Previous Issue
Volume 6, March
 
 

Earth, Volume 6, Issue 2 (June 2025) – 23 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
25 pages, 5444 KiB  
Article
Geospatial Data and Google Street View Images for Monitoring Kudzu Vines in Small and Dispersed Areas
by Alba Closa-Tarres, Fernando Rojano and Michael P. Strager
Earth 2025, 6(2), 40; https://doi.org/10.3390/earth6020040 - 13 May 2025
Abstract
Comprehensive reviews of continuously vegetated areas to determine dispersed locations of invasive species require intensive use of computational resources. Furthermore, effective mechanisms aiding identification of locations of specific invasive species require approaches relying on geospatial indicators and ancillary images. This study develops a [...] Read more.
Comprehensive reviews of continuously vegetated areas to determine dispersed locations of invasive species require intensive use of computational resources. Furthermore, effective mechanisms aiding identification of locations of specific invasive species require approaches relying on geospatial indicators and ancillary images. This study develops a two-stage data workflow for the invasive species Kudzu vine (Pueraria montana) often found in small areas along roadsides. The INHABIT database from the United States Geological Survey (USGS) provided geospatial data of Kudzu vines and Google Street View (GSV) a set of images. Stage one built up a set of Kudzu images to be implemented in an object detection technique, You Only Look Once (YOLO v8s), for training, validating, and testing. Stage two defined a dataset of confirmed locations of Kudzu which was followed to retrieve images from GSV and analyzed with YOLO v8s. The effectiveness of the YOLO v8s model was assessed to determine the locations of Kudzu identified from georeferenced GSV images. This data workflow demonstrated that field observations can be virtually conducted by integrating geospatial data and GSV images; however, its potential is confined to the updated periodicity of GSV images or similar services. Full article
Show Figures

Figure 1

20 pages, 1779 KiB  
Article
Transformative Spatio-Temporal Insights into Indian Summer Days for Advancing Climate Resilience and Regional Adaptation in India
by Deepak Kumar Prajapat, Mahender Choudhary, Ram Avtar, Saurabh Singh, Saleh Alsulamy and Ali Kharrazi
Earth 2025, 6(2), 39; https://doi.org/10.3390/earth6020039 - 13 May 2025
Abstract
With global temperatures steadily rising, understanding the impacts of warming on regional climates has become crucial, particularly for countries like India, where climate sensitivity has significant socio-economic implications. This study assesses the trends and spatial distribution of summer days across India under different [...] Read more.
With global temperatures steadily rising, understanding the impacts of warming on regional climates has become crucial, particularly for countries like India, where climate sensitivity has significant socio-economic implications. This study assesses the trends and spatial distribution of summer days across India under different warming targets (1.5 °C, 2 °C, 2.5 °C, 3 °C, 3.5 °C, 4 °C, 4.5 °C, and 5 °C) and emission scenarios (RCP4.5 and RCP8.5). A Multi-Model Ensemble (MME) approach, combining five best-performing CORDEX-SA experiments, was utilized to analyze projected summer days in India. Non-parametric trend analysis techniques—such as the Mann–Kendall test, Modified Mann–Kendall, Sen’s Slope estimator, and Pettitt test—were used to investigate temporal patterns, and Reliability Ensemble Averaging (REA) was applied for uncertainty analysis to ensure robust projections. The results indicate that summer days are expected to increase significantly across India under both RCP scenarios, with the highest increases projected for northeastern regions and north-central regions of India. This study underscores the pressing need for region-specific adaptation strategies to manage extended periods of extreme temperatures and safeguard public health, agriculture, and socio-economic stability. Full article
Show Figures

Figure 1

18 pages, 283 KiB  
Review
Review: Implications of Air Pollution on Trees Located in Urban Areas
by Alamilla-Martínez Diana Grecia, Tenorio-Sánchez Sergio Arturo and Gómez-Ramírez Marlenne
Earth 2025, 6(2), 38; https://doi.org/10.3390/earth6020038 - 10 May 2025
Viewed by 112
Abstract
Air pollution in cities is intensifying, inevitably affecting all living organisms, gincluding trees. Urban trees are vital for cities because they improve air quality and regulate the climate; however, like all living organisms, they are affected by the environment to which they are [...] Read more.
Air pollution in cities is intensifying, inevitably affecting all living organisms, gincluding trees. Urban trees are vital for cities because they improve air quality and regulate the climate; however, like all living organisms, they are affected by the environment to which they are exposed. In cities, the primary atmospheric pollutants of inorganic origin include NO, SOX, COX, O3, and suspended particulate matter (PM2.5 and PM10). Each of these pollutants impacts population health, with urban trees undergoing a series of consequent alterations. In this study, we review the inorganic pollutants identified by the World Health Organization (WHO) as impacting air quality in cities in different regions of the world; discuss the regulations that govern NO2, SO2, CO, O3, and PM2.5 and PM10 emissions and their impact they have on urban trees; analyze the processes involved in pollutant–tree interactions and the related tolerance and/or resistance mechanisms; and determine the tree species with the best tolerance, classified using an air pollution tolerance index (APTI). Full article
Show Figures

Graphical abstract

29 pages, 25902 KiB  
Article
Multi-Sensor Fusion for Land Subsidence Monitoring: Integrating MT-InSAR and GNSS with Kalman Filtering and Feature Importance to Northern Attica, Greece
by Vishnuvardhan Reddy Yaragunda and Emmanouil Oikonomou
Earth 2025, 6(2), 37; https://doi.org/10.3390/earth6020037 - 9 May 2025
Viewed by 207
Abstract
Land subsidence poses a significant risk in built-up environments, particularly in geologically complex and tectonically active regions. In this study, we integrated Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques—Persistent Scatterer Interferometry (PS-InSAR) and Small Baseline Subset (SBAS)—with Global Navigation Satellite System (GNSS) observations [...] Read more.
Land subsidence poses a significant risk in built-up environments, particularly in geologically complex and tectonically active regions. In this study, we integrated Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques—Persistent Scatterer Interferometry (PS-InSAR) and Small Baseline Subset (SBAS)—with Global Navigation Satellite System (GNSS) observations to assess ground deformation in the Metamorphosis (MET0) area of Attica, Greece. A Kalman filtering approach was applied to fuse displacement measurements from GNSS, PS-InSAR, and SBAS, reducing noise and improving temporal consistency. Additionally, the PS and SBAS vertical displacement data were fused using Kalman filtering to enhance spatial coverage and refine displacement estimates. The results reveal significant subsidence trends ranging between −10 mm and −24 mm in localized zones, particularly near hydrographic networks and active fault systems. Fault proximity, fluvial processes, and unconsolidated sediments were identified as key drivers of displacement. Random Forest regression analysis, coupled with Partial Dependence analysis, demonstrated that distance to faults, proximity to streams, and the presence of stream drops and debris zones were the most influential factors affecting displacement patterns. This study highlights the effectiveness of integrating multi-sensor remote sensing techniques with data-driven machine learning analysis (Kalman filtering) to improve land subsidence assessment. The findings highlight the necessity of continuous geospatial monitoring for infrastructure resilience and geohazard risk mitigation in the Attica region. Full article
Show Figures

Figure 1

24 pages, 9844 KiB  
Article
UFORE-D Modeling of Urban Tree Influence on Particulate Matter Concentrations in a High-Altitude Latin American Megacity
by Laura Ochoa-Alvarado, Juan Garzón-Gil, Sergio Castro-Alzate, Carlos Alfonso Zafra-Mejía and Hugo Alexander Rondón-Quintana
Earth 2025, 6(2), 36; https://doi.org/10.3390/earth6020036 - 9 May 2025
Viewed by 183
Abstract
Urban trees reduce particulate matter (PM) concentrations through dry deposition, interception, and modifying wind patterns, improving air quality and saving public health expenses in urban planning. The main objective of this article is to present an analysis of the influence of urban trees [...] Read more.
Urban trees reduce particulate matter (PM) concentrations through dry deposition, interception, and modifying wind patterns, improving air quality and saving public health expenses in urban planning. The main objective of this article is to present an analysis of the influence of urban trees on PM10 and PM2.5 concentrations in a high-altitude Latin American megacity (Bogotá, Colombia) using UFORE-D modeling. Six PM monitoring stations distributed throughout the megacity were used. Hourly climatic and PM data were collected for seven years, along with dendrometric and cartographic analyses within 200 m of the monitoring stations. Land cover was quantified using satellite imagery (Landsat 8) in order to perform a spatial analysis. The results showed that the UFORE-D model effectively quantified urban forest canopy area (CA) impact on PM10 and PM2.5 removal, showing strong correlations (R2 = 0.987 and 0.918). PM removal increased with both CA and ambient pollutant concentrations, with CA exhibiting greater influence. Sensitivity analysis highlighted enhanced air quality with increased leaf area index (LAI: 2–4 m2/m2), particularly at higher wind speeds. PM10 removal (1.05 ± 0.01%) per unit CA exceeded PM2.5 (0.71 ± 0.09%), potentially due to resuspension modeling. Model validation confirmed reliability across urban settings, emphasizing its utility in urban planning. Scenario analysis (E1–E4, CA: 8.30–95.4%) demonstrated a consistent positive correlation between CA and PM removal, with diminishing returns at extreme CA levels. Urban spatial constraints suggested integrated green infrastructure solutions. Although increased CA improved PM removal rates, the absolute reduction of pollutants remained limited, suggesting comprehensive emission monitoring. Full article
Show Figures

Figure 1

24 pages, 1920 KiB  
Article
Identification of Priority Areas for the Control of Soil Erosion and the Influence of Terrain Factors Using RUSLE and GIS in the Caeté River Basin, Brazilian Amazon
by Alessandra dos Santos Santos, João Fernandes da Silva Júnior, Lívia da Silva Santos, Rômulo José Alencar Sobrinho, Eduarda Cavalcante Amorim, Gabriel Siqueira Tavares Fernandes, Elania Freire da Silva, Thieres George Freire da Silva, João L. M. P. de Lima and Alexandre Maniçoba da Rosa Ferraz Jardim
Earth 2025, 6(2), 35; https://doi.org/10.3390/earth6020035 - 8 May 2025
Viewed by 206
Abstract
Soil erosion poses a significant global environmental challenge, causing land degradation, deforestation, river siltation, and reduced agricultural productivity. Although the Revised Universal Soil Loss Equation (RUSLE) has been widely applied in Brazil, its use in the tropical river basins of the Amazon remains [...] Read more.
Soil erosion poses a significant global environmental challenge, causing land degradation, deforestation, river siltation, and reduced agricultural productivity. Although the Revised Universal Soil Loss Equation (RUSLE) has been widely applied in Brazil, its use in the tropical river basins of the Amazon remains limited. This study aimed to apply a GIS-integrated RUSLE model and compare its soil loss estimates with multiple linear regression (MLR) models based on terrain attributes, aiming to identify priority areas and key geomorphometric drivers of soil erosion in a tropical Amazonian river basin. A digital elevation model based on Shuttle Radar Topography Mission (SRTM) data, land use and land cover (LULC) maps, and rainfall and soil data were applied to the GIS-integrated RUSLE model; we then defined six risk classes—slight (0–2.5 t ha−1 yr−1), slight–moderate (2.5–5), moderate (5–10), moderate–high (10–15), high (15–25), and very high (>25)—and identified priority zones as those in the top two risk classes. The Caeté River Basin (CRB) was classified into six erosion risk categories: low (81.14%), low to moderate (2.97%), moderate (11.88%), moderate to high (0.93%), high (0.03%), and very high (3.05%). The CRB predominantly exhibited a low erosion risk, with higher erosion rates linked to intense rainfall, gentle slopes covered by Arenosols, and human activities. The average annual soil loss was estimated at 2.0 t ha−1 yr−1, with a total loss of 1005.44 t ha−1 yr−1. Additionally, geomorphological and multiple linear regression (MLR) analyses identified seven key variables influencing soil erosion: the convergence index, closed depressions, the topographic wetness index, the channel network distance, and the local curvature, upslope curvature, and local downslope curvature. These variables collectively explained 26% of the variability in soil loss (R2 = 0.26), highlighting the significant role of terrain characteristics in erosion processes. These findings indicate that soil erosion control efforts should focus primarily on areas with Arenosols and regions experiencing increased anthropogenic activity, where the erosion risks are higher. The identification of priority erosion areas enables the development of targeted conservation strategies, particularly for Arenosols and regions under anthropogenic pressure, where the soil losses exceed the tolerance threshold of 10.48 t ha−1 yr−1. These findings directly support the formulation of local environmental policies aimed at mitigating soil degradation by stabilizing vulnerable soils, regulating high-impact land uses, and promoting sustainable practices in critical zones. The GIS-RUSLE framework is supported by consistent rainfall data, as verified by a double mass curve analysis (R2 ranging from 0.64 to 0.77), and offers a replicable methodology for soil conservation planning in tropical basins with similar erosion drivers. This approach offers a science-based foundation to guide soil conservation planning in tropical basins. While effective in identifying erosion-prone areas, it should be complemented in future studies by dynamic models and temporal analyses to better capture the complex erosion processes and land use change impacts in the Amazon. Full article
23 pages, 7688 KiB  
Article
Assessing River Corridor Stability and Erosion Dynamics in the Mekong Delta: Implications for Sustainable Management
by Dinh Van Duy, Tran Van Ty, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Truong Thanh and Nigel K. Downes
Earth 2025, 6(2), 34; https://doi.org/10.3390/earth6020034 - 6 May 2025
Viewed by 130
Abstract
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates [...] Read more.
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates reach up to 40 m annually, in the meandering sections of the Mekong River,. In contrast, the Bassac River exhibited significant sedimentation, though this trend was diminishing due to upstream sediment deficits caused by hydropower dams. Stability assessments revealed optimal safety corridor distances ranging from 20 to 38 m, influenced by local geotechnical conditions and structural loads. A significant proportion of riverbanks in Dong Thap (88%) and An Giang (48%) do not comply with conservation standards, exacerbating erosion risks and threatening infrastructure. The results of this study highlight the urgent need for enforcing conservation regulations, implementing nature-based solutions like riparian buffers, and adopting sustainable land-use planning. By addressing the interplay between natural processes and anthropogenic pressures, these findings offer actionable insights to enhance riverbank stability, protect ecosystems, and sustain livelihoods in the Mekong Delta amidst growing environmental challenges. Full article
Show Figures

Figure 1

32 pages, 17673 KiB  
Article
Illegal Abandoned Waste Sites (IAWSs): A Multi-Parametric GIS-Based Workflow for Waste Management Planning and Cost Analysis Assessment
by Alfonso Valerio Ragazzo, Alessandro Mei, Sara Mattei, Giuliano Fontinovo and Mario Grosso
Earth 2025, 6(2), 33; https://doi.org/10.3390/earth6020033 - 1 May 2025
Viewed by 208
Abstract
The occurrence of illegal waste activities is a worldwide problem, due to improper actions and inadequate services across many territories. Geographical Information Systems (GISs) software plays a crucial role in optimizing waste management and determining the shortest route paths for waste transportation. This [...] Read more.
The occurrence of illegal waste activities is a worldwide problem, due to improper actions and inadequate services across many territories. Geographical Information Systems (GISs) software plays a crucial role in optimizing waste management and determining the shortest route paths for waste transportation. This work focuses on the development of a GIS-based workflow for the detection of Illegal Abandoned Waste Sites (IAWSs) and waste management planning. The integration of remote/ground sensing activities, geospatial data, and models within a GIS framework is a useful practice for conducting cost analysis and supporting the development of efficient waste management plans. Firstly, available satellite images are employed in a baseline assessment, combining ancillary and remote sensing data. As a result of satellite monitoring, a ground-piloted survey is carried out by checking the potential-IAWSs density map retrieved from the satellite pre-recognition phase. Hence, a total of 171 ground points are geo-localized and spatialized, according to qualitative on-site products and 2.5D volume analysis. Consequently, distances from illegal dumping sites to proper disposal plants are calculated, achieving the shortest route paths as geospatial information. From these data, a Functional Unit (FU) of 1 ton of mixed waste plus 381.6 kg of inert material is determined, a fundamental stage for comparing different cost analysis processes in similar contexts. By using a GIS-based workflow, a cost analysis assessment is provided, aiming to support principal activities such as waste transportation and disposal to the proper plant (e.g., landfill or incineration). In conclusion, spatial data analysis results are fundamental in managing illegal abandoned waste sites, helping to establish a cost analysis assessment. Full article
Show Figures

Figure 1

17 pages, 3136 KiB  
Article
Perception from a Public Survey of the Social–Ecological Effects of Wildfires in the Chiquitania Region of Bolivia
by Oswaldo Maillard, Patricia Herrera, Nicolas Mielich and Claudia Venegas
Earth 2025, 6(2), 32; https://doi.org/10.3390/earth6020032 - 1 May 2025
Viewed by 977
Abstract
In recent years, large-scale wildfires have become a serious threat to terrestrial ecosystems and people in the Chiquitania region of Bolivia. Understanding public perceptions is fundamental to designing comprehensive and effective wildfire management strategies. The objectives of the study were to learn perception [...] Read more.
In recent years, large-scale wildfires have become a serious threat to terrestrial ecosystems and people in the Chiquitania region of Bolivia. Understanding public perceptions is fundamental to designing comprehensive and effective wildfire management strategies. The objectives of the study were to learn perception on the main causes of wildfires, to understand their perceptions of the impacts of these events, and to explore the most viable solutions to preventing future wildfires in the Chiquitania region of Bolivia. We developed a 15-questions online survey and disseminated it through social media platforms, mobile messaging service groups, and at two workshops held in two locations. A total of 597 people participated in the survey with a balanced sex distribution. The participants were mainly young people aged 18–24 (45.40%) and 25–34 (21.40%), representing university students (42.6%) and professionals (42.6%). The data came from seven departments, but Santa Cruz was more strongly represented (75.9%). In addition, although only 65% considered themselves part of the general population, the data shows that 76% had personal experience of wildfires. Respondents indicated that fires were caused by human activities (95.9%), mainly due to traditional agricultural practices. The most important perceived impacts included landscape and vegetation quality, fauna habitat and ecosystem regeneration. In addition, participants have prioritized the reinforcement of patrols and surveillance, the hiring of forest firefighters and the purchase of aerial firefighting units. For prevention, the most chosen was to change policies that promote fires, changing the vision for economic development and stricter penalties. The findings can be used to formulate public policies aimed at preventing wildfires, mitigating their impacts and promoting environmental conservation. Full article
Show Figures

Figure 1

22 pages, 15545 KiB  
Article
Estimation of Cloud Water Resources in China
by Jie Yu, Yuquan Zhou, Miao Cai and Jianjun Ou
Earth 2025, 6(2), 31; https://doi.org/10.3390/earth6020031 - 25 Apr 2025
Viewed by 158
Abstract
With the increasing scarcity of global water resources, the exploitation of atmospheric water resources has emerged as a crucial strategy for mitigating water shortages. However, the development of regional atmospheric water resources remains constrained by the lack of precise atmospheric water resource assessments. [...] Read more.
With the increasing scarcity of global water resources, the exploitation of atmospheric water resources has emerged as a crucial strategy for mitigating water shortages. However, the development of regional atmospheric water resources remains constrained by the lack of precise atmospheric water resource assessments. Existing studies primarily focus on historical evaluations of atmospheric water resources in China, while future changes in cloud water resources across target regions have yet to be comprehensively investigated. In this study, projections of cloud water resources over China for the next 30 years are conducted based on CMIP6 global climate model simulations, in conjunction with observationally diagnosed cloud water resources datasets from 2000 to 2019. A random forest model, coupled with a fuzzy logic approach, is employed to estimate future cloud water resources, as well as their spatial distribution and temporal trends. The results indicate that the random forest model effectively captures the relationship between atmospheric physical variables and cloud water resources, demonstrating strong agreement with historical data. Over the next three decades, cloud water resources in China are projected to exhibit an overall increasing trend, with the most pronounced enhancement occurring under the high-emission scenario (Shared Socioeconomic Pathway 5–8.5). The spatial distribution pattern of cloud water resources is expected to remain largely consistent with that of the past two decades, while inter-model differences are primarily observed in southeastern China and the southern Tibetan Plateau. Further analysis using fuzzy logic inference reveals that the most significant increases in cloud water resources are anticipated in northwestern China, with the potential for an expansion of these increases toward the north under the high-emission scenario. This study provides a scientific framework for predicting future variations in cloud water resources across China, offering critical theoretical and data-driven support for the sustainable development and utilization of atmospheric water resources. Full article
Show Figures

Figure 1

20 pages, 3733 KiB  
Article
Regional Innovative Trend Analysis of Annual and Seasonal Discharges of Rivers in Bosnia and Herzegovina
by Marko Šrajbek, Bojan Đurin, Slobodan Gnjato and Tatjana Popov
Earth 2025, 6(2), 30; https://doi.org/10.3390/earth6020030 - 24 Apr 2025
Viewed by 227
Abstract
Climate change is becoming more pronounced and affecting all environmental components, leading to river flow changes. This study aimed to investigate the annual and seasonal discharge trends for six rivers in Bosnia and Herzegovina in Europe in the period from 1961 to 2020. [...] Read more.
Climate change is becoming more pronounced and affecting all environmental components, leading to river flow changes. This study aimed to investigate the annual and seasonal discharge trends for six rivers in Bosnia and Herzegovina in Europe in the period from 1961 to 2020. The trends were analysed using a linear regression (LR) analysis, the Mann–Kendal test (MK), and an innovative trend analysis (ITA). The fewest significant trends were obtained by the LR analysis, followed by the MK test, and the most were obtained by the ITA method. The ITA method identified 76.67% significant negative trends and 13.33% significant positive trends in all data groups. It can be concluded that the discharges in the second part of the observed period (1991–2020) were significantly lower compared to the first part (1961–1990). A more detailed ITA of the flow by data group (low, medium, and high) was also carried out. The results showed the occurrence of increasingly large extremes. Therefore, in the second subperiod, the minimum values were smaller and the maximum values were larger than in the first subperiod. The occurrence of high water levels increases the possibility of floods, and a long dry period can cause problems with the generation of electricity from hydropower plants. For this reason, analysing discharge trends in the future is certainly a justified recommendation. Full article
Show Figures

Figure 1

16 pages, 3608 KiB  
Article
Changes in Regional Practices and Their Effects on the Water Quality of Portuguese Reservoirs
by Ivo Pinto, Luísa Azevedo and Sara C. Antunes
Earth 2025, 6(2), 29; https://doi.org/10.3390/earth6020029 - 15 Apr 2025
Viewed by 304
Abstract
At the global level, numerous reservoirs exhibit a pronounced water degradation. Inadequate land use and climate change effects contribute to freshwater degradation and disrupt the ecosystem balances. This study aimed to evaluate the temporal and spatial effects of the surrounding area on two [...] Read more.
At the global level, numerous reservoirs exhibit a pronounced water degradation. Inadequate land use and climate change effects contribute to freshwater degradation and disrupt the ecosystem balances. This study aimed to evaluate the temporal and spatial effects of the surrounding area on two Portuguese reservoirs: Rabagão and Aguieira. For each reservoir sub-watershed scale, the evolution of land use and soil occupation and the pressures reported over the past decade were analyzed. Additionally, official records of water quality parameters were collected, and water quality was assessed according to the Water Framework Directive (WFD). Both reservoirs show anthropogenic pressure, reflected in the water quality. Rabagão has good water quality, associated with undeveloped lands (47%), agriculture (26%), and one pressure on the aquaculture sector. Aguieira is characterized by high nutrient concentrations, low transparency, and phytoplankton. This is linked to various land uses, including forestry (75%), and agriculture (19%), as well as multiple environmental pressures. Key contributors include urban discharge (27 sites) and water catchments allocated for agricultural purposes (89 sites) and others. The long-term data showed an increase in chlorophyll a concentration, water temperature, and pH values, and a decrease in the concentration of total phosphorus, but higher than the reference value. Additionally, the usage of the surrounding area of the hydrographic basin shows that it is extremely important for water quality and should be included in the WFD. Addressing the problems in the surrounding areas reservoirs is essential to adopting measures that improve water quality, therefore guaranteeing the health of the environment as expected under the One Health concept. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

20 pages, 6300 KiB  
Article
Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine
by Oleksandr Melnyk and Ansgar Brunn
Earth 2025, 6(2), 28; https://doi.org/10.3390/earth6020028 - 11 Apr 2025
Viewed by 761
Abstract
The Cheremskyi Nature Reserve, situated in the Volyn region of Ukraine, constitutes a pivotal element of the European ecological network, distinguished by its distinctive mosaic of peatlands, bogs, and floodplain forests. This study utilizes Sentinel-2 satellite imagery and the Google Earth Engine (GEE) [...] Read more.
The Cheremskyi Nature Reserve, situated in the Volyn region of Ukraine, constitutes a pivotal element of the European ecological network, distinguished by its distinctive mosaic of peatlands, bogs, and floodplain forests. This study utilizes Sentinel-2 satellite imagery and the Google Earth Engine (GEE) to assess the spatiotemporal patterns of various vegetation indices (NDVI, EVI, SAVI, MSAVI, GNDVI, NDRE, NDWI) from 2017 to 2024. The study aims to select the most suitable combination of vegetation spectral indices for future research. The analysis reveals significant negative trends in NDVI, SAVI, MSAVI, GNDVI, and NDRE, indicating a decline in vegetation health, while NDWI shows a positive trend, suggesting an increased vegetation water content. Correlation analysis underscores robust interrelationships among the indices, with NDVI and SAVI identified as the most significant through random forest feature importance analysis. Principal component analysis (PCA) further elucidates the primary axes of variability, emphasizing the complex interplay between vegetation greenness and moisture content. The findings underscore the utility of multi-index analyses in enhancing predictive capabilities for ecosystem monitoring and support targeted conservation strategies for the sustainable management of the Cheremskyi Nature Reserve. Full article
Show Figures

Figure 1

12 pages, 2123 KiB  
Article
Assessing the Modulatory Effects of Biochar on Soil Health Status in Response to Pesticide Application
by Giovanna B. Melas, Oriol Ortiz, Amira M. Roshdy, Mohamed Y. Hendawi, Dimitrios Triantakonstantis and Sameh Shaddad
Earth 2025, 6(2), 27; https://doi.org/10.3390/earth6020027 - 11 Apr 2025
Viewed by 568
Abstract
Considering the global competition to increase food productivity due to the increasing population growth, the use of chemical pesticides has become the quick solution, but by increasing awareness about the serious dangers of wasteful chemicals in various areas of life, it has become [...] Read more.
Considering the global competition to increase food productivity due to the increasing population growth, the use of chemical pesticides has become the quick solution, but by increasing awareness about the serious dangers of wasteful chemicals in various areas of life, it has become necessary to move immediately, albeit gradually, towards safe biological treatments. From this point of view, the use of biochar is one of the trends in reducing soil pollution with chemical pesticides. Therefore, the main objectives of this work are (i) to assess if the application of three pesticides based on imidacloprid, methyl thiophanate, and glyphosate has detectable adverse consequences on soil organisms’ activity and (ii) to evaluate if the addition of biochar modifies the effects of these chemicals. An agricultural soil was amended with different doses of biochar. The treated soil received realistic amounts of currently used pesticides. Samples were stored at 21 °C and 50% WHC (water holding capacity) for a period of 28 days under dark conditions. Oxygen consumption was measured for 12 consecutive hours after the addition of 2.5 g glucose kg−1 as a stimulant for soil organisms. Biomass C was estimated from the difference between the amount of C in 0.5 M K2SO4 extracts of CHCl3 fumigated soil and the extractable C in non-fumigated samples. Specific respiration was computed as the amount of O2 consumed per unit of Biomass Carbon. The results of this work proved that the tested biochar could modulate the effects produced by the agrochemicals on soil biomass. Full article
Show Figures

Figure 1

17 pages, 6721 KiB  
Article
Characterization of the Planetary Boundary Layer Height in Huelva (Spain) During an Episode of High NO2 Pollutant Concentrations
by Ainhoa Comas Muguruza, Raúl Arasa Agudo and Mireia Udina
Earth 2025, 6(2), 26; https://doi.org/10.3390/earth6020026 - 8 Apr 2025
Viewed by 508
Abstract
This study investigates the estimation of the boundary layer height (PBLH) in Huelva, Spain, in November 2023, using different methods: Richardson number, humidity gradient and refractivity gradient. From the virtual potential profiles of temperature and specific humidity, in the case of daytime PBLH, [...] Read more.
This study investigates the estimation of the boundary layer height (PBLH) in Huelva, Spain, in November 2023, using different methods: Richardson number, humidity gradient and refractivity gradient. From the virtual potential profiles of temperature and specific humidity, in the case of daytime PBLH, which method works best in some situations when there are discrepancies between results is discussed. The results are then compared with the PBLH values obtained from the ERA-5 reanalysis. The synoptic analysis shows that the decrease in PBLH in the central weeks of the month is compatible with a thermal inversion by subsidence due to a persistent anticyclonic situation. Regarding air quality, the NO2 concentrations in the air quality station of Matalascañas, which is a background station, show negative correlations with the PBLH. Full article
Show Figures

Figure 1

15 pages, 3291 KiB  
Article
Analysis of the Tools for Evaluating Embodied Energy Through Building Information Modeling Tools: A Case Study of a Single-Unit Shell Building
by Andrzej Szymon Borkowski, Urszula Hajdukiewicz, Julia Herbich, Kalina Kostana and Anna Kubala
Earth 2025, 6(2), 25; https://doi.org/10.3390/earth6020025 - 6 Apr 2025
Viewed by 258
Abstract
Today, the construction sector is largely responsible for climate change and global warming. The industry generates the largest carbon footprint and is also one of the least digitized industries in national economies. Faced with the challenge of reducing this carbon footprint, BIM is [...] Read more.
Today, the construction sector is largely responsible for climate change and global warming. The industry generates the largest carbon footprint and is also one of the least digitized industries in national economies. Faced with the challenge of reducing this carbon footprint, BIM is becoming an essential tool for building digital twins, which in turn makes it possible to calculate and track the carbon footprint over time for designed, constructed, and existing buildings. Semantically rich databases such as BIM make it possible to record the past, present, and future states of buildings and infrastructure facilities. To date, primary research using the free and popular UrbanBIM tool has been conducted on ready-made models, e.g., a previously prepared piece of space. In this secondary study, a specific pre-designed shell building in the BIM environment was examined, and the embedded carbon footprint was calculated for it. The calculated result of 76.35 tons of CO2 provides an overview of the solutions used and an analysis of the various elements in terms of their environmental impact. The results of the study indicate a growing need to automate the modeling of building information for analysis and simulation, and then to further manage the information. The paper also identifies limitations and presents future research directions for carbon footprint calculation and tracking. Full article
Show Figures

Figure 1

15 pages, 4671 KiB  
Article
Changes in Timing and Precipitation of the East Asian Summer Monsoon over China Between 1960 and 2017
by Zeyu Dou, Binhui Liu, Mark Henderson, Wanying Zhou, Rong Ma, Mingyang Chen and Zhi Zhang
Earth 2025, 6(2), 24; https://doi.org/10.3390/earth6020024 - 3 Apr 2025
Viewed by 299
Abstract
The East Asian Summer Monsoon (EASM) is a critical component of the Earth’s climate system that brings substantial seasonal precipitation to China, contributing over 30 percent of summer half-year’s precipitation. Agriculture critically depends on the monsoon’s timing and precipitation, but the effects of [...] Read more.
The East Asian Summer Monsoon (EASM) is a critical component of the Earth’s climate system that brings substantial seasonal precipitation to China, contributing over 30 percent of summer half-year’s precipitation. Agriculture critically depends on the monsoon’s timing and precipitation, but the effects of climate change on its regional configuration remain poorly understood. We analyzed daily precipitation time series from 145 observation stations in eastern China to quantify the initial and final dates of the rainband steady phase and detect regional variations in monsoon duration and intensity from 1960 to 2017. Monsoon rainband precipitation declined until the mid-1980s, increased from the mid-1980s to 1998, and generally stabilized after that. During the weakening period, the rainband tended to reach mainland China earlier and to take longer to progress from south to north; those changes reversed during the strengthening period. When the EASM weakened, precipitation decreased in the north and south but not in the lower Yangtze and Huaihe river basins of East-Central China. When the EASM strengthened, precipitation increased in all regions, with changes in extreme precipitation generally greater than the changes in overall precipitation. Overall, the moisture imbalance between regions has intensified, reinforcing the pattern of “southern floods, northern droughts” in China. Full article
Show Figures

Figure 1

17 pages, 2836 KiB  
Article
An Indicator-Based Framework for Sustainable Mining Using Fuzzy AHP
by Saleem Raza Chalgri, Muhammad Saad Memon, Fahad Irfan Siddiqui and Shakeel Ahmed Shaikh
Earth 2025, 6(2), 23; https://doi.org/10.3390/earth6020023 - 2 Apr 2025
Viewed by 415
Abstract
The mineral extraction industry is vital for nations’ economic growth, as it provides raw materials for various industries. Implementing sustainable mining practices in this sector can contribute to its long-term growth and stability. However, Pakistan lacks a well-defined sustainability assessment framework for mining, [...] Read more.
The mineral extraction industry is vital for nations’ economic growth, as it provides raw materials for various industries. Implementing sustainable mining practices in this sector can contribute to its long-term growth and stability. However, Pakistan lacks a well-defined sustainability assessment framework for mining, leaving a critical gap in research and practice. Existing internationally developed frameworks are not directly applicable, as they were designed for contexts where the mining industry predominantly uses mechanized operations. In contrast, Pakistan’s extraction process relies heavily on manual methods, making it necessary to develop a context-specific framework. A fuzzy analytical hierarchy process (AHP) was employed to prioritize these indicators and sub-indicators for the sustainability assessment of Pakistan’s mineral industry. The findings of this study highlight that the environmental dimension ranks as the highest priority, followed by social and economic dimensions. Among the environmental indicators, pollution and smart technologies each received a weight of 0.40, which was also the case for the social indicator of discrimination and nepotism, as well as the economic indicators of GDP growth and wealth creation. Furthermore, the results suggest that the extensive use of smart technologies for pollution control is a key factor in fostering environmental sustainability. Full article
Show Figures

Figure 1

17 pages, 4520 KiB  
Article
Conservation Culturomics 2.0 (?): Information Entropy, Big Data, and Global Public Awareness in the Anthropocene Narrative Issues
by Charalampos Sideropoulos and Andreas Y. Troumbis
Earth 2025, 6(2), 22; https://doi.org/10.3390/earth6020022 - 1 Apr 2025
Viewed by 689
Abstract
The Anthropocene is a concept that highlights the profound changes humans have made to nearly every aspect of the Earth. It serves as a compelling narrative that challenges us to examine public perceptions and interests regarding human–nature interactions in an integrated way. These [...] Read more.
The Anthropocene is a concept that highlights the profound changes humans have made to nearly every aspect of the Earth. It serves as a compelling narrative that challenges us to examine public perceptions and interests regarding human–nature interactions in an integrated way. These interactions are widespread but can vary significantly over time, across cultures and under different economic conditions, making them difficult to monitor effectively on a large scale. Recent advancements in digital technology, such as the ability to track online searches through tools, like Google Trends-Glimpse, and the near real-time monitoring of news broadcasts via the GDELT Project, present new opportunities. These tools can analyze data in multiple languages around the world, encouraging innovative approaches to integrate the diverse and complex information generated within this multi-language, multi-concept, and varied time-scale environment of human activity and beliefs. We propose a transformed version of Markowitz’s multi-asset optimization theory that encompasses over 5.5 billion people, several languages, and concepts since 2004. This approach is a functional ensemble where ecology and economics intersect, at least mechanistically. Our findings indicate that while there is a general increase in people’s interest in Anthropocene-related issues, significant differences exist across cultures. We also identify several sources of data noise and evidence that interfere with the overall methodology. Addressing these issues in future research will help to extend the validity of our approach, especially if it increases interest in conservation culturomics. Full article
Show Figures

Figure 1

29 pages, 1628 KiB  
Review
Carbon Sequestration Potential in Rubber Plantations: A Complementary Approach to Tropical Forest Conservation Strategies, a Review
by Joël Mobunda Tiko, Serge Shakanye Ndjadi, Jémima Lydie Obandza-Ayessa, Jean Pierre Mate Mweru, Baudouin Michel, Hans Beeckman, Olivia Lovanirina Rakotondrasoa and Jean Pierre Meniko To Hulu
Earth 2025, 6(2), 21; https://doi.org/10.3390/earth6020021 - 31 Mar 2025
Viewed by 814
Abstract
The adverse effects of climate change, which are associated with the rise in greenhouse gases, impact all nations worldwide. In this context, tropical forests play a critical role in carbon sequestration. However, the significant anthropogenic pressure on these forests contributes to accelerated deforestation [...] Read more.
The adverse effects of climate change, which are associated with the rise in greenhouse gases, impact all nations worldwide. In this context, tropical forests play a critical role in carbon sequestration. However, the significant anthropogenic pressure on these forests contributes to accelerated deforestation and a decrease in their capacity to regulate the climate. This study uses a comprehensive review of 176 published scientific articles and reports to assess the carbon sequestration capacity of rubber plantations, comparing their effectiveness with that of natural tropical forests. The findings are largely consistent and indicate that agricultural systems, such as rubber plantations, which were not traditionally associated with carbon sequestration, play a significant role in this area. Rubber plantations present a complementary alternative to the rapid deforestation of tropical forests, with the capacity to sequester substantial amounts of carbon. The range of carbon storage potential for rubber plantations, spanning from 30 to over 100 tons per hectare, rivals that of natural tropical forests, which can store over 300 tons per hectare. Furthermore, rubber plantations are notable for their indirect carbon sequestration potential. By providing a sustainable source of latex and wood, and thus income, they can reduce the pressure on natural tropical forests. However, challenges remain, particularly concerning sustainable management and the integration of rubber plantations into sustainable tropical forest management strategies. This analysis focuses on the opportunities and challenges of rubber plantations as an offset solution for carbon sequestration. It highlights the prospects for effectively integrating these plantations into sustainable tropical forest management policies. Full article
Show Figures

Figure 1

14 pages, 3557 KiB  
Article
Assessing the Effectiveness of Phase Change Materials in Residential Buildings for Reducing Urban Heat Island Effects
by Gunarani Gunaseelan Indrani, Rathinakumar Vedachalam, Selvakumar Radhakrishnan, Anirudh Raajan Varatharaajan, Ajay Bala Vikas Chelladurai and Aravind Chandramouli
Earth 2025, 6(2), 20; https://doi.org/10.3390/earth6020020 - 27 Mar 2025
Viewed by 397
Abstract
The Urban Heat Island’s (UHI) effect intensifies thermal discomfort for urban communities, increasing energy requirements. This study assesses the incorporation of Phase Change Materials (PCMs) into building envelopes to reduce Urban Heat Island (UHI) impacts in the Trichy urban area, characterised by a [...] Read more.
The Urban Heat Island’s (UHI) effect intensifies thermal discomfort for urban communities, increasing energy requirements. This study assesses the incorporation of Phase Change Materials (PCMs) into building envelopes to reduce Urban Heat Island (UHI) impacts in the Trichy urban area, characterised by a dry-summer tropical savanna environment. To evaluate energy efficiency and indoor temperature regulation, simulations were conducted using Design Builder and Climate 6.0 software. The results show that overall room electricity consumption decreased from 480 kWh to 380 kWh, demonstrating the energy-saving benefits of the modifications. Overall energy consumption was reduced to 271.9 kWh/m2/year from 312.23 kWh/m2/year in the base case, a 13% decrease, equating to 40.33 kWh/m2/year in energy savings. The payback period for PCM installation was predicted to be around 30.64 years. These results show that PCM-enhanced building envelopes reduce UHI effects and improve thermal comfort and energy efficiency, making them a feasible, sustainable urban development strategy. Full article
Show Figures

Figure 1

15 pages, 1548 KiB  
Article
Conserving Carbon Stocks Under Climate Change: Importance of Trees Outside Forests in Agricultural Landscapes of Mongala Province, Democratic Republic of Congo
by Jean Pierre Azenge, Aboubacar-Oumar Zon, Hermane Diesse, Jean Pierre Pitchou Meniko, Jérôme Ebuy, Justin N’Dja Kassi and Paxie W. Chirwa
Earth 2025, 6(2), 19; https://doi.org/10.3390/earth6020019 - 27 Mar 2025
Viewed by 283
Abstract
This study aimed to evaluate the role of trees outside forests on agricultural land (TOF-AL) in preserving the initial aboveground biomass (AGB) of forests within the agricultural landscape of Mongala province in the Democratic Republic of Congo. In 2024, tree inventories [...] Read more.
This study aimed to evaluate the role of trees outside forests on agricultural land (TOF-AL) in preserving the initial aboveground biomass (AGB) of forests within the agricultural landscape of Mongala province in the Democratic Republic of Congo. In 2024, tree inventories were conducted over four months in the forests and agricultural lands of Mongala province to analyse AGB. The effects of artisanal logging and charcoal production activities on the AGB conservation rate were considered. This study indicates that 78.3% of the trees encountered in agricultural lands were large-diameter trees (diameter at breast height (DBH) ≥ 60 cm). In forest areas, large-diameter trees accounted for 55.9% of tree density. The average AGBs are 66.8 Mg ha−1 for TOF-AL and 373.5 Mg ha−1 for forest trees. The AGB of TOF-AL accounts for 17.9% of the AGB of the total forest trees. The AGB conservation rates vary by region, with Lisala having the highest at 22.1%, Bumba the lowest at 11.2%, and Bongandanga at 20.5%. Artisanal logging and charcoal production reduce the AGB conservation rate of TOF-AL. The AGB conservation rate is positively correlated with the distances to major cities. These results prove that conserving trees in agricultural landscapes can reduce the AGB losses associated with slash-and-burn agriculture and contribute to mitigating climate change effects. Full article
Show Figures

Figure 1

22 pages, 6405 KiB  
Article
Wastewater Management Strategies in Rural Communities Using Constructed Wetlands: The Role of Community Participation
by Brenda Lizeth Monzón-Reyes, Humberto Raymundo González-Moreno, Alex Elías Álvarez Month, Alexi Jose Peralta Vega, Gaston Ballut-Dajud and Luis Carlos Sandoval Herazo
Earth 2025, 6(2), 18; https://doi.org/10.3390/earth6020018 - 27 Mar 2025
Viewed by 765
Abstract
The lack of access to centralized technologies and economic resources in rural communities makes wastewater management a critical challenge. Decentralized systems such as constructed wetlands offer sustainable solutions by leveraging natural processes for effluent treatment. However, their success and sustainability require active community [...] Read more.
The lack of access to centralized technologies and economic resources in rural communities makes wastewater management a critical challenge. Decentralized systems such as constructed wetlands offer sustainable solutions by leveraging natural processes for effluent treatment. However, their success and sustainability require active community participation. Currently, there is little evidence of community involvement in the implementation, maintenance, and management of constructed wetlands. Existing strategies for community collaboration in environmental and sanitation projects were analyzed through a literature review covering research conducted in the last 20 years. Only peer-reviewed research in English and Spanish was considered. Based on the findings, a triple helix model integrating academia, government, and society is proposed, compiling the most functional strategies from initial awareness raising to maintenance and dissemination. A case study of community participation is presented under this approach in the Salvador Díaz Mirón rural community, Veracruz, Mexico. The results of this study provide key information for effective strategies designed to manage constructed wetlands, emphasizing that their success depends on both the technology and the genuine commitment of communities to their operation and long-term sustainability. Furthermore, these findings can serve as a reference for decision-makers and project planners seeking to integrate participatory models into decentralized sanitation and water resource conservation. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop