Journal Description
Antibiotics
Antibiotics
is an international, peer-reviewed, open access journal on all aspects of antibiotics, published monthly online by MDPI. The Croatian Pharmacological Society (CPS) is affiliated with Antibiotics and its members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Embase, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Infectious Diseases) / CiteScore - Q1 (General Pharmacology, Toxicology and Pharmaceutics )
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.8 days after submission; acceptance to publication is undertaken in 2.5 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.6 (2024);
5-Year Impact Factor:
4.9 (2024)
Latest Articles
Biofilm-Forming Lactic Acid Bacteria in Sausages: Isolation, Characterization, and Inhibition Using Eisenia bicyclis-Based Nanoparticles
Antibiotics 2025, 14(7), 637; https://doi.org/10.3390/antibiotics14070637 (registering DOI) - 22 Jun 2025
Abstract
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to
[...] Read more.
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to identify and characterize LAB strains from sausage products that are capable of biofilm formation, and to evaluate the inhibitory effects of E. bicyclis methanol extract, its ethyl acetate fraction, and phloroglucinol, as well as to synthesize AuNPs, and assess their efficacy in controlling biofilm formation. Methods: Slime or biofilm-producing LAB bacteria were isolated from commercial sausages and identified using 16S rRNA gene sequencing. Lactobacillus sakei S10, which can tolerate high salt concentrations and cold temperatures, was chosen as a representative strain. The isolates were subsequently tested for hemolytic activity, salt and temperature tolerance, and carbohydrate consumption patterns. To evaluate antibiofilm potential, marine-derived compounds from Eisenia bicyclis, such as phloroglucinol (PG), crude methanolic extracts, ethyl acetate fractions, and gold nanoparticle (AuNP) formulations, were tested in situ on sausage surfaces against L. sakei S10 and common pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The biofilm-inhibitory effects of the extracts, PG, and PG-AuNPs were estimated using the colony-counting method. Results: The PG-AuNPs had an average particle size of 98.74 nm and a zeta potential of −29.82 mV, indicating nanoscale dimensions and considerable colloidal stability. Structural analysis confirmed their spherical form and crystalline structure, as well as the presence of phenolic groups in both reduction and stabilization processes. Among the studied treatments, the PG and PG-AuNPs had the strongest antibiofilm activities, dramatically lowering biofilm biomass, particularly for P. aeruginosa and L. sakei S10. However, the inhibitory effects were less prominent in in situ conditions than in in vitro testing, highlighting the complexity of real food matrices. Conclusions: The results of this study indicate that polyphenolic compounds obtained from marine sources, particularly in nano-formulated forms, have a great deal of potential as natural antibiofilm products. Enhancing the microbiological safety of processed meat products and extending their shelf life could be accomplished through the application of these polyphenolic compounds in food packaging or surface treatments.
Full article
(This article belongs to the Section Antibiofilm Strategies)
►
Show Figures
Open AccessArticle
In Vitro Therapeutic Efficacy of Furazolidone for Antimicrobial Susceptibility Testing on Campylobacter
by
Jeel Moya-Salazar, Alfonso Terán-Vásquez, Richard Salazar-Hernandez, Víctor Rojas-Zumaran, Eliane A. Goicochea-Palomino, Marcia M. Moya-Salazar and Hans Contreras-Pulache
Antibiotics 2025, 14(7), 636; https://doi.org/10.3390/antibiotics14070636 (registering DOI) - 22 Jun 2025
Abstract
Background: Campylobacter causes gastroenteritis worldwide with increasing antimicrobial resistance. Furazolidone (FZD) shows potential in resource-poor areas but needs further study. We aimed to assess the in vitro susceptibility of Campylobacter spp. to FZD, ciprofloxacin (CIP), and erythromycin (ERY) in a high-risk pediatric
[...] Read more.
Background: Campylobacter causes gastroenteritis worldwide with increasing antimicrobial resistance. Furazolidone (FZD) shows potential in resource-poor areas but needs further study. We aimed to assess the in vitro susceptibility of Campylobacter spp. to FZD, ciprofloxacin (CIP), and erythromycin (ERY) in a high-risk pediatric cohort and to evaluate the clinical relevance of resistance patterns using inhibitory quotient (IQ) pharmacodynamics. Methods: A two-phase prospective study (2012–2013, 2014–2015) was conducted at a tertiary pediatric hospital in Lima, Peru. Stool samples from children ≤24 months were cultured on selective media, with Campylobacter isolates identified via conventional bacteriological methods. Antimicrobial susceptibility was determined using Kirby–Bauer disk diffusion and regression-derived minimum inhibitory concentrations (MICs). IQ analysis correlated inhibition zones with therapeutic outcomes. Results: Among 194 Campylobacter isolates (C. jejuni: 28%; C. coli: 72%), resistance to CIP declined from 97.7% (2012–2013) to 83% (2014–2015), while ERY resistance rose from 2.3% to 9.4% (p= 0.002). No FZD resistance was observed, with mean inhibition zones of 52 ± 8 mm (2012–2013) and 43 ± 10.5 mm (2014–2015). MICs for FZD were predominantly <0.125 μg/mL, and all susceptible isolates demonstrated favorable IQ outcomes. Multidrug resistance (≥2 drugs) increased to 6.2% (2014–2015), though all MDR strains retained FZD susceptibility. CLSI and EUCAST breakpoints showed concordance for ERY (p = 0.724) but discordance for CIP (p = 0.022 vs. 0.008). Conclusions: FZD exhibits sustained in vitro efficacy against Campylobacter spp., even among MDR strains, contrasting with escalating fluoroquinolone and macrolide resistance.
Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhanced Quinolone Resistance and Differential Expression of Efflux Pump nor Genes in Staphylococcus aureus Grown in Platelet Concentrates
by
Carina Paredes, Que Chi Truong-Bolduc, Yin Wang, David C. Hooper and Sandra Ramirez-Arcos
Antibiotics 2025, 14(7), 635; https://doi.org/10.3390/antibiotics14070635 (registering DOI) - 21 Jun 2025
Abstract
►▼
Show Figures
Background/Objective: Platelet concentrates (PCs) are used in transfusion medicine to treat bleeding disorders. Staphylococcus aureus, a predominant PC contaminant, has been implicated in several adverse transfusion reactions. The aim of this study was to investigate the impact of PC storage on
[...] Read more.
Background/Objective: Platelet concentrates (PCs) are used in transfusion medicine to treat bleeding disorders. Staphylococcus aureus, a predominant PC contaminant, has been implicated in several adverse transfusion reactions. The aim of this study was to investigate the impact of PC storage on S. aureus resistance to quinolones, which are commonly used to treat S. aureus infections. Methods/Results: Four transfusion-relevant S. aureus strains (TRSs) were subjected to comparative transcriptome analyses when grown in PCs vs. trypticase soy broth (TSB). Results of these analyses revealed differentially expressed genes involved in antibiotic resistance. Of interest, the norB gene (encodes for the NorB efflux pump, which is implicated in quinolone resistance and is negatively regulated by MgrA) was upregulated (1.2–4.7-fold increase) in all PC-grown TRS compared to TSB cultures. Minimal Bactericidal Concentration (MBC) of ciprofloxacin and norfloxacin in PC-grown TRS compared to TSB showed increased resistance to both quinolones in PC cultures. Complementary studies with non-transfusion-relevant strains S. aureus RN6390 and its norB and mgrA deletion mutants were conducted. MBC of ciprofloxacin and norfloxacin and RT-qPCR assays of these strains showed that not only norB, but also norA and norC may be involved in enhanced quinolone resistance in PC-grown S. aureus. The role of norB in S. aureus virulence was also tested using the silkworm Bombyx mori animal model; lethal dose 50 (LD50) assays revealed slightly higher virulence in larvae infected with the wild-type strain compared to the norB mutant. Conclusions: The PC storage environment enhances quinolone resistance in S. aureus and induces differential expression of efflux pump nor genes. Furthermore, our preliminary data of the involvement of NorB in virulence of S. aureus using a silkworm model merit further investigation with other systems such as a mammal animal model. Our results provide mechanistic insights to aid clinicians in the selection of antimicrobial treatment of patients receiving transfusions of S. aureus-contaminated PCs.
Full article

Figure 1
Open AccessArticle
Oral Administration of Heat-Killed Multi-Strain Probiotics Confers Durable Protection Against Antibiotic-Resistant Primary and Recurrent Urinary Tract Infections in a Murine Model
by
Bo-Yuan Chen, Zhen-Shu Liu, Yu-Syuan Lin, Hsiao Chin Lin and Po-Wen Chen
Antibiotics 2025, 14(7), 634; https://doi.org/10.3390/antibiotics14070634 (registering DOI) - 21 Jun 2025
Abstract
Background/Objectives: Alternative therapies for urinary tract infections (UTIs) have been explored, but their efficacy remains inconsistent. With rising antibiotic resistance, this study aimed to evaluate simplified postbiotic formulations derived from heat-killed probiotics for long-term protection against primary and recurrent UTIs in a
[...] Read more.
Background/Objectives: Alternative therapies for urinary tract infections (UTIs) have been explored, but their efficacy remains inconsistent. With rising antibiotic resistance, this study aimed to evaluate simplified postbiotic formulations derived from heat-killed probiotics for long-term protection against primary and recurrent UTIs in a murine model. Methods: We compared a multi-strain (seven-strain) versus a single-strain postbiotic in preventing Escherichia coli-induced UTIs and recurrent polymicrobial UTIs, assessed protection persistence after treatment discontinuation, and established a novel sustained UTI model via intravesical co-inoculation of three uropathogens. Mice were allocated to three experimental groups: a placebo group (PBS), Postbiotic I group (a seven-strain heat-killed probiotic formulation), and Postbiotic II group (a single-strain heat-killed probiotic). After two weeks of treatment, mice were challenged with uropathogenic E. coli (UPEC) and treated for seven days. Following a 14-day washout and bacterial clearance, they were rechallenged with multidrug-resistant UPEC, Klebsiella pneumoniae, and Staphylococcus pseudintermedius. Results: Both postbiotics significantly accelerated bacterial clearance in primary UTIs (p < 0.05). In recurrent UTIs, placebo-treated mice exhibited persistent bacteriuria, while Postbiotic I maintained a significantly higher sterile urine rate (50–80%, p < 0.01) post-treatment. Histopathological analysis confirmed reduced bladder and kidney inflammation (p < 0.05) with Postbiotic I. Conclusions: These findings demonstrate the superior efficacy of Postbiotic I in mitigating UTIs, with sustained protection post-treatment, supporting its potential as a long-term, non-antibiotic strategy. Additionally, our reproducible chronic UTI model, achieved through the co-inoculation of three uropathogens, provides a valuable tool for future research on chronic UTI pathogenesis and treatment.
Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Mapping Integron-Associated AMR Genes in Whole Genome Sequences of Salmonella Typhimurium from Dairy Cattle
by
Sami Ullah Khan Bahadur, Nora Jean Nealon, Joshua B. Daniels, Muhammad Usman Zaheer, Mo Salman and Sangeeta Rao
Antibiotics 2025, 14(7), 633; https://doi.org/10.3390/antibiotics14070633 (registering DOI) - 21 Jun 2025
Abstract
Background: Antimicrobial resistance (AMR) is a critical global health threat, with AMR Salmonella enterica serovar Typhimurium strains being a major foodborne pathogen. Integrons, a type of mobile genetic element, capture and transfer resistance genes, thereby playing a role in the spread of AMR. Objectives:
[...] Read more.
Background: Antimicrobial resistance (AMR) is a critical global health threat, with AMR Salmonella enterica serovar Typhimurium strains being a major foodborne pathogen. Integrons, a type of mobile genetic element, capture and transfer resistance genes, thereby playing a role in the spread of AMR. Objectives: This study aimed to characterize the locations of integrons carrying AMR genes within the whole genomes of 32 Salmonella Typhimurium isolates collected from dairy cattle by two U.S. Veterinary Diagnostic Laboratories between 2009 and 2012. Methods: Class I integrons were sequenced from PCR-amplified products. DNA was extracted, quantified, barcoded, and sequenced on the Illumina MiSeq platform. Whole genome sequences were trimmed and assembled using the SPAdes assembler in Geneious Prime®, and plasmids were identified with the PlasmidFinder pipeline in Linux. Integron locations were determined by aligning their sequences with whole genome contigs and plasmids, while AMR genes were identified through BLAST with the MEGARes 3.0 database and confirmed by alignment with isolate, plasmid, and integron sequences. Statistical analysis was applied to compare the proportions of isolates harboring integrons on their chromosome versus plasmids and also to examine the associations between integron presence and AMR gene presence. Results: Seven plasmid types were identified from all isolates: IncFII(S) (n = 14), IncFIB(S) (n = 13), IncC (n = 7), Inc1-I(Alpha) (n = 3), and ColpVC, Col(pAHAD28), and Col8282 (1 isolate each). Of the 32 isolates, 16 (50%) carried at least one size of integron. Twelve of them carried both 1000 and 1200 bp; 3 carried only 1000 bp and 1 carried 1800 bp integrons. Of the 15 isolates that carried 1000 bp integron, 12 harbored it on IncFIB(S) plasmids, 2 on IncC plasmids, and 1 on the chromosome. The 1200 bp integrons from all 12 isolates were located on chromosomes. There were significant positive associations between the presence of integrons and the presence of several AMR genes including sul1, aadA2, blaCARB-2, qacEdelta1, tet(G), and floR (p < 0.05). AMR genes were located as follows: aadA2 on IncFIB(S) and IncC plasmids; blaCMY-2 on IncC plasmid; qacEdelta1 on IncFIB(S), IncC, and chromosome; blaCARB-2, floR, tet(A) and tet(G) on the chromosome. Conclusions: The findings highlight the genomic and plasmid complexity of Salmonella Typhimurium which is impacted by the presence and location of integrons, and this study provides genomic insights that can inform efforts to enhance food safety and protect both animal and public health.
Full article
(This article belongs to the Special Issue Antibiotic Resistance and Virulence in Bacterial Isolates: A Genomic Perspective from Human and Animal Sources)
►▼
Show Figures

Figure 1
Open AccessArticle
Antimicrobial Action of Essential Oil of Tagetes minuta: Role of the Bacterial Membrane in the Mechanism of Action
by
Anahí Bordón, Sergio A. Rodríguez, Douglas Siqueira de Almeida Chaves, Andrea C. Cutró and Axel Hollmann
Antibiotics 2025, 14(7), 632; https://doi.org/10.3390/antibiotics14070632 (registering DOI) - 21 Jun 2025
Abstract
Background: The rise in multidrug-resistant bacteria has intensified the search for new antibiotics, drawing attention to essential oils (EOs) for their antimicrobial properties. For this reason, this study focuses on the antimicrobial action of the EO obtained from Tagetes minuta and its impact
[...] Read more.
Background: The rise in multidrug-resistant bacteria has intensified the search for new antibiotics, drawing attention to essential oils (EOs) for their antimicrobial properties. For this reason, this study focuses on the antimicrobial action of the EO obtained from Tagetes minuta and its impact on bacterial membranes. Methods: The EO was chemically characterized by chromatography–mass spectrometry, and its antimicrobial activity and its effects on surface and bacterial membrane were assessed by using Zeta potential, membrane transition temperature (Tm) determination; and fluorescence spectroscopy with Laurdan and Di-8 ANEPPS. Results: Twenty-seven compounds could be identified, with (E)-Tagetone, (Z)-Ocimenone, and β-pinene as the most abundant. Afterward, the EO was tested against Escherichia coli (MIC and MBC = 17 mg/mL) and Staphylococcus aureus (MIC = 8.5 mg/mL; MBC > 17 mg/mL), showing antimicrobial action in both bacteria, being more effective against E. coli. Mechanistic studies revealed that the EO interacts with bacterial membranes, increasing the Zeta potential by more than 9 mV and enhancing membrane permeability up to 90%. These effects were further confirmed using model lipid membranes, where the EO induced significant changes in membrane properties, including a reduction in dipole potential and transition temperature, suggesting that some EO components could be inserted into the lipid bilayer, disrupting membrane integrity. Conclusions: The EO from T. minuta demonstrates efficient antimicrobial activity by compromising bacterial membrane structure, highlighting its potential as a natural antimicrobial agent.
Full article
(This article belongs to the Special Issue Essential Oils as Natural Antimicrobials: Extraction, Characterization, and Synergistic Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Antimicrobial Resistance Characterization of Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Clinical Cases in Dogs and Cats in Belgium
by
Suzanne Dewulf, Filip Boyen, Dominique Paepe, Cécile Clercx, Noah Tilman, Jeroen Dewulf and Cécile Boland
Antibiotics 2025, 14(7), 631; https://doi.org/10.3390/antibiotics14070631 - 20 Jun 2025
Abstract
Background/Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) represent important antimicrobial resistance threats related to companion animals, which can directly or indirectly lead to adverse health effects in humans and animals living in close contact. Characterizing the phenotypic resistance of
[...] Read more.
Background/Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) represent important antimicrobial resistance threats related to companion animals, which can directly or indirectly lead to adverse health effects in humans and animals living in close contact. Characterizing the phenotypic resistance of MRSA and MRSP to a panel of antimicrobials relevant to both veterinary and human medicine is crucial within a “One Health” framework. Methods: In this study, a total of 79 presumptive MRSA isolates (34 from cats, 45 from dogs) and 110 presumptive MRSP isolates (105 from dogs, 5 from cats) from clinical cases were analysed. Real-time PCR was used to detect the presence of mecA and mecC genes, and susceptibility testing was performed using the Sensititre EUST2 panel. Results: Most of the isolates (88.9%, 168/189) were positive for the mecA gene, while a minority (1.1%, 2/189) were mecC-positive (2 MRSA, 1 dog, 1 cat). MRSP isolates exhibited acquired resistance to a broader range of antibiotics compared to MRSA strains. Furthermore, several isolates demonstrated acquired resistance to antibiotics considered critically important for human medicine. Resistance to vancomycin was found in an MRSP isolate from a dog, and resistance to linezolid in an MRSP isolate from a cat. This study reveals that 83.3% (30/36) of MRSA isolates from dogs and 89.3% (25/28) from cats were multidrug-resistant organisms, while MRSP isolates exhibited multidrug resistance in 99% (101/102) of cases for dogs and 100% (4/4) for cats. Conclusions: The extremely high level of multidrug resistance, with some isolates resistant to critically important antibiotics used in human medicine, highlight the importance of monitoring antimicrobial susceptibility in MRSA and MRSP isolates collected from cats and dogs in a One Health perspective.
Full article
Open AccessArticle
In Vitro Evaluation of Antimicrobial Synergy Against Multidrug-Resistant Gram-Negative Paediatric Bloodstream Pathogens in South Africa
by
Prenika Jaglal, Sithembiso Christopher Velaphi, Colin Nigel Menezes and Khine Swe Swe-Han
Antibiotics 2025, 14(7), 630; https://doi.org/10.3390/antibiotics14070630 - 20 Jun 2025
Abstract
Background: In vitro synergy testing (ST) is a useful means to gauge the performance ofantibiotic combinations against multidrug-resistant (MDR) Gram-negative bacteria (GNB). This study aimed to determine synergy of antibiotics against paediatric bloodstream (BS) carbapenem-resistant Enterobacterales (CRE) and extremely drug-resistant (XDR) Acinetobacter
[...] Read more.
Background: In vitro synergy testing (ST) is a useful means to gauge the performance ofantibiotic combinations against multidrug-resistant (MDR) Gram-negative bacteria (GNB). This study aimed to determine synergy of antibiotics against paediatric bloodstream (BS) carbapenem-resistant Enterobacterales (CRE) and extremely drug-resistant (XDR) Acinetobacter species. Methods: This cross-sectional study was conducted at a public tertiary hospital in South Africa, from January 2023 to December 2023. Sixty-eight isolates from children with bloodstream infections (BSI), comprising 55.9% (38/68) CRE and 44.1% (30/68) XDR Acinetobacter species, were performed ST using the fixed-ratio Epsilometer-test method. Combinations of colistin and meropenem, colistin and fosfomycin, colistin and tigecycline, meropenem and fosfomycin, meropenem and tigecycline, and fosfomycin and tigecycline were tested. Results: In vitro synergy for CRE was best demonstrated with tigecycline and meropenem, at 92.1% (35/38), and fosfomycin and meropenem at 73.7% (28/38). Among the XDR Acinetobacter species, the highest rates of synergy of 76.7% (23/30) were observed with tigecycline and meropenem. The absence of synergy was noted with colistin and meropenem for the CRE, with many displaying indifference and antagonism at rates of 65.8% and 22%. Most XDR Acinetobacter species (56.7%; 17/30) expressed indifference to colistin and meropenem with synergy and antagonism displayed in 23.3% and 10% of isolates. Conclusions: This study highlights tigecycline and meropenem displaying impressive in vitro synergy when compared to the in-use colistin and meropenem for CRE and XDR Acinetobacter species. Tigecycline and meropenem may be a viable salvage therapeutic option for MDR Gram-negative paediatric infections. Future research is warranted to confirm in vivo synergy clinically.
Full article
(This article belongs to the Special Issue Combination Therapy against Multidrug-Resistant Pathogens)
►▼
Show Figures

Graphical abstract
Open AccessArticle
The Ability of Bacteriophages to Reduce Biofilms Produced by Pseudomonas aeruginosa Isolated from Corneal Infections
by
Kuma Diriba Urgeya, Dinesh Subedi, Naresh Kumar and Mark Willcox
Antibiotics 2025, 14(7), 629; https://doi.org/10.3390/antibiotics14070629 - 20 Jun 2025
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common antibiotic-resistant pathogen, posing significant public health threats worldwide. It is a major cause of ocular infections, mostly linked to contact lens wear. P. aeruginosa often produces biofilm during infections, and these are also associated
[...] Read more.
Pseudomonas aeruginosa (P. aeruginosa) is a common antibiotic-resistant pathogen, posing significant public health threats worldwide. It is a major cause of ocular infections, mostly linked to contact lens wear. P. aeruginosa often produces biofilm during infections, and these are also associated with antibiotic resistance. Bacteriophage (phage) therapy is emerging as a promising approach for treating multidrug-resistant P. aeruginosa. Objective: This study aimed to assess the antibiofilm effects of six phages against P. aeruginosa biofilms isolated from patients with corneal infections. Method: This study examined P. aeruginosa strains for their ability to form biofilms using crystal violet assay. Six P. aeruginosa bacteriophages (DiSu1 to DiSu6) were used, which were isolated from sewage water in Melbourne, Australia. Spot tests were used to assess phage sensitivity. The effect of phages against P. aeruginosa strains was determined using time–kill assay and efficiency of plating. The ability of phage to inhibit biofilm formation over 24 h or reduce preformed biofilms was also studied and confirmed using confocal laser scanning microscopy with Live/Dead staining. Result: After 24 h of incubation, all tested P. aeruginosa strains formed moderate to strong biofilms. All P. aeruginosa strains were sensitive to at least four of the six phages. The highest level of bacterial growth inhibition in the liquid infection model was observed when phages were applied at a multiplicity of infection (MOI) of 100. Certain bacteria/phage combinations were able to inhibit biofilm formation over 24 h, with the combination of strain PA235 and phage DiSu3 producing the highest inhibition (83%) at a MOI of 100. This was followed by the combinations of PA223/DiSu3 (56%), and PA225/DiSu5 (52%). For the reduction in preformed biofilms, the best combinations were PA235 (90%), PA221 (61%), and PA213 and PA225 (57% each), all with DiSu3 after 3 h. However, exposing the biofilm with phages for over 24 h appeared to promote phage resistance as there was evidence of biofilm growth, with the only combination still showing a significant reduction being PA221/DiSu3 (58%) at MOI of 100. Conclusions: This study showed that the effect of phages against P. aeruginosa is concentration (MOI) dependent. Phages at higher MOI have the ability to disrupt, inhibit, and reduce P. aeruginosa biofilms. However, prolonged exposure of the biofilm with phages appeared to promote phage resistance. To enhance phage efficacy and address this form of resistance, further studies utilizing phage cocktails or a combination of phages and antibiotics is warranted.
Full article
(This article belongs to the Special Issue Bacteriophage Therapy a Renaissance Weapon Recent Developments and Application, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Pefloxacin on Clostridioides difficile R20291 Persister Cells Formation
by
Camila Queraltó, Iván L. Calderón, Isidora Flores, José Rodríguez, Osvaldo Inostroza, Ruth González, Daniel Paredes-Sabja, Jorge A. Soto, Juan A. Fuentes and Fernando Gil
Antibiotics 2025, 14(7), 628; https://doi.org/10.3390/antibiotics14070628 - 20 Jun 2025
Abstract
Clostridioides difficile is a Gram-positive bacterium recognized for its ability to produce toxins and form spores. It is mainly accountable for the majority of instances of antibiotic-related diarrhea. Background. Bacterial persister represent a minor fraction of the population that shows temporary tolerance to
[...] Read more.
Clostridioides difficile is a Gram-positive bacterium recognized for its ability to produce toxins and form spores. It is mainly accountable for the majority of instances of antibiotic-related diarrhea. Background. Bacterial persister represent a minor fraction of the population that shows temporary tolerance to bactericidal agents, and they pose considerable medical issues because of their link to the rise of antibiotic resistance and challenging chronic or recurrent infections. Our previous research has shown a persister-like phenotype associated with treatments that include pefloxacin. Nonetheless, the mechanism is still mostly unclear, mainly because of the difficulty in isolating this small group of cells. Objectives. To enhance the understanding of C. difficile persister cells, we made an enrichment and characterization of these cells from bacterial cultures during the exponential phase under pefloxacin treatment and lysis treatment. Results. We demonstrate the appearance of cells with lower metabolism and DNA damage. Furthermore, we noted the participation of toxin–antitoxin systems and Clp proteases in the generation of persister cells. Conclusions. This work demonstrates the formation of C. difficile persister cells triggered by a lethal concentration of pefloxacin.
Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Inhibition of the MRSA Biofilm Formation and Skin Antineoplastic Activity of Ethyl Acetate Roots and Aerial Parts Extracts from Geum urbanum L.
by
Lyudmila Dimitrova, Maya M. Zaharieva, Lilia Tserovska, Milena Popova, Vassya Bankova and Hristo Najdenski
Antibiotics 2025, 14(7), 627; https://doi.org/10.3390/antibiotics14070627 - 20 Jun 2025
Abstract
Background: The opportunistic pathogen Staphylococcus aureus causes skin and soft tissue infections that are associated with biofilm formation, and in immunocompromised patients can progress to surgical site infections, pneumonia, bacteremia, sepsis, and even death. Most antibiotics actively damage living, dividing cells on the
[...] Read more.
Background: The opportunistic pathogen Staphylococcus aureus causes skin and soft tissue infections that are associated with biofilm formation, and in immunocompromised patients can progress to surgical site infections, pneumonia, bacteremia, sepsis, and even death. Most antibiotics actively damage living, dividing cells on the surface of the biofilm, where there is a high concentration of nutrients and oxygen, while in the depths, where these factors are scarce, slowly growing cells remain. Objectives: The aim of our study was to evaluate the antibiofilm potential of ethyl acetate roots (EtOAcR) and aerial parts (EtOAcAP) extracts from the perennial Bulgarian plant Geum urbanum L. against methicillin-resistant S. aureus (MRSA) NBIMCC 8327. Methods: The effects of both extracts on the expression of biofilm-related genes, icaA and icaD, were investigated. The cytotoxicity of EtOAcR and EtOAcAP on A-375 (human melanoma), A-431 (epidermoid skin cancer) and HaCaT (normal keratinocytes) cell lines, and the induction of apoptosis were determined. Finally, the in vivo skin irritation potential of the most active extract was studied. Results: Both tested extracts inhibited biofilm formation at concentrations that did not affect bacterial growth. Interestingly, the expression of icaA and icaD was upregulated, although the biofilm development was inhibited 72.4–90.5% by EtOAcAP and 18.9–20.4% by EtOAcR at sub-MICs. EtOAcAP extract showed a more favorable cytotoxic profile on non-tumorigenic cells and stronger antineoplastic activity (IC50 = 6.7–14.68 µg/mL) as compared to EtOAcR extract (IC50 = 8.73–23.67 µg/mL). Therefore, a skin irritation test was performed with the EtOAcAP extract at ten-times higher concentrations than the minimum inhibitory one, and, resultantly, the primary irritation index was equal to zero (no skin irritation observed). Conclusions: The EtOAcAP extract was proven to be an effective antistaphylococcal agent with favorable skin tolerance. The extract showed strong antineoplastic activity and antibiofilm effect at sub-MICs, which outlines new prospects for its development as a natural product for specific skin applications in medical practice.
Full article
(This article belongs to the Special Issue Antimicrobial Activity of Plants Against Emerging or Drug-Resistant Human Pathogens)
►▼
Show Figures

Figure 1
Open AccessArticle
Antimicrobial and Immunomodulatory Effects of Punicalagin and Meropenem in a Murine Model of Sublethal Sepsis
by
Liliane dos Santos Rodrigues, Priscila Mendonça Mendes, André Alvares Marques Vale, José Lima Pereira-Filho, Elizabeth Soares Fernandes, Joicy Cortez de Sá Sousa, Márcia Cristina Gonçalves Maciel and Valério Monteiro-Neto
Antibiotics 2025, 14(7), 626; https://doi.org/10.3390/antibiotics14070626 - 20 Jun 2025
Abstract
Background: Punicalagin (Pg), a major ellagitannin derived from pomegranates, possesses antimicrobial, antioxidant, and immunomodulatory properties, suggesting its potential as an adjunctive therapy for sepsis. Objectives: This study investigated the synergistic effects of punicalagin and meropenem in a murine model of sublethal sepsis induced
[...] Read more.
Background: Punicalagin (Pg), a major ellagitannin derived from pomegranates, possesses antimicrobial, antioxidant, and immunomodulatory properties, suggesting its potential as an adjunctive therapy for sepsis. Objectives: This study investigated the synergistic effects of punicalagin and meropenem in a murine model of sublethal sepsis induced by cecal ligation and puncture (CLP). Methods: Mice were treated with punicalagin and meropenem, and multiple parameters were analyzed, including hematological indices, bacterial burden, lymphoid organ cellularity, cytokine profiles (IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, TNF-α), nitric oxide (NO) production, and organ histopathology. Results: Punicalagin enhanced NO-mediated antimicrobial responses, increased neutrophil migration, preserved lymphoid cellularity, and significantly reduced the bacterial translocation. Combined therapy with meropenem improved systemic IL-10 levels and mitigated histopathological damage in the liver, kidney, intestine, and lung. Importantly, punicalagin did not induce thrombocytopenia. Conclusions: These results support the potential of punicalagin as an adjunctive agent to antibiotics for sepsis treatment, offering both antimicrobial and immunoregulatory benefits. Further studies are required to explore its clinical applicability.
Full article
(This article belongs to the Special Issue Antimicrobial and Anti-Infective Activity of Natural Products, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Sentinel-Site-Based Surveillance of Mycobacterium tuberculosis Drug Resistance and Epidemiology in Sichuan, China
by
Yiting Wang, Chunfa Liu, Bing Zhao, Xichao Ou, Hui Xia, Yuanyuan Song, Yang Zheng, Yang Zhou, Ruida Xing, Yanlin Zhao and Huiwen Zheng
Antibiotics 2025, 14(7), 625; https://doi.org/10.3390/antibiotics14070625 - 20 Jun 2025
Abstract
Objectives: To investigate epidemiological/drug-resistance characteristics and identify potential factors related to drug-resistant and clustered tuberculosis in Sichuan. Methods: A total of 295 Mycobacterium tuberculosis (MTB) isolates were collected from surveillance sites in Sichuan from 2019 to 2021. The minimum inhibitory concentrations (MICs) of
[...] Read more.
Objectives: To investigate epidemiological/drug-resistance characteristics and identify potential factors related to drug-resistant and clustered tuberculosis in Sichuan. Methods: A total of 295 Mycobacterium tuberculosis (MTB) isolates were collected from surveillance sites in Sichuan from 2019 to 2021. The minimum inhibitory concentrations (MICs) of 12 anti-TB drugs were acquired using the broth microdilution method, followed by whole-genome sequencing (WGS) analysis. Results: Of 268 MTB isolates with both WGS and drug-susceptibility testing (DST) results, 159 (59.3%, 159/268) strains belonged to the Beijing lineage (L2). Isoniazid had the highest resistance rate (15.3%, 41/268), followed by rifampicin (9.3%, 25/268). The sensitivity of WGS to predict drug resistance varied from 75% to 97.6%, and the specificity was above 96.0% for all. rpoB Ser450Leu (41.7%, 10/24) and katG Ser315Thr (70%, 28/40) were the most frequent mutations in rifampicin and isoniazid resistance isolates, respectively. The clustering rate in Sichuan was 9.3% (25/268), and patients ≤ 24 years old (aOR = 11.697; 95% CI: 0.817–167.463) had a greater risk of clustering. Conclusions: Our findings prove that WGS is a promising tool for predicting drug resistance to isoniazid, rifampicin, ethambutol, moxifloxacin and levofloxacin in Sichuan. The higher resistance rate to isoniazid emphasizes the urgent need for susceptibility testing surveillance and application management. Improving the diagnosis, treatment and management of patients ≤ 24 years old may reduce the transmission of MTB in Sichuan.
Full article
(This article belongs to the Special Issue Prevalence and Antibiotic Resistance of Mycobacterium tuberculosis)
►▼
Show Figures

Figure 1
Open AccessArticle
Integrating Nanopore MinION Sequencing into National Animal Health AMR Surveillance Programs: An Indonesian Pilot Study of Chicken Slaughterhouse Effluent and Rivers
by
Rallya Telussa, Puji Rahayu, Thufeil Yunindika, Curtis J. Kapsak, Kanti Puji Rahayu, Oli Susanti, Imron Suandy, Nuraini Triwijayanti, Aji B. Niasono, Syamsul Ma’arif, Hendra Wibawa, Lestari Lestari, Gunawan B. Utomo, Farida C. Zenal, Luuk Schoonman and Lee E. Voth-Gaeddert
Antibiotics 2025, 14(7), 624; https://doi.org/10.3390/antibiotics14070624 - 20 Jun 2025
Abstract
Background: Antimicrobial resistance (AMR) poses significant risks to human and animal health, while the environment can contribute to its spread. National AMR surveillance programs are pivotal for assessing AMR prevalence, trends, and intervention outcomes; however, integrating advanced surveillance tools can be difficult. This
[...] Read more.
Background: Antimicrobial resistance (AMR) poses significant risks to human and animal health, while the environment can contribute to its spread. National AMR surveillance programs are pivotal for assessing AMR prevalence, trends, and intervention outcomes; however, integrating advanced surveillance tools can be difficult. This pilot study, conducted by FAO ECTAD Indonesia and DGLAHS, the Indonesian Ministry of Agriculture, evaluated the costs and benefits of integrating the Nanopore MinION, Illumina MiSeq, and Sensititre system into a culture-based slaughterhouse–river surveillance system. Methods: Water samples were collected from six chicken slaughterhouses and adjacent rivers (pre- and post-treatment effluent, upstream, and downstream). Culture-based ESBL and general E. coli concentrations were estimated via the WHO Tricycle Protocol, while isolates (n = 42) were sequenced (MinION, MiSeq) and antimicrobial susceptibility testing conducted (Sensititre). Results: The Tricycle Protocol results provided estimates of effluent and river concentrations of ESBL and general E. coli identifying ESBL-to-general E. coli ratios of 13.8% and 6.2%, respectively. Compared to hybrid sequencing assemblies, MinION had a higher concordance than MiSeq for ARG identification (98%), virulence genes (96%), and locations for both (predominately plasmids). Furthermore, MinION concordance with Sensititre AST was 91%. Conclusions: Cost–benefit comparisons suggest sequencing can complement culture-based methods but is dependent on the value placed on the additional information gained.
Full article
(This article belongs to the Special Issue Microbial Resistance Surveillance and Management in Food Systems)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Modulation of Antimicrobial Resistance in Listeria monocytogenes via Synergistic Interactions Between Thymbra capitata L. (Cav.) Essential Oil and Conventional Antibiotics
by
Francesca Maggio, Francesco Buccioni, Stefania Garzoli, Antonello Paparella and Annalisa Serio
Antibiotics 2025, 14(6), 623; https://doi.org/10.3390/antibiotics14060623 - 19 Jun 2025
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant global health challenge, contributing to foodborne infections and diminishing the effectiveness of conventional antibiotics. In the quest for alternative strategies to mitigate resistance, this study has assessed the potential of T. capitata L. (Cav.) essential oil
[...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) poses a significant global health challenge, contributing to foodborne infections and diminishing the effectiveness of conventional antibiotics. In the quest for alternative strategies to mitigate resistance, this study has assessed the potential of T. capitata L. (Cav.) essential oil (TEO) to boost the antibiotic efficacy on L. monocytogenes. Methods: Five L. monocytogenes strains of different origins were tested with TEO alone and in combination with gentamicin, ampicillin, and penicillin G. Moreover, the cells were exposed to sublethal concentrations of TEO for 1 h to evaluate the effects on the antibiotic effectiveness. The antimicrobial activity was assessed by determining the Minimum Inhibitory (MICs) and Bactericidal Concentrations (MBCs), while potential interactions were evaluated using the Fractional Inhibitory Concentration Index and by studying the cell growth dynamics. Results: TEO demonstrated inhibitory activity against L. monocytogenes strains, both alone, in pre-exposure, and in combination with antibiotics, causing up to a seven-fold reduction in MIC and MBC values (from 8 to 1 µg/mL) and restoring susceptibility to the antimicrobial treatments. Positive interactions between TEO and antibiotics were observed, particularly for clinical isolates. Conclusions: TEO could be a promising antibiotic adjuvant in antimicrobial treatments, offering a natural and effective strategy to enhance antibiotic efficacy and to counteract resistance in L. monocytogenes.
Full article
(This article belongs to the Special Issue The Search for Antimicrobial Agents from Natural Products)
►▼
Show Figures

Figure 1
Open AccessReview
The Effect of Antibiotics on the Nervous System: Importance for Anesthesiology and Intensive Care
by
Paweł Radkowski, Julia Oszytko, Kamil Sobolewski, Florian Trachte, Dariusz Onichimowski and Marta Majewska
Antibiotics 2025, 14(6), 622; https://doi.org/10.3390/antibiotics14060622 - 19 Jun 2025
Abstract
Background: Due to the high prevalence of severe infections, antibiotics are frequently administered in anaesthesia and intensive care units. Despite their therapeutic efficacy, several antibiotics exhibit neurotoxic potential, resulting in central and peripheral neurological complications in patients. This review aims to summarise the
[...] Read more.
Background: Due to the high prevalence of severe infections, antibiotics are frequently administered in anaesthesia and intensive care units. Despite their therapeutic efficacy, several antibiotics exhibit neurotoxic potential, resulting in central and peripheral neurological complications in patients. This review aims to summarise the current evidence on antibiotic-induced neurotoxicity, particularly in critical care settings. Methods: A comprehensive literature analysis was performed to assess the neurotoxic profiles, underlying mechanisms, and clinical manifestations associated with different antibiotic classes, including beta-lactams, fluoroquinolones, macrolides, aminoglycosides, and others. Results: Beta-lactam antibiotics (especially cephalosporins and carbapenems) are strongly associated with seizures, encephalopathy, and EEG abnormalities, mainly through GABAergic inhibition and mitochondrial dysfunction. Fluoroquinolones and macrolides can cause psychosis, insomnia, and neuropathy via NMDA activation and oxidative stress. Linezolid carries the risk of serotonin syndrome and optic neuropathy, while glycopeptides and aminoglycosides are primarily associated with ototoxicity. Risk factors include advanced age, renal or hepatic impairment, and high serum drug levels. Conclusions: The neurotoxic potential of antibiotics is a critical but under-recognised aspect of pharmacotherapy in intensive care. Improved awareness, pharmacovigilance, dose adjustment, and drug monitoring are crucial for mitigating adverse neurological effects.
Full article
(This article belongs to the Special Issue Antimicrobial Stewardship and Infection Prevention in Intensive Care Unit)
Open AccessReview
Livestock Antibiotics Use and Antimicrobial Resistance
by
Elliot Enshaie, Sankalp Nigam, Shaan Patel and Vikrant Rai
Antibiotics 2025, 14(6), 621; https://doi.org/10.3390/antibiotics14060621 - 19 Jun 2025
Abstract
Background/Objectives: Antibiotic resistance or antimicrobial resistance (AMR) in livestock is a growing global concern that threatens both human and animal health. The overuse and misuse of antibiotics in livestock production have led to an increased propensity for the development of AMR bacterial
[...] Read more.
Background/Objectives: Antibiotic resistance or antimicrobial resistance (AMR) in livestock is a growing global concern that threatens both human and animal health. The overuse and misuse of antibiotics in livestock production have led to an increased propensity for the development of AMR bacterial strains in animals, which can be spread to humans through the consumption of contaminated animal products, direct contact, or environmental exposure. This review aims to summarize the development and transmission of AMR in livestock, explore its underlying mechanisms and impact on human and animal health, and discuss current practices and potential strategies for mitigation and prevention. Methods: For this narrative review, we searched articles on PubMed and Google Scholar using the terms antibiotic resistance, livestock, and environment, alone or in combination. Results: The history of antibiotic use in livestock and its link to increased AMR, along with the involved mechanisms, including the enzymatic breakdown of antibiotics, alterations in bacterial targets, horizontal gene transfer, and efflux pumps, are important. Antibiotics in livestock are used for growth promotion, disease prevention and control, and metaphylactic use. The role of livestock and the environment as reservoirs for resistant pathogens, their impact on human health, chronic infections, allergic reactions, toxicity, and the development of untreatable diseases is important to understand AMR. Conclusions: Given the widespread use of antibiotics and the potential consequences of AMR, collaborative global efforts, increased public awareness, coordinated regulations, and advancements in biological technology are required to mitigate the threat AMR poses to human and animal health. Regulatory solutions and the development of new therapeutic alternatives like antimicrobial peptides and bacteriophage therapy, and preventive measures such as DNA and mRNA vaccines, are future perspectives.
Full article
(This article belongs to the Special Issue Livestock Antibiotic Use and Resistance)
Open AccessArticle
First Report in the Americas of S. enterica Var. Enteritidis Carrying blaNDM-1 in a Putatively New Sub-Lineage of IncC2 Plasmids
by
Nicolás F. Cordeiro, Romina Papa-Ezdra, Germán Traglia, Inés Bado, Virginia García-Fulgueiras, María N. Cortinas, Leticia Caiata, Mariana López-Vega, Ana Otero, Martín López, Patricia Hitateguy, Cristina Mogdasy and Rafael Vignoli
Antibiotics 2025, 14(6), 620; https://doi.org/10.3390/antibiotics14060620 - 18 Jun 2025
Abstract
Background: Infections caused by carbapenem-resistant Enterobacterales have steadily multiplied over time, becoming a major threat to healthcare systems due to limited therapeutic options and high case-fatality rates. Case report: We studied a patient who, after being discharged from an ICU, developed salmonellosis caused
[...] Read more.
Background: Infections caused by carbapenem-resistant Enterobacterales have steadily multiplied over time, becoming a major threat to healthcare systems due to limited therapeutic options and high case-fatality rates. Case report: We studied a patient who, after being discharged from an ICU, developed salmonellosis caused by an antibiotic-susceptible S. enteritidis. After undergoing treatment with ciprofloxacin, the patient presented an episode of asymptomatic bacteriuria originated by a carbapenem and ciprofloxacin-resistant S. enteritidis. Results: Whole genome sequencing analysis revealed that both Salmonella isolates belonged to the same strain, and that isolate SEn_T2 acquired a plasmid carrying both blaNDM-1 and qnrA1 genes (pIncCSEn) which was previously present in the patient’s gut in at least one Enterobacter cloacae isolate. Additionally, pIncCSEN was identified as a putatively new sub-lineage of IncC2 plasmids which lacked the first copy of the methyltransferase gene dcm and the rhs gene. The resistance genes blaNDM-1 and qnrA1 were incorporated into a Tn21-derived transposon that included a complex class 1 integron whose genetic arrangement was: intI1- dfrA12- orfF- aadA2- qacEΔ1-sul1-ISCR1- trpF- ble- blaNDM-1 (in reverse direction)- ISAba125-ISCR1- qnrA- cmlA1- qacEΔ1-sul1. Conclusions: Antimicrobial persistence and co-selection of antibiotic resistance play an important role in the dissemination of antimicrobial resistance genes; in this regard, a joint effort involving the infection control team, effective antibiotic stewardship, and genomic surveillance could help mitigate the spread of these multidrug resistant microorganisms.
Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Open AccessArticle
Evaluation of the Potential of Metal–Organic Compounds ZIF-8 and F300 in a Membrane Filtration–Adsorption Process for the Removal of Antibiotics from Water
by
Daniel Polak, Szymon Kamocki and Maciej Szwast
Antibiotics 2025, 14(6), 619; https://doi.org/10.3390/antibiotics14060619 - 18 Jun 2025
Abstract
►▼
Show Figures
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications.
[...] Read more.
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications. This study explores the potential of two cost-effective, commercially available metal–organic frameworks (MOFs), ZIF-8 and F300, to improve the performance of membrane-based filtration–adsorption systems for removing tetracycline and sulfadiazine from water. Methods: Batch adsorption experiments were performed to evaluate the uptake capacities, kinetics, and isotherms of both MOFs toward the selected antibiotics. The membranes were modified using a low-cost silane-assisted deposition of MOF particles and tested in a microfiltration system. Removal efficiencies and water permeability were assessed and kinetic and isotherm models were applied to understand the adsorption mechanisms. Results: ZIF-8 showed superior adsorption performance, with maximum capacities of 442.2 mg/g for tetracycline and 219.3 mg/g for sulfadiazine. F300 was effective only for tetracycline. Membranes modified with ZIF-8 improved pharmaceutical removal by 187% (tetracycline) and 224% (sulfadiazine) compared to unmodified membranes. Although permeability decreased due to increased hydrophobicity, the materials and processes remained economically favorable. Conclusions: This study demonstrates that MOF-modified ceramic membranes, particularly those incorporating ZIF-8, offer a low-cost, scalable, and energy-efficient alternative for pharmaceutical removal from water. The approach combines strong environmental impact with economic viability, making it attractive for broader implementation in water treatment systems.
Full article

Graphical abstract
Open AccessArticle
Point-Prevalence Survey of Antimicrobial Use in Benin Hospitals: The Need for Antimicrobial Stewardship Programs
by
Sarah Delfosse, Carine Laurence Yehouenou, Angèle Dohou, Dessièdé Ariane Fiogbe and Olivia Dalleur
Antibiotics 2025, 14(6), 618; https://doi.org/10.3390/antibiotics14060618 - 18 Jun 2025
Abstract
Background: Antimicrobial resistance (AMR) is a public health concern worldwide, particularly in low-to-middle-income countries with few antimicrobial stewardship programs and few laboratories equipped for diagnosis. Methods: As point-prevalence surveys (PPSs) are a well-known tool for assessing antimicrobial use, we adjusted standardized Global-PPS for
[...] Read more.
Background: Antimicrobial resistance (AMR) is a public health concern worldwide, particularly in low-to-middle-income countries with few antimicrobial stewardship programs and few laboratories equipped for diagnosis. Methods: As point-prevalence surveys (PPSs) are a well-known tool for assessing antimicrobial use, we adjusted standardized Global-PPS for use in two hospitals in Benin and included an analysis based on the 2021 WHO AWaRe classification. Results: Of the 450 patients enrolled, 148 received antimicrobials (AMs) (overall prevalence 32.9%), most of them orally (54.2%). Both hospitals had a high rate of Access and Watch antibiotics use, and both prescribed mainly metronidazole. In four prescriptions, hospital A used a non-recommended association of antibiotics, such as ceftriaxone + sulbactam and ofloxacin + ornidazole. While hospital A prescribed predominantly amoxicillin + clavulanic acid (19/92; 21%) and ceftriaxone (14/92; 15%), hospital B prescribed ampicillin (24/120; 20%) and cefuroxime (14/120; n = 12%). In hospital B, surgical antimicrobial prophylaxis (SAP) was suboptimal. While there were no single-dose prophylaxis prescriptions, all one-day prophylaxis (SP2) involved ampicillin for cesarean sections. In patients in intensive care units, prolonged prophylaxis (>1 day, SP3) accounted for all postoperative prescriptions. Conclusions: These findings highlight the critical need for implementing antimicrobial stewardship programs, expanding diagnostic laboratory capacity to minimize empirical prescribing, and strengthening medical student training to ensure quality and rational antibiotic use, thereby addressing the growing challenge of resistance in resource-limited settings.
Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Antibiotics Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antibiotics, Biomedicines, JCM, Pharmaceuticals, Pharmaceutics
Challenges and Future Prospects of Antibacterial Therapy
Topic Editors: Kwang-sun Kim, Zehra EdisDeadline: 30 June 2025
Topic in
Antibiotics, Antioxidants, JoF, Microbiology Research, Microorganisms
Redox in Microorganisms, 2nd Edition
Topic Editors: Michal Letek, Volker BehrendsDeadline: 31 July 2025
Topic in
Agriculture, Animals, Veterinary Sciences, Antibiotics, Zoonotic Diseases
Animal Diseases in Agricultural Production Systems: Their Veterinary, Zoonotic, and One Health Importance, 2nd Edition
Topic Editors: Ewa Tomaszewska, Beata Łebkowska-Wieruszewska, Tomasz Szponder, Joanna Wessely-SzponderDeadline: 30 September 2025
Topic in
Antibiotics, JPM, Pharmaceuticals, Pharmaceutics, Medicines
Pharmacokinetic and Pharmacodynamic Modelling in Drug Discovery and Development
Topic Editors: Inaki F. Troconiz, Victor Mangas Sanjuán, Maria Garcia-Cremades MiraDeadline: 31 October 2025

Conferences
26–29 August 2025
The 5th International Symposium on Frontiers in Molecular Science
Molecular Regulatory Mechanisms of Biological Function and Drug Discovery based on Protein Structure/Function Analysis
Molecular Regulatory Mechanisms of Biological Function and Drug Discovery based on Protein Structure/Function Analysis

Special Issues
Special Issue in
Antibiotics
Diagnosis and Treatment of Drug-Resistant Mycobacterium tuberculosisGuest Editors: Alberto Matteelli, Aditi DeshpandeDeadline: 25 June 2025
Special Issue in
Antibiotics
Antimicrobial Resistance Genes: Spread and Evolution
Guest Editors: Angeliki Mavroidi, Georgia VrioniDeadline: 29 June 2025
Special Issue in
Antibiotics
Combination Therapy against Multidrug-Resistant Pathogens
Guest Editors: Mao Hagihara, Hideo KatoDeadline: 30 June 2025
Special Issue in
Antibiotics
Natural Products and Bio-Nanomaterials: Novel Strategies to Overcome Antibiotic Resistance
Guest Editors: Renata Katsuko Takayama Kobayashi, Gerson Nakazato, Sara ScandorieiroDeadline: 30 June 2025
Topical Collections
Topical Collection in
Antibiotics
Antimicrobial Prescribing and Antimicrobial Use in Healthcare Settings
Collection Editors: Masayuki Maeda, Yuichi Muraki
Topical Collection in
Antibiotics
Antibiotics in Ophthalmology Practice
Collection Editor: Sanjay Marasini
Topical Collection in
Antibiotics
Editorial Board Members' Collection Series: Structural Aspects of AMPs and Antimicrobials
Collection Editors: J. Michael Conlon, Marc Maresca, Bong-Jin Lee, Aurélie Tasiemski
Topical Collection in
Antibiotics
Synthetic and Natural Products-Based Antimicrobial and Antiparasitic Agents
Collection Editor: Antonio Eduardo Miller Crotti