Real-Time UAV Flight Path Prediction Using GRU Networks for Autonomous Site Assessment
Highlights
- The proposed Gated Recurrent Unit (GRU) framework achieves superior real-time accuracy in single and multi-step trajectory prediction, outperforming traditional models while demonstrating exceptional stability and resistance to cumulative error propagation during simulated Global Positioning System (GPS) signal loss.
- Analysis of X, Y, Z, and Time trajectories comparisons confirms that GRU consistently preserves path continuity, directional changes, and altitude variation, providing high-fidelity predictions even in nonlinear or oscillatory flight segments.
- The GRU architecture’s computational efficiency enables real-time operation on embedded systems, facilitating intelligent onboard decision-making for Unmanned Aerial Vehicles (UAVs) in field applications.
- The model’s resilience to cumulative error propagation during multi-step forecasting provides a critical safety buffer for autonomous missions, allowing UAVs to maintain stable navigation and mission continuity even during intermittent sensor failures or GPS signal disruptions.
Abstract
1. Introduction
2. Data Collection and Method and Methodology
2.1. Data Collection and Preprocessing
2.2. Development of Prediction Models
2.2.1. Long Short-Term Memory (LSTM)
2.2.2. Gated Recurrent Unit (GRU)
2.2.3. Forecasting Strategy: Multi-Step-Ahead Prediction
2.3. Model Configuration and Training
2.4. Performance Evaluation Metrics
3. Results
3.1. Single-Step-Ahead Forecasting Performance
3.2. Multi-Step-Ahead Forecasting Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Chen, W.; Lu, B.; Xiao, F.; Shen, C.; Zhang, W. An improved BAT algorithm for collaborative dynamic target tracking and path planning of multiple UAV. Comput. Electr. Eng. 2024, 118, 109340. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Hassan, J.; Alhartomi, M.A.; Shvetsova, S.V.; Hawbani, A. Computing in the sky: A survey on intelligent ubiquitous computing for UAV-assisted 6G networks and industry 4.0/5.0. Drones 2022, 6, 177. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, S.; Hu, G.; Chen, B.; Chen, P.; Su, K. An auto-landing strategy based on pan-tilt based visual servoing for unmanned aerial vehicle in GNSS-denied environments. Aerosp. Sci. Technol. 2021, 116, 106891. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl.-Based Syst. 2018, 158, 54–64. [Google Scholar] [CrossRef]
- Motlagh, O.; Nakhaeinia, D.; Tang, S.H.; Karasfi, B.; Khaksar, W. Automatic navigation of mobile robots in unknown environments. Neural Comput. Appl. 2014, 24, 1569–1581. [Google Scholar] [CrossRef]
- Bo, L.; Zhang, T.; Zhang, H.; Hong, J.; Liu, M.; Zhang, C.; Liu, B. 3D UAV path planning in unknown environment: A transfer reinforcement learning method based on low-rank adaption. Adv. Eng. Inform. 2024, 62, 102920. [Google Scholar] [CrossRef]
- Yang, C.Y.; Yang, M.D.; Tseng, W.C.; Hsu, Y.C.; Li, G.S.; Lai, M.H.; Lu, H.Y. Assessment of rice developmental stage using time series UAV imagery for variable irrigation management. Sensors 2020, 20, 5354. [Google Scholar] [CrossRef]
- Yang, M.D.; Hsu, Y.C.; Chen, Y.H.; Yang, C.Y.; Li, K.Y. Precision monitoring of rice nitrogen fertilizer levels based on machine learning and UAV multispectral imagery. Comput. Electron. Agric. 2025, 237, 110523. [Google Scholar] [CrossRef]
- Yang, M.D.; Hsu, Y.C.; Tseng, W.C.; Tseng, H.H.; Lai, M.H. Precision assessment of rice grain moisture content using UAV multispectral imagery and machine learning. Comput. Electron. Agric. 2025, 230, 109813. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Qayyum, S.; Khan, S.I.; Mojtahedi, M. UAVs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability 2021, 13, 7547. [Google Scholar] [CrossRef]
- Daud, S.M.S.M.; Yusof, M.Y.P.M.; Heo, C.C.; Khoo, L.S.; Singh, M.K.C.; Mahmood, M.S.; Nawawi, H. Applications of drone in disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, J.; Zhang, G.; Xie, S.; Ding, Y.; Liu, Z. UAV dynamic path planning based on obstacle position prediction in an unknown environment. IEEE Access 2021, 9, 154679–154691. [Google Scholar] [CrossRef]
- Ahmadi, B.; Liu, G. Enhanced dynamic obstacle avoidance for UAVs using event camera and ego-motion compensation. Drones 2025, 9, 745. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Sheng, G.; Shao, Q.; Zhao, B. A general path planning algorithm with soft constraints for UAVs in high-density and large-sized obstacle scenarios. Drones 2025, 9, 793. [Google Scholar] [CrossRef]
- Veiga-Piñeiro, G.; Aldao-Pensado, E.; Martín-Ortega, E. Hybrid computational-fluid-dynamics deep-learning approach for urban wind flow predictions and risk-aware UAV path planning. Drones 2025, 9, 791. [Google Scholar] [CrossRef]
- Xiong, Y.; Tian, H.; Tang, J.; Jin, J.; Shen, X. Task planning and optimization for multi-region multi-UAV cooperative inspection. Drones 2025, 9, 762. [Google Scholar] [CrossRef]
- Yue, J.; Yu, K.; Wang, B.; Zhao, D.; Liu, T.; Shen, C. Cooperative path-following control for multi-UAVs considering GNSS denial. Drones 2025, 9, 749. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, G.; Yang, Z. Auction- and pheromone-based multi-UAV cooperative search and rescue in maritime environments. Drones 2025, 9, 794. [Google Scholar] [CrossRef]
- Boulares, M.; Barnawi, A. A novel UAV path planning algorithm to search for floating objects on the ocean surface based on object’s trajectory prediction by regression. Robot. Auton. Syst. 2021, 135, 103673. [Google Scholar] [CrossRef]
- Tang, R.; Ng, K.K.; Li, L.; Yang, Z. A learning-based interacting multiple model filter for trajectory prediction of small multirotor drones considering differential sequences. Transp. Res. Part C Emerg. Technol. 2025, 174, 105115. [Google Scholar] [CrossRef]
- Wang, K.; Hui, M.; Hou, J.; Song, X. Deep Reinforcement Learning-Based UAV Path Planning Algorithm. In Proceedings of the 2024 3rd International Conference on Artificial Intelligence and Computer Information Technology (AICIT), Yichang, China, 20–22 September 2024; IEEE: New York, NY, USA, 2024; pp. 1–4. [Google Scholar]
- Chai, X.; Zheng, Z.; Xiao, J.; Yan, L.; Qu, B.; Wen, P.; Sun, H. Multi-strategy fusion differential evolution algorithm for UAV path planning in complex environment. Aerosp. Sci. Technol. 2022, 121, 107287. [Google Scholar] [CrossRef]
- Shao, X.; Liu, H.; Zhang, W.; Zhao, J.; Zhang, Q. Path driven formation-containment control of multiple UAVs: A path-following framework. Aerosp. Sci. Technol. 2023, 135, 108168. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Zhang, W. Integrated path planning and trajectory tracking control for quadrotor UAVs with obstacle avoidance in the presence of environmental and systematic uncertainties: Theory and experiment. Aerosp. Sci. Technol. 2022, 120, 107277. [Google Scholar] [CrossRef]
- Hu, X.B.; Yang, C.S.; Zhou, J.; Zhang, Y.F.; Ma, Y.M. Research on 3D layered visibility graph route network model and multi-objective path planning for UAVs in complex urban environments. Aerosp. Sci. Technol. 2025, 159, 109947. [Google Scholar] [CrossRef]
- Dong, S.; Das, S.; Townley, S. Drone motion prediction from flight data: A nonlinear time series approach. Syst. Sci. Control Eng. 2024, 12, 2409098. [Google Scholar]
- Conte, C.; de Alteriis, G.; Schiano Lo Moriello, R.; Accardo, D.; Rufino, G. Drone trajectory segmentation for real-time and adaptive time-of-flight prediction. Drones 2021, 5, 62. [Google Scholar] [CrossRef]
- Bhandary, R.; Alkouz, B.; Shahzaad, B.; Bouguettaya, A. Predictive precision of enhanced drone landings. Expert Syst. Appl. 2025, 266, 125830. [Google Scholar] [CrossRef]
- Kang, C.; Woolsey, C.A. Model-based path prediction for fixed-wing unmanned aircraft using pose estimates. Aerosp. Sci. Technol. 2020, 105, 106030. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Xie, L. Intensity-SLAM: Intensity assisted localization and mapping for large scale environment. IEEE Robot. Autom. Lett. 2021, 6, 1715–1721. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Shu, P.; Wang, Z.; Chen, C. Real-time unmanned aerial vehicle flight path prediction using a bi-directional long short-term memory network with error compensation. J. Comput. Des. Eng. 2023, 10, 16–35. [Google Scholar] [CrossRef]
- Shu, P.; Chen, C.; Chen, B.; Su, K.; Chen, S.; Liu, H.; Huang, F. Trajectory prediction of UAV based on LSTM. In Proceedings of the 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Zhuhai, China, 24–26 September 2021; IEEE: Zhangjiajie, China, 2021; pp. 448–451. [Google Scholar]
- Zhang, J.; Shi, Z.; Zhang, A.; Yang, Q.; Shi, G.; Wu, Y. UAV trajectory prediction based on flight state recognition. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 2629–2641. [Google Scholar] [CrossRef]
- Dudukcu, H.V.; Taskiran, M.; Kahraman, N. UAV sensor data applications with deep neural networks: A comprehensive survey. Eng. Appl. Artif. Intell. 2023, 123, 106476. [Google Scholar] [CrossRef]
- Aly, M.; Ali, B.; Mekonnen, F.Y.; Elhesasy, M.; Wang, M.; Kamra, M.M.; Dief, T.N. Real-Flight-Path Tracking Control Design for Quadrotor UAVs: A Precision-Guided Approach. Automation 2025, 6, 93. [Google Scholar] [CrossRef]
- Su, Y.; Wang, M.C. An AutoML Algorithm: Multiple-Steps Ahead Forecasting of Correlated Multivariate Time Series with Anomalies Using Gated Recurrent Unit Networks. AI 2025, 6, 267. [Google Scholar] [CrossRef]
- Nacar, O.; Abdelkader, M.; Ghouti, L.; Gabr, K.; Al-Batati, A.; Koubaa, A. VECTOR: Velocity-Enhanced GRU Neural Network for Real-Time 3D UAV Trajectory Prediction. Drones 2025, 9, 8. [Google Scholar] [CrossRef]
- Yoon, S.; Jang, D.; Yoon, H.; Park, T.; Lee, K. GRU-Based Deep Learning Framework for Real-Time, Accurate, and Scalable UAV Trajectory Prediction. Drones 2025, 9, 142. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Yang, H.; Feng, X.; Sun, G. Complex environment path planning for unmanned aerial vehicles. Sensors 2021, 21, 5250. [Google Scholar] [CrossRef]
- Jiang, W.; Lyu, Y.; Li, Y.; Guo, Y.; Zhang, W. UAV path planning and collision avoidance in 3D environments based on POMPD and improved grey wolf optimizer. Aerosp. Sci. Technol. 2022, 121, 107314. [Google Scholar] [CrossRef]
- Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comput. 2021, 107, 107376. [Google Scholar] [CrossRef]
- He, L.; Aouf, N.; Song, B. Explainable Deep Reinforcement Learning for UAV autonomous path planning. Aerosp. Sci. Technol. 2021, 118, 107052. [Google Scholar] [CrossRef]
- Puente-Castro, A.; Rivero, D.; Pedrosa, E.; Pereira, A.; Lau, N.; Fernandez-Blanco, E. Q-learning based system for path planning with unmanned aerial vehicles swarms in obstacle environments. Expert Syst. Appl. 2024, 235, 121240. [Google Scholar] [CrossRef]
- Yang, M.D.; Hsu, Y.C.; Liu, T.T.; Huang, H.H. Enhancing grain moisture prediction in multiple crop seasons using domain adaptation AI. Comput. Electron. Agric. 2025, 231, 110058. [Google Scholar] [CrossRef]
- Kebede, Y.B.; Yang, M.D.; Huang, C.W. Real-time pavement temperature prediction through ensemble machine learning. Eng. Appl. Artif. Intell. 2024, 135, 108870. [Google Scholar] [CrossRef]
- Yu, C.H.; Tsai, J.; Chang, Y.T. Intelligent Path Planning for UAV Patrolling in Dynamic Environments Based on the Transformer Architecture. Electronics 2024, 13, 4716. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Yin, L.; Zheng, W.; Song, L.; Tian, J.; Liu, S. A haze prediction model in Chengdu based on LSTM. Atmosphere 2021, 12, 1479. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, E. Foreign exchange currency rate prediction using a GRU-LSTM hybrid network. Soft Comput. Lett. 2021, 3, 100009. [Google Scholar] [CrossRef]
- Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 2018, 11, 3493. [Google Scholar] [CrossRef]




















| Variable | Time (S) | X/Easting (m) | Y/Northing (m) | Z/Altitude (m) |
|---|---|---|---|---|
| mean | 4260 | 215,684.8 | 2,662,137 | 191.6 |
| std | 2460.4 | 868.1 | 1404.6 | 12 |
| min | 0 | 214,176.7 | 2,659,580 | 176.6 |
| max | 8520 | 217,207.2 | 2,664,713 | 209.6 |
| Parameter | Search Range | Optimum Value |
|---|---|---|
| Number of Layers | 1–3 | 1 |
| Hidden Units per Layer | 16–128 | 64 |
| Dropout Rate | 0.0–0.3 (step = 0.1) | 0 |
| Initial Learning Rate | 0.0001–0.1 | 0.001 |
| Batch Size | 16–64 | 32 |
| Sequence length | (4, 12) | 6 |
| Optimizer | Fixed | Adam |
| Loss Function | Fixed | MSE |
| Epochs | 200(with Early Stopping) | |
| Random state | 42 | |
| Output Layer | Dense (4 units) |
| Model | Training Set Evaluation | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| MAE (m) | MSE (m2) | RMSE (m) | R2 | MAPE (%) | CV RMSE (%) | SER | RSE (%) | OF (%) | PI | |
| LSTM | 0.0024 | 0.00002 | 0.0048 | 0.9997 | 2.0981 | 1.1172 | 0.0176 | 0.03 | 0.0023% | ±0.008 |
| GRU | 0.0019 | 0.00001 | 0.0040 | 0.9998 | 1.5802 | 0.9349 | 0.0147 | 0.02 | 0.0016% | ±0.007 |
| RNN | 0.0028 | 0.00005 | 0.0070 | 0.9993 | 2.1261 | 1.6336 | 0.0257 | 0.07 | 0.0049% | ±0.013 |
| Model | Testing Set Evaluation | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| MAE (m) | MSE (m2) | RMSE (m) | R2 | MAPE (%) | CV RMSE (%) | SER | RSE (%) | OF (%) | PI | |
| LSTM | 0.0051 | 0.00005 | 0.0072 | 0.9900 | 5.0592 | 0.9948 | 0.0226 | 0.051 | 0.005 | ±0.010 |
| GRU | 0.0036 | 0.00003 | 0.0054 | 0.9923 | 1.7494 | 0.7484 | 0.0170 | 0.028 | 0.003 | ±0.0079 |
| RNN | 0.0050 | 0.00004 | 0.0067 | 0.9885 | 2.0903 | 0.9309 | 0.0211 | 0.045 | 0.005 | ±0.0087 |
| Multi-Step Forecasting | MAE (m) | RMSE (m) | R2 | MAPE (%) | CV-RMSE (%) | SER | RSE (%) | OF (%) | PI (±95%) |
|---|---|---|---|---|---|---|---|---|---|
| Step 1 ahead | 0.001 | 0.013 | 0.998 | 5.429 | 1.781 | 0.041 | 0.164 | 0.016 | ±0.017 |
| Step 2 ahead | 0.008 | 0.014 | 0.998 | 7.425 | 1.934 | 0.044 | 0.194 | 0.019 | ±0.023 |
| Step 3 ahead | 0.009 | 0.016 | 0.997 | 6.722 | 2.169 | 0.049 | 0.243 | 0.024 | ±0.024 |
| Step 4 ahead | 0.008 | 0.014 | 0.998 | 5.656 | 1.940 | 0.044 | 0.192 | 0.019 | ±0.023 |
| Step 5 ahead | 0.007 | 0.014 | 0.998 | 7.062 | 1.899 | 0.043 | 0.186 | 0.019 | ±0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kebede, Y.B.; Yang, M.-D.; Shikur, H.D.; Tseng, H.-H. Real-Time UAV Flight Path Prediction Using GRU Networks for Autonomous Site Assessment. Drones 2026, 10, 56. https://doi.org/10.3390/drones10010056
Kebede YB, Yang M-D, Shikur HD, Tseng H-H. Real-Time UAV Flight Path Prediction Using GRU Networks for Autonomous Site Assessment. Drones. 2026; 10(1):56. https://doi.org/10.3390/drones10010056
Chicago/Turabian StyleKebede, Yared Bitew, Ming-Der Yang, Henok Desalegn Shikur, and Hsin-Hung Tseng. 2026. "Real-Time UAV Flight Path Prediction Using GRU Networks for Autonomous Site Assessment" Drones 10, no. 1: 56. https://doi.org/10.3390/drones10010056
APA StyleKebede, Y. B., Yang, M.-D., Shikur, H. D., & Tseng, H.-H. (2026). Real-Time UAV Flight Path Prediction Using GRU Networks for Autonomous Site Assessment. Drones, 10(1), 56. https://doi.org/10.3390/drones10010056

