Artificial intelligence (AI) is now embedded across many aspects of healthcare, yet most implementations remain fragmented, task-specific, and layered onto legacy workflows. This paper does not review AI applications in healthcare per se; instead, it examines what an AI-first healthcare system would look
[...] Read more.
Artificial intelligence (AI) is now embedded across many aspects of healthcare, yet most implementations remain fragmented, task-specific, and layered onto legacy workflows. This paper does not review AI applications in healthcare per se; instead, it examines what an AI-first healthcare system would look like, one in which AI functions as a foundational organizing principle of care delivery rather than an adjunct technology. We synthesize evidence across ambulatory, inpatient, diagnostic, post-acute, and population health settings to assess where AI capabilities are sufficiently mature to support system-level integration and where critical gaps remain. Across domains, the literature demonstrates strong performance for narrowly defined tasks such as imaging interpretation, documentation support, predictive surveillance, and remote monitoring. However, evidence for longitudinal orchestration, cross-setting integration, and sustained impact on outcomes, costs, and equity remains limited. Key barriers include data fragmentation, workflow misalignment, algorithmic bias, insufficient governance, and lack of prospective, multi-site evaluations. We argue that advancing toward AI-first healthcare requires shifting evaluation from accuracy-centric metrics to system-level outcomes, emphasizing human-enabled AI, interoperability, continuous learning, and equity-aware design. Using hypertension management and patient journey exemplars, we illustrate how AI-first systems can enable proactive risk stratification, coordinated intervention, and continuous support across the care continuum. We further outline architectural and governance requirements, including cloud-enabled infrastructure, interoperability, operational machine learning practices, and accountability frameworks—necessary to operationalize AI-first care safely and at scale, subject to prospective validation, regulatory oversight, and post-deployment surveillance. This review contributes a system-level framework for understanding AI-first healthcare, identifies priority research and implementation gaps, and offers practical considerations for clinicians, health systems, researchers, and policymakers. By reframing AI as infrastructure rather than isolated tools, the AI-first approach provides a pathway toward more proactive, coordinated, and equitable healthcare delivery while preserving the central role of human judgment and trust.
Full article