of research. Full article
(This article belongs to the Special Issue Advances in Head and Neck Squamous Cell Carcinoma (HNSCC))
Show Figures

Figure 1

15 pages, 1743 KB  
Article
Enhanced DNA Repair Pathway is Associated with Cell Proliferation and Worse Survival in Hepatocellular Carcinoma (HCC)
by Masanori Oshi, Tae Hee Kim, Yoshihisa Tokumaru, Li Yan, Ryusei Matsuyama, Itaru Endo, Leonid Cherkassky and Kazuaki Takabe
Cancers 2021, 13(2), 323; https://doi.org/10.3390/cancers13020323 - 17 Jan 2021
Cited by 48 | Viewed by 4542
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and a leading cause of cancer-related deaths worldwide. In this study, a total of 749 HCC patients from 5 cohorts were studied to examine the relationships between enhancement of DNA repair and cancer [...] Read more.
Hepatocellular carcinoma (HCC) is one of the most common malignancies and a leading cause of cancer-related deaths worldwide. In this study, a total of 749 HCC patients from 5 cohorts were studied to examine the relationships between enhancement of DNA repair and cancer aggressiveness, tumor immune microenvironment, and patient survival in HCC, utilizing a DNA repair pathway score. Our findings suggest that the DNA repair pathway was not only enhanced by the stepwise carcinogenic process of HCC, but also significantly enhanced in grade 3 HCC compared with grade 1 and 2 tumors. DNA repair high HCC was associated with worse survival, elevated intratumor heterogeneity, and mutation load, but not with the fraction of immune cell infiltration nor immune response. HCC tumors with a DNA repair high score enriched the cell proliferation- and other cancer aggressiveness-related gene sets. Interestingly, these features were more pronounced in grade 1 and 2 HCC compared to grade 3 HCC. To our knowledge, this is the first study to use DNA repair pathway-related gene set expression data to examine and validate the clinical relevance of DNA repair pathway activity in HCC. The DNA repair score may be used to better understand and predict prognosis in HCC. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Cancers)
Show Figures

Figure 1

31 pages, 2771 KB  
Review
Trends in Research on Exosomes in Cancer Progression and Anticancer Therapy
by Dona Sinha, Sraddhya Roy, Priyanka Saha, Nabanita Chatterjee and Anupam Bishayee
Cancers 2021, 13(2), 326; https://doi.org/10.3390/cancers13020326 - 17 Jan 2021
Cited by 90 | Viewed by 10474
Abstract
Exosomes, the endosome-derived bilayered extracellular nanovesicles with their contribution in many aspects of cancer biology, have become one of the prime foci of research. Exosomes derived from various cells carry cargoes similar to their originator cells and their mode of generation is different [...] Read more.
Exosomes, the endosome-derived bilayered extracellular nanovesicles with their contribution in many aspects of cancer biology, have become one of the prime foci of research. Exosomes derived from various cells carry cargoes similar to their originator cells and their mode of generation is different compared to other extracellular vesicles. This review has tried to cover all aspects of exosome biogenesis, including cargo, Rab-dependent and Rab-independent secretion of endosomes and exosomal internalization. The bioactive molecules of the tumor-derived exosomes, by virtue of their ubiquitous presence and small size, can migrate to distal parts and propagate oncogenic signaling and epigenetic regulation, modulate tumor microenvironment and facilitate immune escape, tumor progression and drug resistance responsible for cancer progression. Strategies improvised against tumor-derived exosomes include suppression of exosome uptake, modulation of exosomal cargo and removal of exosomes. Apart from the protumorigenic role, exosomal cargoes have been selectively manipulated for diagnosis, immune therapy, vaccine development, RNA therapy, stem cell therapy, drug delivery and reversal of chemoresistance against cancer. However, several challenges, including in-depth knowledge of exosome biogenesis and protein sorting, perfect and pure isolation of exosomes, large-scale production, better loading efficiency, and targeted delivery of exosomes, have to be confronted before the successful implementation of exosomes becomes possible for the diagnosis and therapy of cancer. Full article
(This article belongs to the Special Issue Exosomes in Cancers Therapy)
Show Figures

Graphical abstract

26 pages, 2510 KB  
Review
Diabetes and Pancreatic Cancer—A Dangerous Liaison Relying on Carbonyl Stress
by Stefano Menini, Carla Iacobini, Martina Vitale, Carlo Pesce and Giuseppe Pugliese
Cancers 2021, 13(2), 313; https://doi.org/10.3390/cancers13020313 - 16 Jan 2021
Cited by 51 | Viewed by 6738
Abstract
Both type 2 (T2DM) and type 1 (T1DM) diabetes mellitus confer an increased risk of pancreatic cancer in humans. The magnitude and temporal trajectory of the risk conferred by the two forms of diabetes are similar, suggesting a common mechanism. Carbonyl stress is [...] Read more.
Both type 2 (T2DM) and type 1 (T1DM) diabetes mellitus confer an increased risk of pancreatic cancer in humans. The magnitude and temporal trajectory of the risk conferred by the two forms of diabetes are similar, suggesting a common mechanism. Carbonyl stress is a hallmark of hyperglycemia and dyslipidemia, which accompanies T2DM, prediabetes, and obesity. Accumulating evidence demonstrates that diabetes promotes pancreatic ductal adenocarcinoma (PDAC) in experimental models of T2DM, a finding recently confirmed in a T1DM model. The carbonyl stress markers advanced glycation end-products (AGEs), the levels of which are increased in diabetes, were shown to markedly accelerate tumor development in a mouse model of Kras-driven PDAC. Consistently, inhibition of AGE formation by trapping their carbonyl precursors (i.e., reactive carbonyl species, RCS) prevented the PDAC-promoting effect of diabetes. Considering the growing attention on carbonyl stress in the onset and progression of several cancers, including breast, lung and colorectal cancer, this review discusses the mechanisms by which glucose and lipid imbalances induce a status of carbonyl stress, the oncogenic pathways activated by AGEs and their precursors RCS, and the potential use of carbonyl-scavenging agents and AGE inhibitors in PDAC prevention and treatment, particularly in high-risk diabetic individuals. Full article
(This article belongs to the Special Issue Recent Advances in Pancreatic Ductal Adenocarcinoma)
Show Figures

Figure 1

23 pages, 777 KB  
Review
The Hippo Signaling Pathway in Drug Resistance in Cancer
by Renya Zeng and Jixin Dong
Cancers 2021, 13(2), 318; https://doi.org/10.3390/cancers13020318 - 16 Jan 2021
Cited by 67 | Viewed by 7771
Abstract
Chemotherapy represents one of the most efficacious strategies to treat cancer patients, bringing advantageous changes at least temporarily even to those patients with incurable malignancies. However, most patients respond poorly after a certain number of cycles of treatment due to the development of [...] Read more.
Chemotherapy represents one of the most efficacious strategies to treat cancer patients, bringing advantageous changes at least temporarily even to those patients with incurable malignancies. However, most patients respond poorly after a certain number of cycles of treatment due to the development of drug resistance. Resistance to drugs administrated to cancer patients greatly limits the benefits that patients can achieve and continues to be a severe clinical difficulty. Among the mechanisms which have been uncovered to mediate anti-cancer drug resistance, the Hippo signaling pathway is gaining increasing attention due to the remarkable oncogenic activities of its components (for example, YAP and TAZ) and their druggable properties. This review will highlight current understanding of how the Hippo signaling pathway regulates anti-cancer drug resistance in tumor cells, and currently available pharmacological interventions targeting the Hippo pathway to eradicate malignant cells and potentially treat cancer patients. Full article
(This article belongs to the Special Issue Hippo Signaling Pathway in Cancers)
Show Figures

Figure 1

16 pages, 319 KB  
Review
Prognostic and Predictive Values of Mismatch Repair Deficiency in Non-Metastatic Colorectal Cancer
by Zhaohui Jin and Frank A. Sinicrope
Cancers 2021, 13(2), 300; https://doi.org/10.3390/cancers13020300 - 15 Jan 2021
Cited by 53 | Viewed by 4282
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Universal MMR/MSI testing is standard of care for all patients with newly diagnosed CRC based on multi-society guidelines in the United States. Such testing is intended to identify patients with Lynch Syndrome [...] Read more.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Universal MMR/MSI testing is standard of care for all patients with newly diagnosed CRC based on multi-society guidelines in the United States. Such testing is intended to identify patients with Lynch Syndrome due to a germline mutation in an MMR gene, but also detects those with sporadic dMMR/MSI-high CRCs. The prognostic utility of MMR/MSI status in non-metastatic colorectal cancer has been studied extensively, yet more limited data are available for its predictive utility. Results have not been entirely consistent due to potential stage-related differences and limited numbers of dMMR/MSI-H patients included in the studies. In this review, we summarize the current evidence for the prognostic and predictive value of dMMR/MSI-H in non-metastatic CRC, and discuss the use of this biomarker for patient management and treatment decisions in clinical practice. Full article
(This article belongs to the Special Issue Microsatellite Instability and Cancers)
23 pages, 1357 KB  
Review
Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind
by Maria Isaguliants, Ekaterina Bayurova, Darya Avdoshina, Alla Kondrashova, Francesca Chiodi and Joel M. Palefsky
Cancers 2021, 13(2), 305; https://doi.org/10.3390/cancers13020305 - 15 Jan 2021
Cited by 76 | Viewed by 8310
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of [...] Read more.
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect “innocent” bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1. Full article
(This article belongs to the Special Issue Molecular Pathways in Cancers)
Show Figures

Figure 1

64 pages, 1485 KB  
Review
Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer
by Giulia Greco, Elena Catanzaro and Carmela Fimognari
Cancers 2021, 13(2), 304; https://doi.org/10.3390/cancers13020304 - 15 Jan 2021
Cited by 52 | Viewed by 7344
Abstract
Apoptosis has been considered the main mechanism induced by cancer chemotherapeutic drugs for a long time. This paradigm is currently evolving and changing, as increasing evidence pointed out that antitumor agents could trigger various non-canonical or non-apoptotic cell death types. A considerable number [...] Read more.
Apoptosis has been considered the main mechanism induced by cancer chemotherapeutic drugs for a long time. This paradigm is currently evolving and changing, as increasing evidence pointed out that antitumor agents could trigger various non-canonical or non-apoptotic cell death types. A considerable number of antitumor drugs derive from natural sources, both in their naturally occurring form or as synthetic derivatives. Therefore, it is not surprising that several natural compounds have been explored for their ability to induce non-canonical cell death. The aim of this review is to highlight the potential antitumor effects of natural products as ferroptosis, necroptosis, or pyroptosis inducers. Natural products have proven to be promising non-canonical cell death inducers, capable of overcoming cancer cells resistance to apoptosis. However, as discussed in this review, they often lack a full characterization of their antitumor activity together with an in-depth investigation of their toxicological profile. Full article
(This article belongs to the Special Issue Deregulation of Cell Death in Cancer)
Show Figures

Figure 1

14 pages, 3623 KB  
Article
The Search for an Interesting Partner to Combine with PD-L1 Blockade in Mesothelioma: Focus on TIM-3 and LAG-3
by Elly Marcq, Jonas R. M. Van Audenaerde, Jorrit De Waele, Céline Merlin, Patrick Pauwels, Jan P. van Meerbeeck, Scott A. Fisher and Evelien L. J. Smits
Cancers 2021, 13(2), 282; https://doi.org/10.3390/cancers13020282 - 14 Jan 2021
Cited by 25 | Viewed by 4513
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer that is causally associated with previous asbestos exposure in most afflicted patients. The prognosis of patients remains dismal, with a median overall survival of only 9–12 months, due to the limited effectiveness of any conventional [...] Read more.
Malignant pleural mesothelioma (MPM) is an aggressive cancer that is causally associated with previous asbestos exposure in most afflicted patients. The prognosis of patients remains dismal, with a median overall survival of only 9–12 months, due to the limited effectiveness of any conventional anti-cancer treatment. New therapeutic strategies are needed to complement the limited armamentarium against MPM. We decided to focus on the combination of different immune checkpoint (IC) blocking antibodies (Abs). Programmed death-1 (PD-1), programmed death ligand-1 (PD-L1), T-cell immunoglobulin mucin-3 (TIM-3), and lymphocyte activation gene-3 (LAG-3) blocking Abs were tested as monotherapies, and as part of a combination strategy with a second IC inhibitor. We investigated their effect in vitro by examining the changes in the immune-related cytokine secretion profile of supernatant collected from treated allogeneic MPM-peripheral blood mononuclear cell (PBMC) co-cultures. Based on our in vitro results of cytokine secretion, and flow cytometry data that showed a significant upregulation of PD-L1 on PBMC after co-culture, we chose to further investigate the combinations of anti PD-L1 + anti TIM-3 versus anti PD-L1 + anti LAG-3 therapies in vivo in the AB1-HA BALB/cJ mesothelioma mouse model. PD-L1 monotherapy, as well as its combination with LAG-3 blockade, resulted in in-vivo delayed tumor growth and significant survival benefit. Full article
Show Figures

Figure 1

9 pages, 1896 KB  
Article
PD-L1 Testing and Squamous Cell Carcinoma of the Head and Neck: A Multicenter Study on the Diagnostic Reproducibility of Different Protocols
by Simona Crosta, Renzo Boldorini, Francesca Bono, Virginia Brambilla, Emanuele Dainese, Nicola Fusco, Andrea Gianatti, Vincenzo L’Imperio, Patrizia Morbini and Fabio Pagni
Cancers 2021, 13(2), 292; https://doi.org/10.3390/cancers13020292 - 14 Jan 2021
Cited by 50 | Viewed by 6064
Abstract
Immune checkpoint inhibitors for blocking the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis are now available for squamous cell carcinoma of the head and neck (HNSCC) in relapsing and/or metastatic settings. In this work, we compared the resulting combined positive [...] Read more.
Immune checkpoint inhibitors for blocking the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis are now available for squamous cell carcinoma of the head and neck (HNSCC) in relapsing and/or metastatic settings. In this work, we compared the resulting combined positive score (CPS) of PD-L1 using alternative methods adopted in routine clinical practice and determined the level of diagnostic agreement and inter-observer reliability in this setting. The study applied 5 different protocols on 40 tissue microarrays from HNSCC. The error rate of the individual protocols ranged from a minimum of 7% to a maximum of 21%, the sensitivity from 79% to 96%, and the specificity from 50% to 100%. In the intermediate group (1 ≤ CPS < 20), the majority of errors consisted of an underestimation of PD-L1 expression. In strong expressors, 5 out of 14 samples (36%) were correctly evaluated by all the protocols, but no protocol was able to correctly identify all the “strong expressors”. The overall inter-observer agreement in PD-L1 CPS reached 87%. The inter-observer reliability was moderate, with an ICC of 0.774 (95% CI (0.651; 0.871)). In conclusion, our study showed moderate interobserver reliability among different protocols. In order to improve the performances, adequate specific training to evaluate PD-L1 by CPS in the HNSCC setting should be coordinated. Full article
(This article belongs to the Special Issue Head and Neck Cancers)
Show Figures

Figure 1

19 pages, 357 KB  
Review
The Multiple Potential Biomarkers for Predicting Immunotherapy Response—Finding the Needle in the Haystack
by Tamiem Adam, Therese M. Becker, Wei Chua, Victoria Bray and Tara L. Roberts
Cancers 2021, 13(2), 277; https://doi.org/10.3390/cancers13020277 - 13 Jan 2021
Cited by 19 | Viewed by 5662
Abstract
Immune checkpoint inhibitors (ICIs) are being increasingly utilised in a variety of advanced malignancies. Despite promising outcomes in certain patients, the majority will not derive benefit and are at risk of potentially serious immune-related adverse events (irAEs). The development of predictive biomarkers is [...] Read more.
Immune checkpoint inhibitors (ICIs) are being increasingly utilised in a variety of advanced malignancies. Despite promising outcomes in certain patients, the majority will not derive benefit and are at risk of potentially serious immune-related adverse events (irAEs). The development of predictive biomarkers is therefore critical to personalise treatments and improve outcomes. A number of biomarkers have shown promising results, including from tumour (programmed cell death ligand 1 (PD-L1), tumour mutational burden (TMB), stimulator of interferon genes (STING) and apoptosis-associated speck-like protein containing a CARD (ASC)), from blood (peripheral blood mononuclear cells (PBMCs), circulating tumour DNA (ctDNA), exosomes, cytokines and metal chelators) and finally the microbiome. Full article
(This article belongs to the Special Issue Biomarkers of Immune Checkpoint Therapy Response and Resistance)
22 pages, 1407 KB  
Article
Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma
by Tatiana Pazina, Alexander W. MacFarlane IV, Luca Bernabei, Essel Dulaimi, Rebecca Kotcher, Clinton Yam, Natalie A. Bezman, Michael D. Robbins, Eric A. Ross, Kerry S. Campbell and Adam D. Cohen
Cancers 2021, 13(2), 226; https://doi.org/10.3390/cancers13020226 - 10 Jan 2021
Cited by 56 | Viewed by 5325
Abstract
Accumulating evidence demonstrates important roles for natural killer (NK) cells in controlling multiple myeloma (MM). A prospective flow cytometry-based analysis of NK cells in the blood and bone marrow (BM) of MM patient subgroups was performed (smoldering (SMM), newly diagnosed (ND), relapsed/refractory, (RR) [...] Read more.
Accumulating evidence demonstrates important roles for natural killer (NK) cells in controlling multiple myeloma (MM). A prospective flow cytometry-based analysis of NK cells in the blood and bone marrow (BM) of MM patient subgroups was performed (smoldering (SMM), newly diagnosed (ND), relapsed/refractory, (RR) and post-stem cell transplantation (pSCT)). Assessments included the biomarker expression and function of NK cells, correlations between the expression of receptors on NK cells with their ligands on myeloma cells, and comparisons between MM patient subgroups and healthy controls. The most striking differences from healthy controls were found in RR and pSCT patients, in which NK cells were less mature and expressed reduced levels of the activating receptors DNAM-1, NKG2D, and CD16. These differences were more pronounced in the BM than in blood, including upregulation of the therapeutic targets TIM3, TIGIT, ICOS, and GITR. Their expression suggests NK cells became exhausted upon chronic encounters with the tumor. A high expression of SLAMF7 on blood NK cells correlated with shorter progression-free survival. This correlation was particularly evident in ND patients, including on mature CD56dim NK cells in the BM. Thus, our NK cell analysis identified possible therapeutic targets in MM and a biomarker with prognostic potential for disease progression. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Exacerbation Mechanism in Multiple Myeloma)
Show Figures

Figure 1

22 pages, 3716 KB  
Review
A 3D View of Colorectal Cancer Models in Predicting Therapeutic Responses and Resistance
by Eileen Reidy, Niamh A. Leonard, Oliver Treacy and Aideen E. Ryan
Cancers 2021, 13(2), 227; https://doi.org/10.3390/cancers13020227 - 10 Jan 2021
Cited by 61 | Viewed by 7619
Abstract
Although there have been many advances in recent years for the treatment of colorectal cancer (CRC), it still remains the third most common cause of cancer-related deaths worldwide. Many patients with late stage CRC display resistance to multiple different therapeutics. An important aspect [...] Read more.
Although there have been many advances in recent years for the treatment of colorectal cancer (CRC), it still remains the third most common cause of cancer-related deaths worldwide. Many patients with late stage CRC display resistance to multiple different therapeutics. An important aspect in developing effective therapeutics for CRC patients is understanding the interactions that take place in the tumor microenvironment (TME), as it has been shown to contribute to drug resistance in vivo. Much research over the past 100 years has focused on 2D monolayer cultures or in vivo studies, however, the efficacy in translating these to the clinic is very low. More recent studies are turning towards developing an effective 3D model of CRC that is clinically relevant, that can recapitulate the TME in vitro and bridge the gap between 2D cultures and in vivo studies, with the aim of reducing the use of animal models in the future. This review summarises the advantages and limitations of different 3D CRC models. It emphasizes how different 3D models may be optimised to study cellular and extracellular interactions that take place in the TME of CRC in an effort to allow the development of more translatable effective treatment options for patients. Full article
(This article belongs to the Special Issue Drug Resistance and Cell Death in Cancer)
Show Figures

Figure 1

12 pages, 2943 KB  
Article
Lidocaine Suppresses Viability and Migration of Human Breast Cancer Cells: TRPM7 as a Target for Some Breast Cancer Cell Lines
by Hengrui Liu, James P. Dilger and Jun Lin
Cancers 2021, 13(2), 234; https://doi.org/10.3390/cancers13020234 - 10 Jan 2021
Cited by 72 | Viewed by 4437
Abstract
Background: The local anesthetic lidocaine suppresses some cancer cell lines but the mechanism is unclear. The melastatin-like transient receptor potential 7 (TRPM7) ion channel is aberrantly expressed in some cancers and may play a role in the disease. Hence, we suggested that lidocaine [...] Read more.
Background: The local anesthetic lidocaine suppresses some cancer cell lines but the mechanism is unclear. The melastatin-like transient receptor potential 7 (TRPM7) ion channel is aberrantly expressed in some cancers and may play a role in the disease. Hence, we suggested that lidocaine affects the viability and migration of breast cancer cells by regulating TRPM7. Methods: We measured the effects of lidocaine on TRPM7 function in HEK293 with exogenous TRPM7 expression (HEK-M7) using whole-cell patch-clamp and fura-2AM-based quench assay. We measured the effect of lidocaine on TRPM7 function, cell viability, and migration in TRPM7 expressing human breast cancer cell lines using fura-2AM-based quench, MTT, and wound-healing assays respectively. We compared cell viability and migration of wild type HEK293 cells (WT-HEK) with HEK-M7 and wild type MDA-MB-231 (WT-231) with TRPM7 knockout MDA-MB-231 (KO-231). Results: Lidocaine (1–3 mM) inhibited the viability and migration of all of these breast cancer cell lines. Functional evidence for TRPM7 was confirmed in the MDA-MB-231, AU565, T47D, and MDA-MB-468 cell lines where lidocaine at 0.3–3 mM suppressed the TRPM7 function. Lidocaine preferentially suppressed viability and migration of HEK-M7 over WT-HEK and WT-231 over KO-231. Conclusions: Lidocaine differentially reduced the viability and migration of human breast cancer cell lines tested. TRPM7 is one of the potential targets for the effects of lidocaine on viability and migration in MDA-MB-231, AU565, T47D, and MDA-MB-468. Full article
Show Figures

Figure 1

22 pages, 8957 KB  
Review
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression
by Almudena García-Ortiz, Yaiza Rodríguez-García, Jessica Encinas, Elena Maroto-Martín, Eva Castellano, Joaquín Teixidó and Joaquín Martínez-López
Cancers 2021, 13(2), 217; https://doi.org/10.3390/cancers13020217 - 9 Jan 2021
Cited by 159 | Viewed by 13263
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and [...] Read more.
Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Exacerbation Mechanism in Multiple Myeloma)
Show Figures

Figure 1

12 pages, 267 KB  
Review
Current Melanoma Treatments: Where Do We Stand?
by Alvaro Moreira, Lucie Heinzerling, Nina Bhardwaj and Philip Friedlander
Cancers 2021, 13(2), 221; https://doi.org/10.3390/cancers13020221 - 9 Jan 2021
Cited by 42 | Viewed by 5871
Abstract
Groundbreaking research in immunology and cancer biology in the last few decades has led to the discovery and development of novel therapeutics, such as immune checkpoint inhibitors and targeted therapies, which have revolutionized the clinical care of patients with metastatic melanoma. Updated data [...] Read more.
Groundbreaking research in immunology and cancer biology in the last few decades has led to the discovery and development of novel therapeutics, such as immune checkpoint inhibitors and targeted therapies, which have revolutionized the clinical care of patients with metastatic melanoma. Updated data from the largest clinical trials continue to support the use of these treatment modalities, both in the metastatic and in adjuvant settings, with studies showing the predicted plateau effect on survival curves. However, with growing evidence that neoadjuvant therapy is also associated with high rates of recurrence-free survival, the question about whether patients should receive adjuvant or neoadjuvant treatment raises new questions about therapeutic options. Finally, management after resistance and intervention with novel immunotherapies are newer challenges, particularly in the field of non-cutaneous melanoma. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Skin Cancer)
15 pages, 828 KB  
Review
The Role of the Eph Receptor Family in Tumorigenesis
by Meg Anderton, Emma van der Meulen, Melissa J. Blumenthal and Georgia Schäfer
Cancers 2021, 13(2), 206; https://doi.org/10.3390/cancers13020206 - 8 Jan 2021
Cited by 53 | Viewed by 6663
Abstract
The Eph receptor tyrosine kinase family, activated by binding to their cognate ephrin ligands, are important components of signalling pathways involved in animal development. More recently, they have received significant interest due to their involvement in oncogenesis. In most cases, their expression is [...] Read more.
The Eph receptor tyrosine kinase family, activated by binding to their cognate ephrin ligands, are important components of signalling pathways involved in animal development. More recently, they have received significant interest due to their involvement in oncogenesis. In most cases, their expression is altered, affecting the likes of cell proliferation and migration. Depending on the context, Eph receptors have the potential to act as both tumour promoters and suppressors in a number of cancers, such as breast cancer, colorectal cancer, lung cancer, prostate cancer, brain cancer and Kaposi’s sarcoma (KS), the latter being intrinsically linked to EphA2 as this is the receptor used for endothelial cell entry by the Kaposi’s sarcoma-associated herpesvirus (KSHV). In addition, EphA2 deregulation is associated with KS, indicating that it has a dual role in this case. Associations between EphA2 sequence variation and KSHV infection/KS progression have been detected, but further work is required to formally establish the links between EphA2 signalling and KS oncogenesis. This review consolidates the available literature of the role of the Eph receptor family, and particularly EphA2, in tumorigenesis, with the aim to develop a better understanding of Eph signalling pathways for potential targeting in novel cancer therapies. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

34 pages, 2411 KB  
Review
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment
by Maximilian Haist, Henner Stege, Stephan Grabbe and Matthias Bros
Cancers 2021, 13(2), 210; https://doi.org/10.3390/cancers13020210 - 8 Jan 2021
Cited by 153 | Viewed by 14100
Abstract
Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as [...] Read more.
Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), contributes to the development of immune resistance. MDSC and Treg expand systematically in tumor patients and inhibit T cell activation and T effector cell function. Numerous studies have shown that the immunosuppressive mechanisms exerted by those inhibitory cell populations comprise soluble immunomodulatory mediators and receptor interactions. The latter are also required for the crosstalk of MDSC and Treg, raising questions about the relevance of cell–cell contacts for the establishment of their inhibitory properties. This review aims to outline the current knowledge on the crosstalk between these two cell populations, issuing particularly the potential role of cell adhesion molecules. In this regard, we further discuss the relevance of β2 integrins, which are essential for the differentiation and function of leukocytes as well as for MDSC–Treg interaction. Lastly, we aim to describe the impact of such bidirectional crosstalk for basic and applied cancer research and discuss how the targeting of these pathways might pave the way for future approaches in immunotherapy. Full article
(This article belongs to the Special Issue Immunotherapy, Tumor Microenvironment and Survival Signaling)
Show Figures

Figure 1

17 pages, 6050 KB  
Article
Remodeling of the Lymph Node High Endothelial Venules Reflects Tumor Invasiveness in Breast Cancer and is Associated with Dysregulation of Perivascular Stromal Cells
by Tove Bekkhus, Teemu Martikainen, Anna Olofsson, Mathias Franzén Boger, Daniel Vasiliu Bacovia, Fredrik Wärnberg and Maria H. Ulvmar
Cancers 2021, 13(2), 211; https://doi.org/10.3390/cancers13020211 - 8 Jan 2021
Cited by 34 | Viewed by 6846
Abstract
The tumor-draining lymph nodes (TDLNs) are primary sites for induction of tumor immunity. They are also common sites of metastasis, suggesting that tumor-induced mechanisms can subvert anti-tumor immune responses and promote metastatic seeding. The high endothelial venules (HEVs) together with CCL21-expressing fibroblastic reticular [...] Read more.
The tumor-draining lymph nodes (TDLNs) are primary sites for induction of tumor immunity. They are also common sites of metastasis, suggesting that tumor-induced mechanisms can subvert anti-tumor immune responses and promote metastatic seeding. The high endothelial venules (HEVs) together with CCL21-expressing fibroblastic reticular cells (FRCs) are essential for lymphocyte recruitment into the LNs. We established multicolor antibody panels for evaluation of HEVs and FRCs in TDLNs from breast cancer (BC) patients. Our data show that patients with invasive BC display extensive structural and molecular remodeling of the HEVs, including vessel dilation, thinning of the endothelium and discontinuous expression of the HEV-marker PNAd. Remodeling of the HEVs was associated with dysregulation of CCL21 in perivascular FRCs and with accumulation of CCL21-saturated lymphocytes, which we link to loss of CCL21-binding heparan sulfate in FRCs. These changes were rare or absent in LNs from patients with non-invasive BC and cancer-free organ donors and were observed independent of nodal metastasis. Thus, pre-metastatic dysregulation of core stromal and vascular functions within TDLNs reflect the primary tumor invasiveness in BC. This adds to the understanding of cancer-induced perturbation of the immune response and opens for prospects of vascular and stromal changes in TDLNs as potential biomarkers. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Graphical abstract

24 pages, 5230 KB  
Review
Treatment Strategies Considering Micro-Environment and Clonal Evolution in Multiple Myeloma
by Kazuhito Suzuki, Kaichi Nishiwaki and Shingo Yano
Cancers 2021, 13(2), 215; https://doi.org/10.3390/cancers13020215 - 8 Jan 2021
Cited by 25 | Viewed by 6035
Abstract
Multiple myeloma is an uncurable hematological malignancy because of obtained drug resistance. Microenvironment and clonal evolution induce myeloma cells to develop de novo and acquired drug resistance, respectively. Cell adhesion-mediated drug resistance, which is induced by the interaction between myeloma and bone marrow [...] Read more.
Multiple myeloma is an uncurable hematological malignancy because of obtained drug resistance. Microenvironment and clonal evolution induce myeloma cells to develop de novo and acquired drug resistance, respectively. Cell adhesion-mediated drug resistance, which is induced by the interaction between myeloma and bone marrow stromal cells, and soluble factor-mediated drug resistance, which is induced by cytokines and growth factors, are two types of de novo drug resistance. The microenvironment, including conditions such as hypoxia, vascular and endosteal niches, contributes toward de novo drug resistance. Clonal evolution was associated with acquired drug resistance and classified as branching, linear, and neutral evolutions. The branching evolution is dependent on the microenvironment and escape of immunological surveillance while the linear and neutral evolution is independent of the microenvironment and associated with aggressive recurrence and poor prognosis. Proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), monoclonal antibody agents (MoAbs), and autologous stem cell transplantation (ASCT) have improved prognosis of myeloma via improvement of the microenvironment. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAb and ASCT. This review summarizes the role of anti-myeloma agents for microenvironment and clonal evolution and treatment strategies to overcome drug resistance. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Exacerbation Mechanism in Multiple Myeloma)
Show Figures

Figure 1

Back to TopTop