Heavy Metal Contamination in Surface Sediments of Wanfeng Lake, Southwest China: Spatial Distribution Patterns and Ecological Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Laboratory Analysis
2.2. Index of Geo-Accumulation Method
2.3. Potential Ecological Risk Index Method
2.4. Cluster Analysis
3. Results
3.1. Contents and Spatial Distribution of Heavy Metals in Surface Sediments
3.2. Risk Assessment of Heavy Metals in Surface Sediments
3.3. Correlation and Source Analysis of Heavy Metals
4. Discussion
Nearby Lake Reservoirs | Geographic Location | Average Concentrations of Heavy Metal (mg-kg−1) | Data Source | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Hg | As | Cu | Pb | Cd | Cr | Ni | Zn | |||
This study | Southwest China (Guizhou) | 0.06 | 1.86 | 10.34 | 11.55 | 0.10 | 9.28 | 5.11 | 31.72 | |
Weining Caohai | Southwest China (Guizhou) | 0.46 | 21.81 | 19.75 | 41.27 | 9.74 | 49.81 | - | 307.00 | [33] |
Red Maple Lake | Southwest China (Guizhou) | 0.59 | 34.90 | 90.00 | 43.50 | 1.50 | - | - | 125.00 | [34] |
Lake Hundred Flowers | Southwest China (Guizhou) | 0.45 | 26.23 | 43.16 | 27.84 | 0.61 | 76.38 | - | - | [35] |
Lake Aha | Southwest China (Guizhou) | - | 28.74 | 107.63 | 40.51 | - | 103.11 | 216.59 | 398.78 | [36] |
Fuxian Lake | Southwest China (Yunnan) | - | - | 74.00 | 75.00 | - | 89.00 | 42.00 | 175.00 | [37] |
Jianhu | Southwest China (Yunnan) | - | - | 46.10 | 56.40 | 0.41 | 144.00 | - | 147.00 | [38] |
Nearby Lake Reservoirs | Geographic Location | Average Concentrations of Heavy Metal (mg-kg−1) | Data Source | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Hg | As | Cu | Pb | Cd | Cr | Ni | Zn | |||
Dongting Lake | Central China (Hunan) | 0.157 | 29.71 | 47.48 | 60.99 | 4.65 | 88.29 | - | 185.25 | [14] |
Erhai | Southwest China (Yunnan) | 0.167 | 26.9 | 63.1 | 47.4 | 1.10 | 103.8 | 52.2 | 109 | [37] |
Taihu | Eastern China (Jiangsu) | 0.08 | 13.77 | 34.20 | 36.36 | 0.42 | 1.85 | 43.75 | 116.40 | [39] |
East Campsite River | Eastern China (Zhejiang) | - | 48.49 | 47.87 | 41.73 | 1.08 | 67.88 | 39.18 | 200.62 | [40] |
Hefei drinking water source | Central China (Anhui) | 0.098 | 24.41 | 21.68 | 26.40 | 0.258 | 45.66 | 25.26 | 61.35 | [41] |
Lake Townsend | Central China (Hubei) | 0.17 | 12.88 | 51.28 | 41.60 | 0.66 | 85.28 | 40.49 | 145.01 | [42] |
Houguan Lake | Central China (Hubei) | 0.393 | 30.0 | 38.6 | 39.3 | 2.68 | 76.3 | - | 90.7 | [43] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
S.D. | Standard deviation |
CV | Coefficients of variation |
BSX | The background value of soil in Xinyi |
ASC | Average sediment value of lakes in China |
ASSC | Average value of sediment in the southern China water system. |
References
- Qin, Y.; Tao, Y. Pollution status of heavy metals and metalloids in Chinese lakes: Distribution, bioaccumulation and risk assessment. Ecotoxicol. Environ. Saf. 2022, 248, 12. [Google Scholar] [CrossRef]
- Pekey, H. The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar. Pollut. Bull. 2006, 52, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.T.; Rahman, M.M.; Bhuiyan, T.; Jolly, Y.N.; Akter, S.; Yu, J.; Arai, T.; Paray, B.A.; Hossain, M.B. Holistic risk assessment of heavy metal contamination in coastal zones under diverse anthropogenic pressures in a developing nation. J. Environ. Chem. Eng. 2025, 13, 116288. [Google Scholar] [CrossRef]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ. Pollut. 2016, 219, 1077–1091. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Y.; Li, Q.; Liu, X.; Cao, Y.; He, L. Distribution Characteristics, Pollution Assessment and Source Analysis of Heavy Metals in a Drinking Water Source Area. Environ. Chem. 2022, 41, 2276–2288. [Google Scholar]
- Li, L.; Li, Q.; Chen, J.; Wang, J.; Jiao, S.; Chen, F. Temporal and spatial distribution of phytoplankton functional groups and role of environment factors in a deep subtropical reservoir. J. Oceanol. Limnol. 2018, 36, 761–771. [Google Scholar] [CrossRef]
- Xuan, C. Research on the Holistic Governance of Water Pollution in Wanfeng Lake. Master’s Thesis, Yunnan Normal University, Kunming, China, 2019. [Google Scholar]
- Yang, D. Analysis and Risk Assessment of Heavy Metals in the Aquatic in Wanfeng Lake. Master’s Thesis, Guizhou University, Guiyang, China, 2021. [Google Scholar]
- Liu, Y.; Xu, Q.; Sun, J. Eutrophication Analysis on Wanfeng Lake and Its Countermeasures. Guizhou Agric. Sci. 2007, 5, 92–94. [Google Scholar]
- Yang, Y.; Huang, W.Y.; Cheng, X. Pollution Status and Risk Assessment of Mercury in Water and Sediments of Wanfeng Lake. Environ. Prot. Technol. 2015, 21, 19–23. [Google Scholar]
- Zhang, H.; Cui, J.; Xiong, Y.; Li, G.; Du, C.; Zhang, L. Microbial Response and the Crucial Function of Predominant Phyla in Sedum alfredii-Mediated Remediation of High Concentration of Multiple Heavy Metal Soils. Environ. Pollut. 2025, 374, 126211. [Google Scholar] [CrossRef]
- Safadoust, A.; Khaleghi, S.; Kolahchi, Z. Environmental risks of heavy metals in railway soils: Challenges to ecosystem management. Sci. Total Environ. 2025, 974, 179217. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Song, N.; Wang, Y.; Yu, J.; He, L.; Yang, R.; Yang, L.; He, D. Assessment of health risk and identification of pollution sources of heavy metals in water in Chongqing’s wastewater treatment plants based on ICP-MS. Environ. Pollut. 2025, 373, 126193. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Huang, J.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Yu, F.; Wang, J.; Wang, R.; Wang, Y.; Ning, M.; Zhang, Y.; Su, L.M.; Dong, J.X. Source Analysis and Ecological Risk Assessment of Heavy Metals in the Arable Soil at the Geological High Background, Based on the Township Scale. Huan Jing Ke Xue = Huanjing Kexue 2023, 44, 2838–2848. [Google Scholar] [CrossRef]
- Liu, X.; Dadzie, A.A.; Yuan, L.; Xing, S.; Zhou, X.; Xiao, S. Analysis and potential ecological risk assessment of heavy metals in surface sediments of the freshwater ecosystem in Zhenjiang City, China. SN Appl. Sci. 2022, 4, 258. [Google Scholar] [CrossRef]
- Deng, W.; Mo, Q.; Wei, Z.; Guo, Y.; Liu, J.; Xue, W.; Liu, Y.; Zeng, Z.; Su, Y.; Lu, S. Biological remediation mechanism and applications of Rhodotorula mucilaginosa for heavy metal pollution. Environ. Technol. Innov. 2025, 38, 104179. [Google Scholar] [CrossRef]
- Falciani, R.; Novaro, E.; Marchesini, M.; Gucciardi, M. Multi-element analysis of soil and sediment by ICP-MS after a microwave assisted digestion method. J. Anal. At. Spectrom. 2000, 15, 561–565. [Google Scholar] [CrossRef]
- Jin, L.; Ding, L.; Zhang, Y.; Li, T.; Liu, Q. Profiling heavy metals distribution in surface sediments from the perspective of coastal industrial structure and their impacts on bacterial communities. Ecotoxicol. Environ. Saf. 2025, 294, 118098. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Cheng, H.; Li, M.; Zhao, C.; Yang, K.; Li, K.; Peng, M.; Yang, Z.F.; Liu, F.; Liu, Y.G.; Bai, R.J.; et al. Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. J. Geochem. Explor. 2015, 157, 15–26. [Google Scholar] [CrossRef]
- Chen, M.; Cai, Q.; Xu, H.; Zhao, L.; Zhao, Y. Research Progress of Risk Assessment of Heavy Metals Pollution in Water Body Sediments. Ecol. Environ. Sci. 2015, 24, 1069–1074. [Google Scholar] [CrossRef]
- Xu, Z.; Ni, S.; Tuo, X.; Zhang, C. Calculation of Heavy Metals’Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar] [CrossRef]
- Ding, T.; Li, Q.; Du, S.; Liu, Y.; Zhang, Y.; Zhang, J.; Wang, Y.; He, L. Pollution characteristics and ecological risk assessment of heavy metals in Shaying River Basin. Environ. Chem. 2019, 38, 2386–2401. [Google Scholar]
- He, S.; Chen, M.; Liu, Y.; Ren, M.; Wang, Y.; Yuan, Y.; Yang, Q. Trace Elements and Their Environmental Problems within the Surface Loose Sediments in the MajorCities of Guizhou Province. Guizhou Geol. 2005, 3, 5–13. [Google Scholar]
- Chen, Z.; Xie, X.; Pan, H.; Yang, R.; Shang, Y. Abundance of elements in stream sediment in South China. Earth Sci. Front. 2011, 18, 289–295. [Google Scholar]
- Komissarov, M.; Ogura, S.I. Siltation and radiocesium pollution of small lakes in different catchment types far from the Fukushima Daiichi nuclear power plant accident site. Int. Soil Water Conserv. Res. 2020, 8, 56–65. [Google Scholar] [CrossRef]
- Vezzoli, G.; Ghielmi, G.; Mondaca, G.; Resentini, A.; Villarroel, E.K.; Padoan, M.; Gentile, P. Quantifying modern erosion rates and river-sediment contamination in the Bolivian Andes. J. S. Am. Earth Sci. 2013, 45, 42–55. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, D.; Dionysiou, D.D.; Sorial, G.A.; Timberlake, D. Sources and remediation for mercury contamination in aquatic systems—A literature review. Environ. Pollut. 2004, 131, 323–336. [Google Scholar] [CrossRef]
- Asghari, F.; Salavati, M.; Asiabar, S.H.; Shariati, F. Geochemical and environmental assessment of river sediments in the East of Gilan province (case study: Otaghvarrud, Shalmanrud, and Polrud rivers), Northern Iran. Toxin Rev. 2023, 42, 681–700. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, Q.; Wang, W.; Wang, X.; Jia, J.; Cui, B.; Liu, X. Arsenic and heavy metals pollution along a salinity gradient in drained coastal wetland soils: Depth distributions, sources and toxic risks. Ecol. Indic. 2019, 96, 91–98. [Google Scholar] [CrossRef]
- Lin, S.; Liu, X.; Zhang, Z.; Xiao, Z.; Zhang, Q. Heavy Metal Pollution Characteristics and Source Apportionment in Overlying Deposits of Caohai Lake, Guizhou Province. J. Agro-Environ. Sci. 2021, 40, 390–399. [Google Scholar]
- Tian, L.; Hu, J.; Qin, F.; Huang, X.; Liu, F.; Luo, G.; Jin, M. Geochemical Characteristics and Risk Assessment of Heavy Metals in Sediments from Hongfeng Lake. Environ. Chem. 2011, 30, 1590–1598. [Google Scholar]
- Wu, B.B.; Wang, G.Q.; Wu, J.; Fu, Q.; Liu, C.M. Sources of Heavy Metals in Surface Sediments and an Ecological Risk Assessment from Two Adjacent Plateau Reservoirs. PLoS ONE 2014, 9, e102101. [Google Scholar] [CrossRef]
- Kang, T.; Song, L.; Zeng, X.; Huang, Y.; Yang, J.; Teng, Y. Iron and Manganese Cycling and Vertical Distribution of Heavy Metals in Sediments of Aha Lake and Hongfeng Lake. Chin. J. Ecol. 2018, 37, 751–762. [Google Scholar] [CrossRef]
- Yan, T.; Liu, E.; Zhang, E.; Li, Y.; Shen, J. The Spatio-temporal Variations of Heavy Metals in the Sediment of Lake Fuxian and the Contamination Assessment. J. Lake Sci. 2016, 28, 50–58. [Google Scholar]
- Li, B.; Wang, H.; Yu, Q.G.; Wei, F.; Zhang, Q. Ecological Assessment of Heavy Metals in Sediments from Jianhu Lake in Yunnan Province, China. Pol. J. Environ. Stud. 2020, 29, 4139–4150. [Google Scholar] [CrossRef]
- Yang, J.W.; Sun, F.H.; Su, H.L.; Tao, Y.R.; Chang, H. Multiple Risk Assessment of Heavy Metals in Surface Water and Sediment in Taihu Lake, China. Int. J. Environ. Res. Public Health 2022, 19, 13120. [Google Scholar] [CrossRef]
- Shi, Y.; Li, G.; Wu, A.; Ni, C.; Zhu, C.; Jin, Z. Ecological Risk Assessment and Source Identification of Heavy metals in Surface Sediments of East Tiaoxi River. Ecol. Sci. 2021, 40, 67–74. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, H.; Ye, B.; Yuan, Z.; Chu, Z.; Xing, T.; Yang, F. Ecological Risk Assessment and Source Apportionment of Heavy Metals in Sediments of DrinkingWater Sources in Hefei City. J. Shenyang Univ. (Nat. Sci.) 2022, 34, 90–99. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Su, Y.; Shi, M.; Hu, T.; Mao, Y.; Liu, L.; Zhang, Y.; Xing, X.; Qi, S. Pollution and Potential Ecological Risk Assessment of Heavy Metals in Surface Sediments of Tangxun Lake. Environ. Sci. 2022, 43, 859–866. [Google Scholar] [CrossRef]
- Rao, K.; Tang, T.; Zhang, X.; Wang, M.; Liu, J.F.; Wu, B.; Wang, P.; Ma, Y.L. Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere 2021, 282, 131041. [Google Scholar] [CrossRef] [PubMed]
- Zoller, W.H.; Gladney, E.S.; Duce, R.A. Atmospheric concentrations and sources of trace metals at the South pole. Science 1974, 183, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Dang, X. Review of Soil Heavy Metal Cadmium Pollution and Remediation Technology. J. Anhui Agric. Sci. 2015, 43, 92–94. [Google Scholar] [CrossRef]
- Tang, Y. Application of Hakanson lndex Method Assessing Ecological Risk of Heavy Metal from Sediments in the Water. Environ. Sci. Surv. 2008, 27, 66–68+72. [Google Scholar]
- Duan, Z.; Cai, X.; Wang, J.; An, J. Heavy Metal Pollution of Sediments of Plateau Lakes in China. Environ. Sci. Technol. 2017, 40, 293–298. [Google Scholar]
- Wang, C.; Hu, J.; Zhang, Y.; Di, Y.; Wu, X. Spatial distribution characteristic, source apportionment, and risk assessment of heavy metals in the soil of an urban riparian zone. Ecotox. Environ. Saf. 2025, 298, 118271. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Zhang, K.; Liu, Z.; He, Y.; Wang, H. Spatial distribution and risk assessment of heavy metal pollution at a typical abandoned smelting site. Results Eng. 2025, 26, 105281. [Google Scholar] [CrossRef]
- Horvat, M.; Nolde, N.; Fajon, V.; Jereb, V.; Logar, M.; Lojen, S.; Jacimovic, R.; Falnoga, I.; Liya, Q.; Faganeli, J.; et al. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci. Total Environ. 2003, 304, 231–256. [Google Scholar] [CrossRef]
- Zhu, D.; Zou, S.; Zhou, C.; Lu, H.; Xie, H. Hg and As Contents of Soil-crop System in Different Tillage Types and Ecological Health Risk Assessment. Geol. China 2021, 48, 708–720. [Google Scholar]
- Qiu, H.; Li, J.; Guo, X.; Xu, Y.; Cai, B. Pollution characteristics of mercury in particulate matters around a coal-fired power plant in Guizhou Province in spring. Chin. J. Ecol. 2018, 37, 1545–1549. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.D. Accumulation of cadmium derived from fertilisers in New Zealand soils. Sci. Total Environ. 1997, 208, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Teng, T.; Chang, T. Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landsc. Urban Plan. 2002, 62, 19–35. [Google Scholar] [CrossRef]
Igeo Value | ≤0 | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] | >5 |
---|---|---|---|---|---|---|---|
Igeo class | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Pollution level | Clean | Mild | Moderate | Moderate to heavy | Heavy | Serious | Extremely heavy |
Potential Ecological Risk of Individual Elements | RI | Comprehensive Potential Ecological RISK | |
---|---|---|---|
< 40 | Low | RI < 150 | Low |
40 ≤ < 80 | Moderate | 150 ≤ RI < 300 | Moderate |
80 ≤ < 160 | Considerable | 300 ≤ RI < 600 | High |
160 ≤ < 320 | High | RI ≥ 600 | Serious |
≥ 320 | Very high |
Hg | As | Cu | Pb | Cd | Cr | Ni | Zn | |
---|---|---|---|---|---|---|---|---|
Ave. | 0.06 | 1.86 | 10.34 | 11.55 | 0.1 | 9.28 | 5.11 | 31.72 |
Max. | 0.15 | 4.03 | 23.85 | 38.75 | 0.16 | 12.41 | 8.3 | 75.2 |
Min. | 0.02 | 0.97 | 3.53 | 2.93 | 0.03 | 5.1 | 2.6 | 15.39 |
S.D. | 0.04 | 0.82 | 6.97 | 8.99 | 0.04 | 2.22 | 1.43 | 15.68 |
CV | 0.69 | 0.44 | 0.67 | 0.78 | 0.43 | 0.24 | 0.28 | 0.49 |
BSX [26] | 0.1437 | 58.91 | 60.52 | 58.64 | 0.5459 | 138.2 | 67.19 | 134.2 |
ASC [22] | 0.053 | 12.1 | 31.7 | 31 | 0.194 | 85 | 36.8 | 88 |
ASSC [27] | 0.075 | 13.1 | 25 | 32.3 | 0.23 | 67 | 29 | 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.; Zhou, M.; Leng, Y.; Zou, X.; Dai, Y.; Ke, C.; Xiong, W.; Li, Z. Heavy Metal Contamination in Surface Sediments of Wanfeng Lake, Southwest China: Spatial Distribution Patterns and Ecological Risk Assessment. Earth 2025, 6, 51. https://doi.org/10.3390/earth6020051
Chang F, Zhou M, Leng Y, Zou X, Dai Y, Ke C, Xiong W, Li Z. Heavy Metal Contamination in Surface Sediments of Wanfeng Lake, Southwest China: Spatial Distribution Patterns and Ecological Risk Assessment. Earth. 2025; 6(2):51. https://doi.org/10.3390/earth6020051
Chicago/Turabian StyleChang, Fengyi, Meng Zhou, Yifei Leng, Xi Zou, Yihan Dai, Chao Ke, Wen Xiong, and Zhu Li. 2025. "Heavy Metal Contamination in Surface Sediments of Wanfeng Lake, Southwest China: Spatial Distribution Patterns and Ecological Risk Assessment" Earth 6, no. 2: 51. https://doi.org/10.3390/earth6020051
APA StyleChang, F., Zhou, M., Leng, Y., Zou, X., Dai, Y., Ke, C., Xiong, W., & Li, Z. (2025). Heavy Metal Contamination in Surface Sediments of Wanfeng Lake, Southwest China: Spatial Distribution Patterns and Ecological Risk Assessment. Earth, 6(2), 51. https://doi.org/10.3390/earth6020051