The sustainability of resources and ecological integrity are significantly influenced by land use and land cover change (LULCC) dynamics, particularly in ecotonal semi-arid regions where biome transitions are highly sensitive to anthropogenic disturbance and climatic variability. This study aims to assess historical LULCC dynamics and spatial reconfiguration across nine classes (grassland, shrubland, wetlands, forestland, waterbodies, farmed land, built-up land, bare land, and mines/quarries) in the C5 Secondary Drainage Region of South Africa over the three periods 1990–2014, 2014–2022, and 1990–2022. Using the South African National Land Cover datasets and the TerrSet liberaGIS v20.03 Land Change Modeller, this research applied post-classification comparison, transition matrices, asymmetric gain–loss metrics, and patch-based landscape analysis to quantify the magnitude, direction, source–sink dynamics, and spatial reconfiguration of LULCC. Results showed that between 1990 and 2014, Shrubland expanded markedly (+49.1%), primarily at the expense of Grassland, Wetlands, and Bare land, indicating bush encroachment and hydrological stress. From 2014 to 2022, the trend reversed as Grassland increased substantially (+261.2%) while Shrubland declined sharply (−99.3%). Forestland also regenerated extensively (+186%) along riparian corridors, and Waterbodies expanded more than fivefold (+384.6 km
2). Over the long period between 1990 and 2022, Built-up land (+30.6%), Cultivated land (+16%), Forestland (+140%), Grassland (+94.4%), and Waterbodies (+25.6%) increased, while Bare land (−58.1%), Mines and Quarries (−56.1%), Shrubland (−98.9%), and Wetlands (−82.5%) decreased. Asymmetric analysis revealed strongly directional transitions, with early Grassland-to-Shrubland conversion likely driven by grazing pressure, fire suppression, and climate variability, followed by a later Shrubland-to-Grassland reversal consistent with fire, herbivory, and ecotonal climate sensitivity. LULC dynamics in the C5 catchment show class-specific spatial reconfiguration, declining landscape diversity (SHDI 1.3 → 0.9; SIDI 0.7 → 0.43), and patch metrics indicating urban and cultivated fragmentation, shrubland loss, and grassland consolidation. Based on these quantified trajectories, we recommend targeted catchment-scale land management, shrubland restoration, and monitoring of anthropogenic hotspots to support ecosystem services, hydrological stability, and sustainable land use in ecotonal regions.
Full article