Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Colloids Interfaces, Volume 4, Issue 3 (September 2020) – 15 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 1951 KiB  
Article
Surface Forces between Nanomagnetite and Silica in Aqueous Ca2+ Solutions Studied with AFM Colloidal Probe Method
by Illia Dobryden, Elizaveta Mensi, Allan Holmgren and Nils Almqvist
Colloids Interfaces 2020, 4(3), 41; https://doi.org/10.3390/colloids4030041 - 10 Sep 2020
Cited by 5 | Viewed by 2759
Abstract
Dispersion and aggregation of nanomagnetite (Fe3O4) and silica (SiO2) particles are of high importance in various applications, such as biomedicine, nanoelectronics, drug delivery, flotation, and pelletization of iron ore. In directly probing nanomagnetite–silica interaction, atomic force microscopy [...] Read more.
Dispersion and aggregation of nanomagnetite (Fe3O4) and silica (SiO2) particles are of high importance in various applications, such as biomedicine, nanoelectronics, drug delivery, flotation, and pelletization of iron ore. In directly probing nanomagnetite–silica interaction, atomic force microscopy (AFM) using the colloidal probe technique has proven to be a suitable tool. In this work, the interaction between nanomagnetite and silica particles was measured with AFM in aqueous Ca2+ solution at different pH levels. This study showed that the qualitative changes of the interaction forces with pH and Ca2+ concentrations were consistent with the results from zeta-potential measurements. The repulsion between nanomagnetite and silica was observed at alkaline pH and 1 mM Ca2+ concentration, but no repulsive forces were observed at 3 mM Ca2+ concentration. The interaction forces on approach were due to van der Waals and electrical double-layer forces. The good fitting of experimental data to the DLVO model and simulations supported this conclusion. However, contributions from non-DLVO forces should also be considered. It was shown that an increase of Ca2+ concentration from 1 to 3.3 mM led to a less pronounced decrease of adhesion force with increasing pH. A comparison of measured and calculated adhesion forces with a few contact mechanics models demonstrated an important impact of nanomagnetite layer nanoroughness. Full article
Show Figures

Figure 1

11 pages, 2165 KiB  
Article
Encapsulation of Lactobacillus casei (ATCC 393) by Pickering-Stabilized Antibubbles as a New Method to Protect Bacteria against Low pH
by Vida Mardani Ghahfarokhi, Paolo P. Pescarmona, Gert-Jan W. Euverink and Albert T. Poortinga
Colloids Interfaces 2020, 4(3), 40; https://doi.org/10.3390/colloids4030040 - 10 Sep 2020
Cited by 8 | Viewed by 3037
Abstract
Pickering-stabilized antibubbles were used as a new method to encapsulate Lactobacillus casei. Antibubbles consist of one or more liquid droplets within a shell of gas. The antibubbles were prepared from a water-in-oil-in-water (W/O/W) emulsion stabilized by silica particles, which was then freeze-dried [...] Read more.
Pickering-stabilized antibubbles were used as a new method to encapsulate Lactobacillus casei. Antibubbles consist of one or more liquid droplets within a shell of gas. The antibubbles were prepared from a water-in-oil-in-water (W/O/W) emulsion stabilized by silica particles, which was then freeze-dried to remove the water and oil phases, before being subsequently reconstituted in water. Different oil phases and aqueous phase compositions were tested for their effect on the survival of the bacteria. The survival of L. casei after encapsulation using decane was 29.8 ± 2.1% in antibubbles containing 10% (w/v) maltodextrin plus 8% (w/v) sucrose, which is comparable to the survival when bacteria were freeze-dried without being encapsulated. Encapsulation within antibubbles led to a 10 to 30 times higher survival of L. casei at pH 2 in comparison with unencapsulated bacteria. This study shows that probiotics can be encapsulated within a shell of gas through the use of antibubbles and that this protects probiotics against a low pH. Full article
(This article belongs to the Special Issue Food Colloids)
Show Figures

Figure 1

25 pages, 5001 KiB  
Article
Interaction of Polyoxometalates and Nanoparticles with Collector Surfaces—Focus on the Use of Streaming Current Measurements at Flat Surfaces
by Johannes Lützenkirchen, Gopala Krishna Darbha, Venkata Sai Kiran Chakravadhanula, Engelbert Redel, Atiđa Selmani and Lionel Vayssières
Colloids Interfaces 2020, 4(3), 39; https://doi.org/10.3390/colloids4030039 - 08 Sep 2020
Cited by 1 | Viewed by 3059
Abstract
Streaming current measurements were used to study the interaction of polyoxometalates (POMs) and nanoparticles (NPs) with flat surfaces as an alternative, innovative approach to infer POM and NP properties of potential sparse material in terms of charge and magnitude. With respect to POMs, [...] Read more.
Streaming current measurements were used to study the interaction of polyoxometalates (POMs) and nanoparticles (NPs) with flat surfaces as an alternative, innovative approach to infer POM and NP properties of potential sparse material in terms of charge and magnitude. With respect to POMs, the approach was able to reveal subtle details of charging properties of +7 vs. +8 charge at very low POM concentrations. For NPs, the sign of charge and even the zeta-potential curve was retrieved. Concerning NPs, mutual interaction between TiO2 and SiO2 surfaces was studied in some detail via macroscopic measurements. Post-mortem analysis of samples from electrokinetic studies and separate investigations via AFM and HRTEM verified the interactions between TiO2 NPs and SiO2 collector surfaces. The interactions in the SiO2/TiO2 system depend to some extent on NP morphology, but in all our systems, irreversible interactions were observed, which would make the studied types of NPs immobile in natural environments. Overall, we conclude that the measurement of streaming currents at flat surfaces is valuable (i) to study NP and POM collector surface interactions and (ii) to simultaneously collect NPs or POM (or other small mobile clusters) for further (structural, morphological or release) investigations. Full article
Show Figures

Figure 1

20 pages, 2833 KiB  
Review
Veiled Extra Virgin Olive Oils: Role of Emulsion, Water and Antioxidants
by Giuseppe Cinelli, Martina Cofelice and Francesco Venditti
Colloids Interfaces 2020, 4(3), 38; https://doi.org/10.3390/colloids4030038 - 04 Sep 2020
Cited by 12 | Viewed by 7599
Abstract
This review traces the current knowledge on the effects of various factors and phenomena that occur at interface, and the role of dispersed phase on the physicochemical, sensorial and nutritional characteristics of veiled extra virgin olive oil (VVOO). Since 1994 there have been [...] Read more.
This review traces the current knowledge on the effects of various factors and phenomena that occur at interface, and the role of dispersed phase on the physicochemical, sensorial and nutritional characteristics of veiled extra virgin olive oil (VVOO). Since 1994 there have been numerous articles in the literature regarding the peculiar characteristic of unfiltered olive oil, so-called veiled or cloud virgin olive oil. It is a colloidal system (emulsion–sol), where the continuous lipidic phase dispreads mini droplets of milling water, fragments of cells and biotic fraction obtained from oil processing. During storage, the dispersed phase collapses and determines the quality of the virgin olive oil (VOO). The observed phenomena lead to worsening the quality of the product by causing defects such as oxidation of phenols, triacylglycerols hydrolysis and off-flavor formation. The addition of bioactive compounds, such as vitamins, on product based on VVOO, must take into account the eventual synergistic effect of individual substances. The role of the interphase is crucial to the synergic activity of bioactive molecules in improving oxidative stability, sensorial and health characteristics of VVOO. Full article
(This article belongs to the Special Issue Food Colloids)
Show Figures

Figure 1

12 pages, 3032 KiB  
Article
Magnetic Field Effect on Water Surface Tension in Aspect of Glass and Mica Wettability
by Aleksandra Szcześ, Emil Chibowski and Emilia Rzeźnik
Colloids Interfaces 2020, 4(3), 37; https://doi.org/10.3390/colloids4030037 - 03 Sep 2020
Cited by 7 | Viewed by 3441
Abstract
It was reported in many papers that the magnetic field (MF) affects properties of water, and, among others, its surface tension. Thus, it should be reflected in changes of the wetting contact angle of a water droplet deposited on the solid surface. In [...] Read more.
It was reported in many papers that the magnetic field (MF) affects properties of water, and, among others, its surface tension. Thus, it should be reflected in changes of the wetting contact angle of a water droplet deposited on the solid surface. In this study, the water contact angles were measured on the glass and mica surface. The water was first exposed to the static magnetic field (MF) (15 mT or 0.27 T) for 1, 5, and 10 min under dynamic conditions. Then applying the van Oss et al. approach (LWAB), it was found that the MF effect is reflected in the changes of the calculated acid-base components of the solids, especially the electron donor parameter. However, the total surface free energy of the solids remained practically unchanged. Moreover, the apparent surface free energy of the solids calculated from the water contact angle hysteresis (CAH), i.e., the difference between the advancing and receding contact angles, changes in the same way as the electron donor parameter does. Since the solid surfaces were not magnetically treated, the acid-base components, which are mainly results from hydrogen bonding interactions, may be indirect evidence of the water structure changed by the MF action. All of the mentioned changes are greater for the glass than for a more hydrophilic mica surface and depend upon the time of MF exposure and its strength. The magnetic field effect on the changes of the surface-free energy parameters for the mica and glass is opposite what may be due to the difference in the surface hydrophilicity. A “magnetic memory” effect was also found. The effect of MF on the water surface tension depends on the circulation time. It increases with the field duration. Moreover, the changes in the work of water adhesion indicate the possibility of solid surface wettability changes by the external MF water treatment. However, these are preliminary results that need further confirmation by other techniques. Full article
Show Figures

Figure 1

15 pages, 4250 KiB  
Article
Anomalous Long-Range Attraction in Colloidal Binary Mixtures at Fluid–Fluid Interfaces
by Zonglin Yi and To Ngai
Colloids Interfaces 2020, 4(3), 36; https://doi.org/10.3390/colloids4030036 - 31 Aug 2020
Viewed by 3032
Abstract
The properties of binary colloidal systems have gained the interest of researchers because they have much richer structures than their one-component counterpart. Continuing efforts are being made on the theoretical side on binary colloidal systems, while many issues remained unsolved for the lack [...] Read more.
The properties of binary colloidal systems have gained the interest of researchers because they have much richer structures than their one-component counterpart. Continuing efforts are being made on the theoretical side on binary colloidal systems, while many issues remained unsolved for the lack of solid experimental supports, especially for study in the field of two-dimensional (2D) binary colloids system. Oil–water interfaces can serve as a good stringent 2D confinement for colloidal particles and can avoid anomalous problems caused by the quasi-two-dimensional environment in previous experimental reports. In this work, we conduct experimental research of binary colloids system in an oil–water interface to revisit theoretical predication. We measure an ultra-long-range attraction and discuss the possible mechanism of this attraction by comparing the experimental result with existing model and theory. This study could contribute more understanding of the binary colloidal system in both experimental aspects and theoretical aspects. Full article
Show Figures

Figure 1

14 pages, 2362 KiB  
Article
An Analytical Two-Dimensional Linearized Droplet Shape Model for Combined Tangential and Normal Body Forces
by Margaritis Kostoglou and Thodoris D. Karapantsios
Colloids Interfaces 2020, 4(3), 35; https://doi.org/10.3390/colloids4030035 - 21 Aug 2020
Cited by 3 | Viewed by 2069
Abstract
In view of emerging research on forced wetting under complex applied forces, a simple model for a droplet shape evolution is developed here. In particular, the model refers to droplet spreading under quasisteady conditions. The corresponding linearized two-dimensional Young–Laplace equation is solved analytically [...] Read more.
In view of emerging research on forced wetting under complex applied forces, a simple model for a droplet shape evolution is developed here. In particular, the model refers to droplet spreading under quasisteady conditions. The corresponding linearized two-dimensional Young–Laplace equation is solved analytically resulting in a system of two equations that relates the droplet shape features to each other. Despite its simplicity, the final model produces a wealth of droplet behaviors when combined with the physical requirement that the contact angle should be within a particular range of values. Indicative results of the droplet behavior under several forces scenarios are examined here exhibiting why the present model is useful for designing experimental campaigns on forced spreading. Full article
Show Figures

Figure 1

14 pages, 2930 KiB  
Article
Comparison of Same Carbon Chain Length Cationic and Anionic Surfactant Adsorption on Silica
by Pengxiang Li, Tiejian Li, Munehide Ishiguro and Yang Su
Colloids Interfaces 2020, 4(3), 34; https://doi.org/10.3390/colloids4030034 - 20 Aug 2020
Cited by 7 | Viewed by 3299
Abstract
Adsorption of a cationic surfactant dodecyl pyridinium chloride (DPC) on silica was studied to show a comparison with the adsorption of an anionic surfactant sodium dodecyl sulfate (SDS), whose carbon chain length is the same and on the same silica. Results provided a [...] Read more.
Adsorption of a cationic surfactant dodecyl pyridinium chloride (DPC) on silica was studied to show a comparison with the adsorption of an anionic surfactant sodium dodecyl sulfate (SDS), whose carbon chain length is the same and on the same silica. Results provided a better understanding of the adsorption mechanism of cationic and anionic surfactant on negatively charged silica. The experiment covered different electrolyte concentrations and pH values. Results indicated that at the same pH, the DPC adsorption amounts are higher when the electrolyte concentration is higher; at a higher DPC equilibrium concentration, the adsorption amount difference is larger than that at low DPC equilibrium concentration, and when DPC equilibrium concentration is lower than 0.1 mmol/L, the adsorption amount difference cannot be observed. At charge compensation point (CCP, 0 zeta potential), the negative surface charge of silica was compensated by DP+, a continuous increasing zeta potential indicated a bilayer adsorption of DPC on silica. The adsorption amount increased with increasing pH. The calculated lines by Gu and Zhu model show a two-step property, including a bilayer and hemi-micelle adsorption. DPC adsorbed more strongly on silica than SDS due to the combination of electrostatic and hydrophobic attraction. Full article
Show Figures

Figure 1

18 pages, 2201 KiB  
Article
Deposition of Synthetic and Bio-Based Polycations onto Negatively Charged Solid Surfaces: Effect of the Polymer Cationicity, Ionic Strength, and the Addition of an Anionic Surfactant
by María Hernández-Rivas, Eduardo Guzmán, Laura Fernández-Peña, Andrew Akanno, Andrew Greaves, Fabien Léonforte, Francisco Ortega, Ramón G. Rubio and Gustavo S. Luengo
Colloids Interfaces 2020, 4(3), 33; https://doi.org/10.3390/colloids4030033 - 05 Aug 2020
Cited by 33 | Viewed by 3522
Abstract
The deposition of layers of different polycations (synthetic or derived from natural, renewable resources) onto oppositely charged surfaces has been studied using ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). Information about the thickness of the deposited layers and their water content [...] Read more.
The deposition of layers of different polycations (synthetic or derived from natural, renewable resources) onto oppositely charged surfaces has been studied using ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). Information about the thickness of the deposited layers and their water content was ascertained. The adsorption of the different polycations onto negatively charged surfaces was found to be a complex process, which is influenced by the chemical nature of the polymer chains, ionic strength, polymer concentration and the addition of additives such as surfactants. The experimental picture shows a good agreement with theoretical calculations performed using the Self-Consistent Mean Field (SCF) approach. The results show that the electrostatically-driven deposition can be tuned by modifying the physico-chemical properties of the solutions and the chemical nature of the adsorbed polymer. This versatile approach is a big step forward in aiding the design of new polymers for many industrial applications and, in particular, the design of sustainable washing formulations for cosmetic applications. Full article
Show Figures

Figure 1

11 pages, 5574 KiB  
Article
Efficient Oil Removal of Polymer Flooding Produced Sewerage Using Super-Hydrophobic Mesh Filtration Method
by Wanli Kang, Xin Kang, Hongbin Yang, Hailu Gebremariam and Zhe Li
Colloids Interfaces 2020, 4(3), 32; https://doi.org/10.3390/colloids4030032 - 02 Aug 2020
Cited by 1 | Viewed by 2307
Abstract
During the past 20 years, polymer flooding has become a successful enhanced oil recovery (EOR) technique for mature reservoirs with high water cut and recovery percent around the world. However, the high bulk viscosity of polymer solutions could slow down the separation rate [...] Read more.
During the past 20 years, polymer flooding has become a successful enhanced oil recovery (EOR) technique for mature reservoirs with high water cut and recovery percent around the world. However, the high bulk viscosity of polymer solutions could slow down the separation rate of the crude oil emulsion and make it difficult to treat the produced fluid. Consequently, the efficient removal of oil from the polymer flooding produced sewerage has still drawn significant concern. In this research, a high flux super-hydrophobic copper mesh was prepared using two-stage processes to treat the sewerage from polymer flooding. The surface of the super-hydrophobic mesh was characterized using various techniques including scanning electron microscope (SEM), OCA 20-contact angle goniometer, etc. Accordingly, the static contact angle of the super-hydrophobic copper mesh reached up to 165°. Moreover, the performances of the mesh were systematically evaluated under different internal and external factors such as oil to water volume ratio, polymer concentration, shear rate, and pH. The corresponding configuration and separation mechanisms are further explained in detail. The prepared superhydrophobic mesh can be a potential candidate for sewerage with both a polymer solution and crude oil. Full article
Show Figures

Figure 1

9 pages, 2124 KiB  
Article
Foam Formation by Compression/Decompression Cycle of Soft Porous Media
by Phillip Johnson, Mauro Vaccaro, Victor Starov and Anna Trybala
Colloids Interfaces 2020, 4(3), 31; https://doi.org/10.3390/colloids4030031 - 31 Jul 2020
Cited by 3 | Viewed by 2301
Abstract
A theory of the amount of foam produced by compression/decompression cycles of a soft porous media is developed. The amount of foam produced was found to be dependent on both the amount of surfactant within the media and the minimum separation between the [...] Read more.
A theory of the amount of foam produced by compression/decompression cycles of a soft porous media is developed. The amount of foam produced was found to be dependent on both the amount of surfactant within the media and the minimum separation between the plates of the compression device. The latter is determined by the mechanical properties of the soft media. The theory also shows the importance of the decompression of the media as this is the mechanism of where the air penetrates into the soft porous material. The accumulated air is used during the compression stage for foam formation. The theoretically predicted values of foam mass are found to have good agreement with experimental observations, which validates the theory predictions. The theory also predicts independence of the foam produced in terms of the frequency of compression/decompression cycles, which agrees with our experimental observations. Full article
Show Figures

Figure 1

17 pages, 4346 KiB  
Article
Diffusiophoresis in Suspensions of Charged Soft Particles
by Wei C. Lin and Huan J. Keh
Colloids Interfaces 2020, 4(3), 30; https://doi.org/10.3390/colloids4030030 - 29 Jul 2020
Cited by 9 | Viewed by 2512
Abstract
The diffusiophoresis in a suspension of charged soft particles in electrolyte solution is analyzed. Each soft particle is composed of a hard core of radius r0 and surface charge density σ and an adsorbed fluid-penetrable porous shell of thickness [...] Read more.
The diffusiophoresis in a suspension of charged soft particles in electrolyte solution is analyzed. Each soft particle is composed of a hard core of radius r0 and surface charge density σ and an adsorbed fluid-penetrable porous shell of thickness ar0 and fixed charge density Q. The effect of particle interactions is considered by using a unit cell model. The ionic concentration, electric potential, and fluid velocity distributions in a unit cell are solved as power expansions in σ and Q, and an explicit formula for the diffusiophoretic velocity of the soft particle is derived from a balance between the hydrodynamic and electrostatic forces exerted on it. This formula is correct to the second orders of σ and Q and valid for arbitrary values of κa, λa, r0/a, and the particle volume fraction of the suspension, where κ is the Debye screening parameter and λ is the reciprocal of a length featuring the flow penetration into the porous shell. The effects of the physical characteristics and particle interactions on the diffusiophoresis (including electrophoresis and chemiphoresis) in a suspension of charged soft particles, which become those of hard particles and porous particles in the limits r0=a and r0=0, respectively, are significant and complicated. Full article
(This article belongs to the Special Issue Colloids and Colloidal Stability)
Show Figures

Figure 1

16 pages, 4967 KiB  
Article
Drop Size Dependence of the Apparent Surface Tension of Aqueous Solutions in Hexane Vapor as Studied by Drop Profile Analysis Tensiometry
by Valentin B. Fainerman, Volodymyr I. Kovalchuk, Eugene V. Aksenenko, Altynay A. Sharipova, Libero Liggieri, Aliyar Javadi, Alexander V. Makievski, Mykola V. Nikolenko, Saule B. Aidarova and Reinhard Miller
Colloids Interfaces 2020, 4(3), 29; https://doi.org/10.3390/colloids4030029 - 27 Jul 2020
Cited by 1 | Viewed by 3200
Abstract
Surface tension experiments were performed using the drop profile analysis tensiometry method. The hexane was injected into the measuring cell at certain times before the formation of the solution drop. The influence of the capillary diameter and solution drop size on the measured [...] Read more.
Surface tension experiments were performed using the drop profile analysis tensiometry method. The hexane was injected into the measuring cell at certain times before the formation of the solution drop. The influence of the capillary diameter and solution drop size on the measured apparent dynamic surface tension was studied. The amount of hexane transferred from the vapor phase to the drop was estimated. For large pure water drops, it was shown that the ageing of the drop in the hexane vapor during a long time resulted in the formation of a liquid hexane phase covering the drop, but the volume of this phase did not exceed 0.5 mm3. On the contrary, for surfactant solution drops the volume of the hexane phase covering the drop was essentially larger. Experiments with solution drops were performed to measure the surface tension within a wide range of surfactant concentration. It was found that the dependencies of dynamic surface tension on the C13DMPO and C14EO8 solutions concentration exhibit maxima at concentrations of about 1–2 μmol/L for C14EO8 and 2–5 μmol/L for C13DMPO at ageing times of 100 to 1000 s; these maxima were shown to exist also at equilibrium. This phenomenon is presumably ascribed to the competitive character of simultaneous adsorption of hexane and surfactant. Full article
Show Figures

Graphical abstract

12 pages, 3924 KiB  
Article
Characterization of Nanoparticles Using DSPE-PEG2000 and Soluplus
by Rina Takayama, Yutaka Inoue, Isamu Murata and Ikuo Kanamoto
Colloids Interfaces 2020, 4(3), 28; https://doi.org/10.3390/colloids4030028 - 17 Jul 2020
Cited by 13 | Viewed by 5307
Abstract
The aim of this study was to evaluate the characterized hydration method to prepare nanoparticles using Soluplus, a block copolymer with amphipathic properties, and distearoyl phosphatidyl ethanolamine (DSPE)-PEG2000 owing to particle size distribution, zeta potential, particle stability, and transmission electron microscopy (TEM) observed [...] Read more.
The aim of this study was to evaluate the characterized hydration method to prepare nanoparticles using Soluplus, a block copolymer with amphipathic properties, and distearoyl phosphatidyl ethanolamine (DSPE)-PEG2000 owing to particle size distribution, zeta potential, particle stability, and transmission electron microscopy (TEM) observed and 31P-NMR spectra. The results showed that, in a suspension of DSPE-PEG2000 and Soluplus at a ratio of 1/1, the prepared microparticles were stable for five days in the dark and at 25 °C. It was also confirmed that the 1/1 suspension of DSPE-PEG2000/Soluplus was stable for five days under the same conditions with the magnesium chloride solution. TEM measurements confirmed the presence of micelle-like particles of 50 to 150 nm in the 1/1 ratio mix of DSPE-PEG2000/Soluplus. 31P-NMR spectral data confirmed that DPSE-PEG2000/Soluplus at mixing ratio of 1/1 has a strong intermolecular with the phosphate group, indicated by the fact that the peak shift and the full width at half maximum were the largest compared with DSPE-PEG2000 with the intermolecular interaction. On the basis of the findings of this study, we conclude that microparticles can be formed using DSPE-PEG2000 and Soluplus via the hydration method, and that the optimum weight ratio of DSPE-PEG2000 to Soluplus is 1/1. Full article
Show Figures

Graphical abstract

15 pages, 2683 KiB  
Article
Effect of Temperature on the Dynamic Properties of Mixed Surfactant Adsorbed Layers at the Water/Hexane Interface under Low-Gravity Conditions
by Volodymyr I. Kovalchuk, Giuseppe Loglio, Alexey G. Bykov, Michele Ferrari, Jürgen Krägel, Libero Liggieri, Reinhard Miller, Olga Yu. Milyaeva, Boris A. Noskov, Francesca Ravera, Eva Santini and Emanuel Schneck
Colloids Interfaces 2020, 4(3), 27; https://doi.org/10.3390/colloids4030027 - 02 Jul 2020
Cited by 7 | Viewed by 2939
Abstract
An increase in temperature typically leads to a decrease in the interfacial tension of a water/oil interface. The addition of surfactants to the system can complicate the situation significantly, i.e., the interfacial tension can increase or decrease with an increasing temperature. For most [...] Read more.
An increase in temperature typically leads to a decrease in the interfacial tension of a water/oil interface. The addition of surfactants to the system can complicate the situation significantly, i.e., the interfacial tension can increase or decrease with an increasing temperature. For most concentrations of the two studied surfactants, the cationic tetradecyl trimethyl ammonium bromide (TTAB) and the nonionic tridecyl dimethyl phosphine oxide (C13DMPO), the measured interfacial tension of the aqueous mixed surfactant solutions against hexane increases when the temperature decreases between 30 °C and 20 °C. However, with a further temperature decrease between 20 °C and 15 °C, the reverse effect has also been observed at some concentrations, i.e., a decrease of interfacial tension. Additionally, the corresponding dilational interfacial visco-elasticity shows some discrepant temperature effects, depending on the bulk concentration and oscillation frequency. The experiments have been performed with a capillary pressure tensiometer under the conditions of micro-gravity. The reason for the positive and negative interfacial tension and visco-elasticity gradients, respectively, within certain ranges of the temperature, concentration and mixing ratios, are discussed on the basis of all available parameters, such as the solubility and partitioning of the surfactants in the two liquid phases and the oscillation frequency. Full article
(This article belongs to the Special Issue Outstanding Scientists in Colloids and Interfaces: Emil Chibowski)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop