Rapid Change in the Greenland Ice Sheet and Implications for Planetary Sustainability: A Qualitative Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods and Materials Used for This Review
2.2. Limitations of This Study
3. Mass Loss Trends from the GrIS: A Synopsis
3.1. Overall Trends of Mass Loss
3.2. Mechanisms and Spatial Patterns
3.3. Sea Ice: A Brief Note
4. Ecological and Social Implications: Emerging Trends
4.1. Ecological Implications of Rapid Destabilization of the GrIS
- (1)
- Rapid and intensifying mass loss from the ice sheet is leading to intensive changes in the geomorphological processes that will increasingly modify rivers, lakes, and coastal environments. Freshwater environments will also witness significant changes in chemical composition and turbidity with disruptive implications for their resident biota. Cold-adapted species and ecological communities will be disproportionately affected.
- (2)
- Decline in the ice sheet volume is causing a greening of the landscape through intensified shrub growth, and vegetation response will further alter snowpack conditions and local soil properties. Plant-pollinator dynamics are being affected and will likely undergo significant changes during the coming decades.
- (3)
- There is evidence of loss of ecological productivity of land-terminating glaciers; and marine-terminating glaciers will probably also witness a similar trend due to progressive thinning of the ice. These changes, in turn, will lead to cascading effects on terrestrial and nearshore ecosystems.
- (4)
- Cascading changes to the marine ecosystems will also progress due to the loss of sea ice and warming of the ocean. There is evidence that the marine food web is undergoing significant structural and functional changes in the Arctic, and there is a strong likelihood that these changes will impoverish marine ecosystems over time.
- (5)
- The ongoing and intensifying decline of the GrIS has significant ramifications for the uniquely cold-adapted biota of the Arctic, which includes the microbiota as well as the better-known megafauna. Arctic ecosystems will likely witness structural, functional, and ecosystem service-level disruptions that may lead to changes not witnessed during the entire Holocene occurring within several decades to centuries.
4.2. Social Repercussions: A Few Pointers
4.3. New Research Priorities for a Qualitative Assessment of a Rapidly Changing GrIS
- (1)
- A crucial question that needs even more attention is how and to what extent the cold-adapted ecosystems that have evolved in synchrony with the GrIS would fare under the ongoing and projected warming scenarios. This would require ground-truthing based on observations at the actual ecosystem level, in addition to predictive modeling. Particular attention should be provided to the multiple connections across trophic levels and the connectivities/assemblages between biota and abiotic elements such as geomorphic processes.
- (2)
- A detailed, fuller, and more participatory research agenda should prioritize Inuit lifeworlds/traditional knowledge and the synergy between various biotic and abiotic processes and the Inuit way of life. A vital part of the Inuit lifeworld and knowledge is in danger of being lost as the degeneration of the cryosphere progresses. Rather than preaching adaptive solutions and new opportunities, we must understand what is at stake, i.e., what the human society stands to lose as these connections are fragmented and lost.
- (3)
- How would changes in the GrIS be felt across larger spatiotemporal scales—in particular, in the ecological webs that span planetary scales? Once more, this task also requires attention to multiple connections between biota and abiotic processes, including mechanisms of interaction in the planetary ocean.
- (4)
- How can the question of ecological sustainability for Greenland and the Arctic in general be addressed in the context of a rapidly changing Earth, and what could be the lessons for the sustainability of biophysical and social systems at the planetary level?
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Briner, J.P.; Cuzzone, J.K.; Badgeley, J.A.; Young, N.E.; Steig, E.J.; Morlighem, M.; Schlegel, N.-J.; Hakim, G.J.; Schaefer, J.M.; Johnson, J.V.; et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 2020, 586, 70–74. [Google Scholar] [CrossRef]
- Box, J.E.; Hubbard, A.; Bahr, D.B.; Colgan, W.T.; Fettweis, X.; Mankoff, K.D.; Wehrlé, A.; Noël, B.; Van den Broeke, M.R.; Wouters, B.; et al. Greenland ice sheet climate disequilibrium and committed sea-level rise. Nat. Clim. Change 2022, 12, 808–813. [Google Scholar] [CrossRef]
- Bochow, N.; Poltronieri, A.; Robinson, A.; Montoya, M.; Rypdal, M.; Boers, N. Overshooting the critical threshold for the Greenland ice sheet. Nature 2023, 622, 528–536. [Google Scholar] [CrossRef]
- Van den Broeke, M.; Box, J.; Fettweis, X.; Hanna, E.; Noël, B.; Tedesco, M.; Van As, D.; Van de Berg, W.J.; Van Kampenhout, L. Greenland ice sheet surface mass loss: Recent developments in observation and modeling. Curr. Clim. Change Rep. 2017, 3, 345–356. [Google Scholar] [CrossRef]
- Machguth, H.; Thomsen, H.H.; Weidick, A.; Ahlstrøm, A.P.; Abermann, J.; Andersen, M.L.; Andersen, S.B.; Bjørk, A.A.; Box, J.E.; Braithwaite, R.J.; et al. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. J. Glaciol. 2016, 62, 861–887. [Google Scholar] [CrossRef]
- Paxman, G.J.G. Patterns of valley incision beneath the Greenland Ice Sheet revealed using automated mapping and classification. Geomorphology 2023, 436, 108778. [Google Scholar] [CrossRef]
- Moon, T.A.; Tedesco, M.; Box, J.E.; Cappelen, J.; Fausto, R.S.; Fettweis, X.; Korsgaard, N.J.; Loomis, B.D.; Mankoff, K.D.; Mote, T.L.; et al. Greenland Ice Sheet (Arctic Report Card 2021). 2021. Available online: https://arctic.noaa.gov/report-card/report-card-2021/greenland-ice-sheet-2/ (accessed on 15 March 2025).
- Morlighem, M.; Williams, C.N.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.A.; Dorschel, B.; et al. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland from Multibeam Echo Sounding Combined with Mass Conservation. Geophys. Res. Lett. 2017, 44, 11051–11061. [Google Scholar] [CrossRef]
- Golledge, N.R.; Keller, E.D.; Gomez, N.; Naughten, K.A.; Bernales, J.; Trusel, L.D.; Edwards, T.L. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 2019, 566, 65–72. [Google Scholar] [CrossRef]
- Rignot, E.; Box, J.E.; Burgess, E.; Hanna, E. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett. 2008, 35, L20501. [Google Scholar] [CrossRef]
- Bierman, P. When the Ice is Gone: What a Greenland Ice Core Reveals About Earth’s Tumultuous History and Perilous Future; W.W. Norton & Co.: New York, NY, USA, 2024. [Google Scholar]
- Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 2021, 11, 680–688. [Google Scholar] [CrossRef]
- Sinet, S.; Von der Heydt, A.S.; Dijkstra, H.A. AMOC Stabilization Under the Interaction with Tipping Polar Ice Sheets. Geophys. Res. Lett. 2023, 50, e2022GL100305. [Google Scholar] [CrossRef]
- Li, Z.-L.; Mu, C.-C.; Chen, X.; Wang, X.-Y.; Dong, W.-W.; Jia, L.; Mu, M.; Streletskaia, I.; Grebenets, V.; Sokratov, S.; et al. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002–2017. Adv. Clim. Change Res. 2021, 12, 475–481. [Google Scholar] [CrossRef]
- Wrona, F.J.; Johansson, M.; Culp, J.M.; Jenkins, A.; Mård, J.; Myers-Smith, I.H.; Prowse, T.D.; Vincent, W.F.; Wookey, P.A. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. JGR Biogeosci. 2016, 121, 650–674. [Google Scholar] [CrossRef]
- Hirawake, T.; Uchida, M.; Abe, H.; Alabia, I.D.; Hoshino, T.; Masumoto, S.; Mori, A.S.; Nishioka, J.; Nishizawa, B.; Ooki, A.; et al. Response of Arctic biodiversity and ecosystem to environmental changes: Findings from the ArCS project. Polar Sci. 2021, 27, 100533. [Google Scholar] [CrossRef]
- Minor, K.; Jensen, M.L.; Hamilton, L.; Bendixen, M.; Lassen, D.D.; Rosing, M.T. Experience exceeds awareness of anthropogenic climate change in Greenland. Nat. Clim. Change 2023, 13, 661–670. [Google Scholar] [CrossRef]
- Nuttall, M. Under the Great Ice: Climate, Society and Subsurface Politics in Greenland; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Grimes, M.; Carrivick, J.L.; Smith, M.W. Spatial heterogeneity, terminus environment effects and acceleration in mass loss of glaciers and ice caps across Greenland. Glob. Planet. Change 2024, 239, 104505. [Google Scholar] [CrossRef]
- Burpee, B.T.; Anderson, D.; Saros, J.E. Assessing ecological effects of glacial meltwater on lakes fed by the Greenland Ice Sheet: The role of nutrient subsidies and turbidity. Arct. Antarct. Alp. Res 2018, 50, e1420953. [Google Scholar] [CrossRef]
- Baztan, J.; Cordier, M.; Huctin, J.-M.; Zhu, Z.; Vanderlinden, J.-P. Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities. Polar Sci. 2017, 13, 100–108. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.-W.; Zhang, J.-L. A new look at roles of the cryosphere in sustainable development. Adv. Clim. Change Res. 2019, 10, 124–131. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Marnie, C.; Colquhoun, H. Scoping reviews: Reinforcing and advancing the methodology and application. Syst. Rev. 2021, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Badgeley, J.; Steig, E.J.; Hakim, G.J.; Fudge, T.J. Greenland temperature and precipitation over the last 20000 years using data assimilation. Clim. Past. 2020, 16, 1325–1346. [Google Scholar] [CrossRef]
- Nielsen, L.T.; Aðalgeirsdóttir, G.; Gkinis, V.; Nuterman, R.; Hvidberg, C.S. The effect of a Holocene climatic optimum on the evolution of the Greenland ice sheet during the last 10 kyr. J. Glaciol. 2018, 64, 477–488. [Google Scholar] [CrossRef]
- Lesnek, A.J.; Briner, J.P.; Young, N.E.; Cuzzone, J.K. Maximum Southwest Greenland Ice Sheet Recession in the Early Holocene. Geophys. Res. Lett. 2020, 47, e2019GL083164. [Google Scholar] [CrossRef]
- NASA. Greenland Ice Mass Loss 2002–2023. 2024. Available online: https://svs.gsfc.nasa.gov/31156 (accessed on 15 March 2025).
- IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate. 2019. Available online: https://www.ipcc.ch/srocc/ (accessed on 15 March 2025).
- Serezze, M.C.; Francis, J.A. The Arctic Amplification debate. Clim. Change 2006, 76, 241–264. [Google Scholar] [CrossRef]
- Miller, G.H.; Alley, R.B.; Brigham-Grette, J.; Fitzpatrick, J.J.; Polyak, L.; Serezze, M.C.; White, J.W.C. Arctic amplification: Can the past constrain the future? Quat. Sci. Rev. 2010, 29, 1779–1790. [Google Scholar] [CrossRef]
- Serezze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Hanna, E.; Mernild, S.H.; Cappelen, J.; Steffen, K. Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett. 2012, 7, 045404. [Google Scholar] [CrossRef]
- Rignot, E.; Velicogna, I.; Van den Broeke, M.R.; Monaghan, A.; Lenaerts, J.T.M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 2011, 38, L05503. [Google Scholar] [CrossRef]
- Nick, F.M.; Vieli, A.; Andersen, M.L.; Joughin, I.; Payne, A.; Edwards, T.L.; Pattyn, F.; Van de Wal, R.S.W. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 2013, 497, 235–238. [Google Scholar] [CrossRef]
- Aschwanden, A.; Fahnestock, M.A.; Truffer, M.; Brinkerhoff, D.J.; Hock, R.; Khroulev, C.; Mottram, R.; Khan, S.A. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 2019, 5, eaav9396. [Google Scholar] [CrossRef] [PubMed]
- Hofer, S.; Lang, C.; Amory, C.; Kittel, C.; Delhasse, A.; Tedstoen, A.; Fettweis, X. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nat. Commun. 2020, 11, 6289. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Meng, Y.; Lai, C.Y.; Culberg, R.; Shahin, M.G.; Stearns, L.A.; Burton, J.C.; Nissanka, K. Seasonal changes of mélange thickness coincide with Greenland calving dynamics. Nat. Commun. 2025, 16, 573. [Google Scholar] [CrossRef]
- Wilson, N.; Straneo, F.; Heimbach, P. Satellite-derived submarine melt rates and mass balance (2011–2015) for Greenland’s largest remaining ice tongues. Cryosphere 2017, 11, 2773–2782. [Google Scholar] [CrossRef]
- Wood, M.; Rignot, E.; Fenty, I.; An, L.; Bjørk, A.; Van den Broeke, M.; Cai, C.; Kane, E.; Menemenlis, D.; Millan, R.; et al. Ocean forcing drives glacier retreat in Greenland. Sci. Adv. 2021, 7, eaba7282. [Google Scholar] [CrossRef]
- Wekerle, C.; McPherson, R.; Von Appen, W.-J.; Wang, Q.; Timmermann, R.; Scholz, P.; Danilov, S.; Shu, Q.; Kanzow, T. Atlantic Water warming increases melt below Northeast Greenland’s last floating tongue. Nat. Commun. 2024, 15, 1336. [Google Scholar] [CrossRef] [PubMed]
- Culberg, R.; Schroeder, D.M.; Chu, W. Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun. 2021, 12, 2336. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Hall, D.K.; Mote, T.L.; Tedesco, M.; Albert, M.R.; Keegan, K.; Shuman, C.A.; DiGirolamo, N.E.; Neumann, G. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 2012, 39, L20502. [Google Scholar] [CrossRef]
- Ryan, J.C.; Smith, L.C.; Van As, D.; Cooley, S.W.; Cooper, M.G.; Pitcher, L.H.; Hubbard, A. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv. 2019, 5, eaav3738. [Google Scholar] [CrossRef]
- Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow. Science 2002, 297, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.; Wadham, J.; Lis, G.; Cowton, T.; Sole, A.; Bartholomew, I.; Telling, J.; Nienow, P.; Bagshaw, E.B.; Mair, D.; et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 2013, 6, 195–198. [Google Scholar] [CrossRef]
- Hoffman, M.; Andrews, L.; Price, S.; Catania, G.A.; Neumann, T.A.; Lüthi, M.P.; Gulley, J.; Ryser, C.; Hawley, R.L.; Morriss, B. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed. Nat. Commun. 2016, 7, 13903. [Google Scholar] [CrossRef] [PubMed]
- McGrath, D.; Colgan, W.; Steffen, K.; Lauffenberger, P.; Balog, J. Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland ice sheet. J. Glaciol. 2017, 57, 954–964. [Google Scholar] [CrossRef]
- Chandler, D.M.; Hubbard, A. Widespread partial-depth hydrofractures in ice sheets driven by supraglacial streams. Nat. Geosci. 2023, 16, 605–611. [Google Scholar] [CrossRef]
- Chudley, T.R.; Howat, I.M.; King, M.D.; MacKie, E.J. Increased crevassing across accelerating Greenland Ice Sheet margins. Nat. Geosci. 2025, 18, 148–153. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, K.; Lu, X.; Li, Y.; Gao, S.; Mao, W.; Li, M. Response of supraglacial rivers and lakes to ice flow and surface melt on the northeast Greenland ice sheet during the 2017 melt season. J. Hydrol. 2021, 602, 126750. [Google Scholar] [CrossRef]
- NASA. Greenland Ice Loss 2003–2013. Available online: https://svs.gsfc.nasa.gov/30478/ (accessed on 28 May 2025).
- Van de Wal, R.S.W.; Boot, W.; Van den Broeke, M.R.; Smeets, C.J.P.P.; Heijmer, C.H.; Donker, J.J.A.; Oerlemans, J. Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet. Science 2008, 321, 111–113. [Google Scholar] [CrossRef]
- Joughin, I.; Das, S.B.; King, M.A.; Smith, B.E.; Howat, I.M.; Moon, T. Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. Science 2008, 320, 781–783. [Google Scholar] [CrossRef]
- Van den Broeke, M.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; Van de Berg, W.J.; Van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning recent Greenland mass loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef]
- Khan, S.; Kjær, K.; Bevis, M.; Bamber, J.L.; Wahr, J.; Kjeldsen, K.K.; Bjørk, A.A.; Korsgaard, N.J.; Stearns, L.A.; Van den Boreke, M.R.; et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Clim. Change 2014, 4, 292–299. [Google Scholar] [CrossRef]
- Khan, S.A.; Choi, Y.; Morlighem, M.; Rignot, E.; Helm, V.; Humbert, A.; Mouginot, J.; Millan, R.; Kjær, K.H.; Bjørk, A.A. Extensive inland thinning and speed-up of Northeast Greenland Ice Stream. Nature 2022, 611, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Truffer, M.; Motyka, R.J. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings. Rev. Geophys. 2016, 54, 220–239. [Google Scholar] [CrossRef]
- Humbert, A.; Helm, V.; Neckel, N.; Zeising, O.; Rückamp, M.; Khan, S.A.; Loebel, E.; Brauchle, J.; Stebner, K.; Gross, D.; et al. Precursor of disintegration of Greenland’s largest floating ice tongue. Cryosphere 2023, 17, 2851–2870. [Google Scholar] [CrossRef]
- Millan, R.; Jager, E.; Mouginot, J.; Wood, M.H.; Larsen, S.H.; Mathiot, P.; Jourdain, N.C.; Bjørk, A. Rapid disintegration and weakening of ice shelves in North Greenland. Nat. Commun. 2023, 14, 6914. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Fenty, I.; Khazendar, A.; Morlighem, M.; Buzzi, A.; Padden, J. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science 2015, 350, 1357–1361. [Google Scholar] [CrossRef]
- Hill, E.A.; Carr, J.R.; Stokes, C.R.; Gudmundsson, G.H. Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015. Cryosphere 2018, 12, 3243–3263. [Google Scholar] [CrossRef]
- Rückamp, M.; Neckel, N.; Berger, S.; Humbert, A.; Helm, V. Calving induced speedup of Petermann Glacier. J. Geophys. Res. Earth Surf. 2019, 124, 216–228. [Google Scholar] [CrossRef]
- NASA Climate Science Investigations. The Melting of Jakobshavn Glacier. N.d. Available online: https://www.ces.fau.edu/nasa/impacts/i2-greenland/exp1-jakobshavn.php (accessed on 16 March 2025).
- NASA-JPL. Retreat of Greenland’s Jakobshavn Isbrae Glacier. 2024. Available online: https://www.jpl.nasa.gov/images/pia26117-retreat-of-greenlands-jakobshavn-isbrae-glacier/ (accessed on 16 March 2025).
- Wadhams, P. A Farewell to Ice: A Report from the Arctic; Penguin Random House: London, UK, 2017. [Google Scholar]
- Stroeve, J.C.; Serezze, M.C.; Fetterer, F.; Arbetter, T.; Meier, W.; Maslanik, J.; Knowles, K. Tracking the Arctic’s shrinking ice cover: Another extreme September minimum in 2004. Geophys. Res. Lett. 2005, 32, L04501. [Google Scholar] [CrossRef]
- Eisenman, I.; Wettlaufer, J.S. Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. USA 2009, 106, 28–32. [Google Scholar] [CrossRef]
- Connolly, R.; Connolly, M.; Soon, W. Re-calibration of Arctic sea ice extent datasets using Arctic surface air temperature records. Hydrol. Sci. J. 2015, 62, 1317–1340. [Google Scholar] [CrossRef]
- Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA 2015, 112, 4570–4575. [Google Scholar] [CrossRef]
- Notz, D.; Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 2016, 354, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Boetius, A.; Albrecht, S.; Bakker, K.; Bienhold, C.; Felden, J.; Fernández-Méndez, M.; Hendricks, S.; Katlein, C.; Lalande, C.; Krumpen, T.; et al. Export of Algal Biomass from the Melting Arctic Sea Ice. Science 2013, 339, 1430–1432. [Google Scholar] [CrossRef]
- Müller, M.; Kelder, T.; Palerme, C. Decline of sea-ice in the Greenland Sea intensifies extreme precipitation over Svalbard. Weather Clim. Extrem. 2022, 36, 100437. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. Sea Ice Cover for July 2024. 2024. Available online: https://climate.copernicus.eu/sea-ice-cover-july-2024 (accessed on 16 March 2025).
- Copernicus Climate Change Service. Monthly Climate Bulletin: January 2025: Warmest January and lowest Arctic Sea Ice Extent for the Month. 2025. Available online: https://climate.copernicus.eu/january-2025-warmest-january-and-lowest-arctic-sea-ice-extent-month (accessed on 16 March 2025).
- Overeem, I.; Anderson, R.S.; Wobus, C.W.; Clow, G.D.; Urban, F.E.; Matell, N. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 2011, 38, L17503. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Carr, J.R.; Vieli, A.; Stokes, C. Influence of sea ice decline, atmospheric warming, and glacier width on marine-terminating outlet glacier behavior in northwest Greenland at seasonal to interannual timescales. J. Geophys. Res. Earth Surf. 2013, 118, 1210–1226. [Google Scholar] [CrossRef]
- Bunce, C.; Carr, J.R.; Nienow, P.W.; Ross, N.; Killick, R. Ice front change of marine-terminating outlet glaciers in northwest and southeast Greenland during the 21st century. J. Glaciol. 2018, 64, 523–535. [Google Scholar] [CrossRef]
- Kim, J.H.; Rignot, E.; Holland, D.; Holland, D. Seawater Intrusion at the Grounding Line of Jakobshavn Isbræ, Greenland, From Terrestrial Radar Interferometry. Geophys. Res. Lett. 2024, 51, e2023GL106181. [Google Scholar] [CrossRef]
- Vonk, J.E.; Fritz, M.; Speetjens, N.J.; Babin, M.; Bartsch, A.; Basso, L.S.; Bröder, L.; Göckede, M.; Gustaffson, Ö.; Hugelius, G.; et al. The land–ocean Arctic carbon cycle. Nat. Rev. Earth Environ. 2025, 6, 86–105. [Google Scholar] [CrossRef]
- Bradley-Cook, J.I.; Virginia, R.A. Landscape variation in soil carbon stocks and respiration in an Arctic tundra ecosystem, west Greenland. Arct. Antarct. Alp. Res. 2018, 50, e1420283. [Google Scholar] [CrossRef]
- Nielsen, S.S.; von Arx, G.; Damgaard, C.F.; Abermann, J.; Buchwal, A.; Büntgen, U.; Treier, U.A.; Barfod, A.S.; Normand, D. Xylem Anatomical Trait Variability Provides Insight on the Climate-Growth Relationship of Betula nana in Western Greenland. Arct. Antarct. Alp. Res. 2017, 49, 359–371. [Google Scholar] [CrossRef]
- Prendin, A.L.; Normand, S.; Carrer, M.; Pedersen, N.B.; Mathiesen, H.; Westergaard-Nielsen, A.; Elberling, B.; Treier, U.A.; Hollesen, J. Influences of summer warming and nutrient availability on Salix glauca L. growth in Greenland along an ice to sea gradient. Nat. Sci. Rep. 2022, 12, 3077. [Google Scholar] [CrossRef] [PubMed]
- Grimes, M.; Carrivick, J.L.; Smith, M.W.; Comber, A.J. Land cover changes across Greenland dominated by a doubling of vegetation in three decades. Nat. Sci. Rep. 2024, 14, 3120. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.J.; Bierman, P.R.; Schaefer, J.M.; Dahl-Jensen, D.; Steffensen, J.P.; Corbett, L.B.; Peteet, D.M.; Thomas, E.K.; Steig, E.J.; Rittenour, T.M.; et al. A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc. Natl. Acad. Sci. USA 2021, 118, e2021442118. [Google Scholar] [CrossRef]
- Sommers, A.N.; Otto-Bliesner, B.L.; Lipscomb, W.H. Retreat and Regrowth of the Greenland Ice Sheet During the Last Interglacial as Simulated by the CESM2-CISM2 Coupled Climate–Ice Sheet Model. Paleoceanogr. Paleoclimatology 2021, 36, e2021PA004272. [Google Scholar] [CrossRef]
- Ahlstrøm, A.P.; Petersen, D.; Langen, P.L.; Citterio, M.; Box, J.E. Abrupt shift in the observed runoff from the southwestern Greenland ice sheet. Sci. Adv. 2017, 3, e1701169. [Google Scholar] [CrossRef]
- Robinson, A.; Calov, R.; Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2012, 2, 429–432. [Google Scholar] [CrossRef]
- Jørgensen, L.L.; Logerwell, E.A.; Strelkova, N.; Zakharov, D.; Roy, V.; Nozères, C.; Bluhm, B.A.; Ólafsdóttir, S.H.; Burgos, J.M.; Sørensen, J.; et al. International megabenthic long-term monitoring of a changing arctic ecosystem: Baseline results. Prog. Oceanogr. 2022, 200, 102712. [Google Scholar] [CrossRef]
- Law, A.C.; Nobajas, A.; Sangozalo, R. Heterogeneous changes in the surface area of lakes in the Kangerlussuaq area of southwestern Greenland between 1995 and 2017. Arct. Antarct. Alp. Res. 2018, 50, S100027. [Google Scholar] [CrossRef]
- Harpur, C.; Carrivick, J.L.; Sutherland, J.L.; Mallalieu, J. The emerging importance of ice-marginal lakes across Greenland. Geography 2025, 110, 6–15. [Google Scholar] [CrossRef]
- Bonsoms, J.; Oliva, M.; Alonso-González, E.; Revuelto, G.; López-Moreno, J.I. Impact of climate change on snowpack dynamics in coastal Central-Western Greenland. Sci. Total Environ. 2024, 913, 169616. [Google Scholar] [CrossRef] [PubMed]
- Yde, J.C.; Anderson, N.J.; Post, E.; Saros, J.E.; Telling, J. Environmental change and impacts in the Kangerlussuaq area, West Greenland. Arct. Antarct. Alp. Res. 2018, 50, S100001. [Google Scholar] [CrossRef]
- Poniecka, E.A.; Bagshaw, E.A.; Tranter, M.; Saas, H.; Williamson, C.J.; Anesio, A.M.; Black and Bloom Team. Rapid development of anoxic niches in supraglacial ecosystems. Arct. Antarct. Alp. Res. 2018, 50, S100015. [Google Scholar] [CrossRef]
- Urbanowicz, C.; Virginia, R.A.; Irwin, R.E. Pollen limitation and reproduction of three plant species across a temperature gradient in west Greenland. Arct. Antarct. Alp. Res. 2018, 50, S100022. [Google Scholar] [CrossRef]
- Stuart-Lee, A.E.; Mortensen, J.; Juul-Pedersen, T.; Middelburg, J.J.; Soetaert, K.; Hopwood, M.J.; Engel, A.; Meire, L. Influence of glacier type on bloom phenology in two Southwest Greenland fjords. Estuar. Coast. Shelf Sci. 2023, 284, 108271. [Google Scholar] [CrossRef]
- Meire, L.; Paulsen, M.L.; Meire, P.; Rysgaard, S.; Hopwood, M.J.; Sejr, M.K.; Stuart-Lee, A.; Sabbe, K.; Stock, W.; Mortensen, J. Glacier retreat alters downstream fjord ecosystem structure and function in Greenland. Nat. Geosci. 2023, 16, 671–674. [Google Scholar] [CrossRef]
- Elvin, S.S. The large marine ecosystem approach to assessment and management of polar bears during climate change. Environ. Dev. 2014, 11, 67–83. [Google Scholar] [CrossRef]
- Seppa, H.; Seidenkrantz, M.-S.; Caissie, B.; Fauria, M.M. Polar bear’s range dynamics and survival in the Holocene. Quat. Sci. Rev. 2023, 317, 108277. [Google Scholar] [CrossRef]
- Lennert, A.E. What happens when the ice melts? Belugas, contaminants, ecosystems and human communities in the complexity of global change. Mar. Pollut. Bull. 2016, 107, 7–14. [Google Scholar] [CrossRef] [PubMed]
- MacNeill, M.A.; McMeans, B.C.; Hussey, N.E.; Vecsei, P.; Svavarsson, J.; Kovacs, K.M.; Lydersen, C.; Treble, M.A.; Skomal, G.B.; Ramsey, M.; et al. Biology of the Greenland shark Somniosus microcephalus. J. Fish Biol. 2012, 80, 991–1018. [Google Scholar] [CrossRef] [PubMed]
- Grémillet, D.; Deschamps, S. Ecological impacts of climate change on Arctic marine megafauna. Trends Ecol. Evol. 2023, 38, 773–783. [Google Scholar] [CrossRef]
- Amélineau, F.; Grémillet, D.; Harding, A.M.A.; Walkusz, W.; Choquet, R.; Fort, J. Arctic climate change and pollution impact little auk foraging and fitness across a decade. Nat. Sci. Rep. 2019, 9, 1014. [Google Scholar] [CrossRef]
- Harada, N. Review: Potential catastrophic reduction of sea ice in the western Arctic Ocean: Its impact on biogeochemical cycles and marine ecosystems. Glob. Planet. Change 2016, 136, 1–17. [Google Scholar] [CrossRef]
- Michel, C.; Bluhm, B.; Gallucci, V.; Gaston, A.J.; Gordillo, F.J.L.; Gradinger, R.; Hopcroft, R.; Jensen, N.; Mustonen, T.; Niemi, A.; et al. Biodiversity of Arctic marine ecosystems and responses to climate change. Biodiversity 2012, 13, 200–214. [Google Scholar] [CrossRef]
- Rode, K.D.; Robbins, C.T.; Nelson, L.; Amstrup, S.C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 2015, 13, 138–145. [Google Scholar] [CrossRef]
- Maier, S.R.; Arboe, N.H.; Christiansen, H.; Krawczyk, D.W.; Meire, L.; Mortensen, J.; Planken, K.; Schulz, K.; Van der Kaaden, A.-S.; Vonnahme, T.R.; et al. Arctic benthos in the Anthropocene: Distribution and drivers of epifauna in West Greenland. Sci. Total Environ. 2024, 951, 175001. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, A.; Harper, S.L.; Minor, K.; Hayes, K.; Williams, K.G.; Howard, C. Ecological grief and anxiety: The start of a healthy response to climate change? Lancet Planet. Health 2020, 4, e261–e263. [Google Scholar] [CrossRef]
- Otsuki, M.; Sugiyama, S. Community perspectives inform coastal marine ecosystem research in northwestern Greenland. Polar Sci. 2024, 101112. [Google Scholar] [CrossRef]
- Hayashi, N.; Delaney, A.E. Climate change, community well-being, and consumption: Reconsidering human-environment relationships in Greenland under global change. Polar Sci. 2024, 41, 101102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, A. Rapid Change in the Greenland Ice Sheet and Implications for Planetary Sustainability: A Qualitative Assessment. Earth 2025, 6, 55. https://doi.org/10.3390/earth6020055
Chakraborty A. Rapid Change in the Greenland Ice Sheet and Implications for Planetary Sustainability: A Qualitative Assessment. Earth. 2025; 6(2):55. https://doi.org/10.3390/earth6020055
Chicago/Turabian StyleChakraborty, Abhik. 2025. "Rapid Change in the Greenland Ice Sheet and Implications for Planetary Sustainability: A Qualitative Assessment" Earth 6, no. 2: 55. https://doi.org/10.3390/earth6020055
APA StyleChakraborty, A. (2025). Rapid Change in the Greenland Ice Sheet and Implications for Planetary Sustainability: A Qualitative Assessment. Earth, 6(2), 55. https://doi.org/10.3390/earth6020055