Next Issue
Volume 14, June
Previous Issue
Volume 14, April
 
 

Metals, Volume 14, Issue 5 (May 2024) – 117 articles

Cover Story (view full-size image): The properties of pure iron processed via hot rolling and electron and laser powder bed fusion, using different raw materials and process conditions, are compared. The manufacturing of the specimens led to five distinct microstructures, each with unique features and mechanical responses. Using optical, electron and transmission electron microscopy, the material was explored in various strain states, allowing for an in-depth examination of the material in the course of quasistatic loading. Grain size and substructures within the grains define the homogeneity of strain distribution and localization. Macro-to-micro insight is given to evaluate the behavior of characteristic microstructures. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 3845 KiB  
Article
Activity Calculation and Vacuum Separation Theoretical Research concerning Ag–Cu, Ag–Sb and Cu–Sb Binary Alloys
by Qingsong Li, Yang Tian, Lingxin Kong, Bin Yang, Baoqiang Xu, Wenlong Jiang and Lipeng Wang
Metals 2024, 14(5), 603; https://doi.org/10.3390/met14050603 - 20 May 2024
Viewed by 828
Abstract
The Ag–Cu–Sb system is a key component of lead anode slime and boasts an exceptionally high economic recovery value. In this work, six models, including the Molecular Interaction Volume Model (MIVM), Modified Molecular Interaction Volume Model (M-MIVM), Wilson equation, Miedema model, Regular Solution [...] Read more.
The Ag–Cu–Sb system is a key component of lead anode slime and boasts an exceptionally high economic recovery value. In this work, six models, including the Molecular Interaction Volume Model (MIVM), Modified Molecular Interaction Volume Model (M-MIVM), Wilson equation, Miedema model, Regular Solution Model (RSE) and Sub-Regular Solution Model (SRSE), are used to calculate the predicted values of the activity and its deviations with experimental data for binary alloys in the Ag–Cu–Sb system for the first time. The result reveals that the overall means of the average relative deviation and average standard deviation of the M-MIVM are 0.01501 and 3.97278%, respectively, which are about two to six times smaller than those of the other five models, indicating the stability and reliability of the M-MIVM. In the meantime, the predicted data of the Cu–Ag binary alloy at 1423 K, Sb–Ag binary alloy at 1250 K and Sb–Cu binary alloy at 1375 K calculated from the M-MIVM are more reliable and pass the Herington test. Then, the separation coefficient–composition (βx), temperature–composition (Txy) and pressure–composition (Pxy) of the Cu–Ag, Sb–Ag and Sb–Cu binary alloys are plotted based on the M-MIVM and vacuum theories, showing that the Cu–Ag binary alloy is relatively difficult to separate and that high temperatures or high copper contents are detrimental to obtaining high-purity silver. Meanwhile, theoretical data of the Txy diagram are consistent with the available experimental data. These results can guide vacuum separation experiments and industrial production concerning Ag–Cu, Ag–Sb and Cu–Sb binary alloys. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

11 pages, 2488 KiB  
Article
Aging Treatment Induces the Preferential Crystallographic Orientation of αs in the Near-α Titanium Alloy Ti60
by Bin Liu, Chenglu Liu, Xuewen Li, Hao Wu, Kesong Miao, He Wu and Rengeng Li
Metals 2024, 14(5), 602; https://doi.org/10.3390/met14050602 - 20 May 2024
Viewed by 774
Abstract
In this article, we subjected the Ti60 alloy to solid-solution treatment at 1020 °C and aging treatment at 600 °C, respectively, achieving a bimodal microstructure. The microstructures obtained after aging treatment showed no significant difference in the primary α-phase content, size, and width [...] Read more.
In this article, we subjected the Ti60 alloy to solid-solution treatment at 1020 °C and aging treatment at 600 °C, respectively, achieving a bimodal microstructure. The microstructures obtained after aging treatment showed no significant difference in the primary α-phase content, size, and width of the lamellar α phase. This suggests that the final microstructure morphology is primarily determined by the solid-solution temperature, with the aging process exerting less pronounced effects on microstructural alterations. Furthermore, we investigated the effect of solid-solution and aging treatment on the crystallographic orientation evolution of the secondary α phase (αs) in the near-α titanium alloy Ti60. The αs phase displays a random orientation in solid-solution treatment sample, while it demonstrated a preferential {0 1 −1 0} orientation after aging treatment. This interesting phenomenon is attributed to the enhanced variant selection resulting from the dissolution of variant near 60° and 90° during aging. Furthermore, the αs with {0 1 −1 0} orientation nucleated at the grain boundary and coalesced into larger αs lath with increasing aging time, further contributing to the αs {0 1 −1 0} texture. Full article
(This article belongs to the Special Issue Light Alloys and Composites)
Show Figures

Figure 1

12 pages, 1571 KiB  
Article
Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function
by Yue-Yue Tian, Bo-Yuan Ning, Hui-Fen Zhang and Xi-Jing Ning
Metals 2024, 14(5), 601; https://doi.org/10.3390/met14050601 - 20 May 2024
Viewed by 645
Abstract
Body-centered cubic bismuth (Bi) is considered to be an enticing pressure marker, and, therefore, it is highly desirable to command its accurate equation of state (EOS). However, significant discrepancies are noted among the previous experimental EOSs. In the present work, an EOS of [...] Read more.
Body-centered cubic bismuth (Bi) is considered to be an enticing pressure marker, and, therefore, it is highly desirable to command its accurate equation of state (EOS). However, significant discrepancies are noted among the previous experimental EOSs. In the present work, an EOS of up to 300 GPa is theoretically obtained by solving the partition function via a direct integral approach (DIA). The calculated results nearly reproduce the hydrostatic experimental measurements below 75 GPa, and the deviations from the measurements gradually become larger with increasing pressure. Based on the ensemble theory of equilibrium state, the DIA works with high precision particularly in high-pressure conditions, so the hydrostatic EOS presented in this work is expected to be a reliable pressure standard. Full article
Show Figures

Figure 1

12 pages, 9112 KiB  
Article
Revealing the Superior Post-Necking Elongation in the Fine-Grained Ti-6Al-4V ELI at Cryogenic Temperature
by Quan Gao, Rengeng Li, Hao Wu, Kesong Miao, He Wu, Chenglu Liu and Xuewen Li
Metals 2024, 14(5), 600; https://doi.org/10.3390/met14050600 - 20 May 2024
Viewed by 796
Abstract
The mechanical properties of a fine-grained (FG) Ti-6Al-4V extra-low interstitial (ELI) alloy were investigated by tensile tests at 298 K and 77 K. The experimental results indicated that, at 77 K, the alloy exhibits a small uniform elongation of 2.65%, but has a [...] Read more.
The mechanical properties of a fine-grained (FG) Ti-6Al-4V extra-low interstitial (ELI) alloy were investigated by tensile tests at 298 K and 77 K. The experimental results indicated that, at 77 K, the alloy exhibits a small uniform elongation of 2.65%, but has a fracture elongation of 19.2%, showing superior post-necking elongation. At 298 K, the alloy displays a single dislocation slipping, β→α″ phase transformation occurred, and 6.35% uniform elongation was obtained, whereas the coupling of dislocation slipping and twinning deformation behaviors dominated at 77 K. The limited uniform elongation is attributed to the absence of martensite phase transformation at 77 K, whereas the decent fracture elongation is ascribed to the resistance offered by twinning against plastic instability. Full article
Show Figures

Figure 1

18 pages, 7006 KiB  
Article
The Effect of Hot Forming–Quenching and Heat Treatment Processes on the Mechanical Properties of AA6016 Aluminum Alloy Sheets
by Jiahong Lu, Baitong Liu, Shiyao Huang, Zuguo Bao, Yutong Yang, Xilin Li, Zhenfei Zhan and Qing Liu
Metals 2024, 14(5), 599; https://doi.org/10.3390/met14050599 - 20 May 2024
Viewed by 855
Abstract
This study explored the impact of Hot Forming–Quenching (HFQ) and heat treatment processes on the mechanical properties of AA6016 sheets. The experimental findings demonstrated that at high-temperature pre-straining (HT-PS) of 15%, the strength performance of the AA6016 sheet exhibited enhancement, with a progressive [...] Read more.
This study explored the impact of Hot Forming–Quenching (HFQ) and heat treatment processes on the mechanical properties of AA6016 sheets. The experimental findings demonstrated that at high-temperature pre-straining (HT-PS) of 15%, the strength performance of the AA6016 sheet exhibited enhancement, with a progressive increase in both the heat treatment temperature and duration. Conversely, under HT-PS conditions of 3% and 7%, the heat treatment process exhibited a relatively modest impact on the mechanical properties of the AA6016 sheet. Differential scanning calorimetry (DSC) was employed to understand the influence of different process conditions on the precipitated phases. By comparing the precipitation peaks of the β phase at HT-PS of 3% and 15%, it was observed that the precipitation peak of the β phase decreased with an increase in HT-PS. This indicated that HT-PS promoted the precipitation of the β phase. In order to forecast the mechanical performance of the AA6016 sheets after applying various pre-straining and heat treatment parameters, two models were used: a backpropagation (BP) neural network and a genetic algorithm (GA)-BP neural network. These models were evaluated for their fitting and predictive capabilities. The research findings demonstrated that the GA-BP neural network model exhibited superior fitting and predictive accuracy compared to the BP neural network model. Full article
Show Figures

Figure 1

13 pages, 1898 KiB  
Article
Batch Sintering of FeO·OH and Fe2O3 Blends: Chemical and Metallurgical Characterization
by Igor J. U. V. Pereira, Henrique C. S. Coelho, Cláudio G. Santos, Eduardo A. Brocchi, Rodrigo F. M. Souza and Victor A. A. Oliveira
Metals 2024, 14(5), 598; https://doi.org/10.3390/met14050598 - 20 May 2024
Viewed by 887
Abstract
A sample of goethite iron ore sinter feed (G_SF) was employed as a raw material in a sintering bed. This sample partially replaced hematite sinter feed (H_SF), which is currently used as raw material in a sintering plant in the state of Minas [...] Read more.
A sample of goethite iron ore sinter feed (G_SF) was employed as a raw material in a sintering bed. This sample partially replaced hematite sinter feed (H_SF), which is currently used as raw material in a sintering plant in the state of Minas Gerais, Brazil. This substitution did not adversely affect the chemical and metallurgical proprieties of the sinter mix product, provided that the utilization of G_SF was kept below 30% in weight. Despite the higher proportion of fines in G_SF, the presence of argillaceous minerals in the sample led to an improvement in the granulation index (GI) of the sinter mix product. The GI value increased from 68.4 to 82.7% for the experiments conducted without the presence of goethite ore and with 40% of goethite ore in the sintering mix, respectively. Consequently, the qualities of both the process and the produced sinter product were not compromised. The raw materials and the various sinters produced were characterized through X-ray fluorescence (XRF) and X-ray diffraction (XRD), as well as thermal gravimetric analysis (TGA). The XRD results were used to perform a quantitative assessment of the mineral phase using the Rietveld method (RM). This technique allowed for the determination of goethite content in the studied sample, which was 35.5%. Finally, the incorporation of G_SF in the sintering bed led to a 20% reduction in the cost of raw materials. Full article
Show Figures

Figure 1

18 pages, 21186 KiB  
Article
Investigation of Residual Stress Distribution and Fatigue of 7050-T7451 Alloy Hole Components with Laser Shock and Ultrasonic Extrusion
by Yinfang Jiang, Xiancheng Liu, Yangyang Wang, Lingling Cui, Guang Ji and Wei Liu
Metals 2024, 14(5), 597; https://doi.org/10.3390/met14050597 - 19 May 2024
Viewed by 982
Abstract
Small-hole structures, such as the millions of fastener holes found on aircraft, are typical stress-concentration structures prone to fatigue failure. To further improve the strengthening process of this small-hole structure, we make up for the limitations of laser shock processing (LSP) of small [...] Read more.
Small-hole structures, such as the millions of fastener holes found on aircraft, are typical stress-concentration structures prone to fatigue failure. To further improve the strengthening process of this small-hole structure, we make up for the limitations of laser shock processing (LSP) of small holes by combining it with the ultrasonic extrusion strengthening (UES) process to form a new strengthening method—laser shock and ultrasonic extrusion strengthening (LUE). The influence of the LUE process sequence and process parameters on residual stress distribution was studied through FEM, and the gain of fatigue life of specimens after LUE strengthening was also explored through tests. The results show that when using LUE technology, the friction force decreases with the increase in amplitude and decreases by 3.2% when the amplitude is maximum. The LUE process eliminates the thickness effect generated by LSP, which can achieve good stress distribution of small-hole components under smaller laser shock peak pressure, and reduces equipment power. LUE can significantly improve the fatigue life of small-hole components, and the maximum fatigue life gain can be up to 310.66%. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Figure 1

12 pages, 6446 KiB  
Article
An Investigation into the Microstructures and Mechanical Properties of a TIG Welding Joint in Ti-4Al-2V Titanium Alloy
by Yao Chen, Xiao Liu, Zhendi Zhang, Kaiqing Wang, Shanglin Zhang, Bingnan Qian, Jun Wu and Li Wang
Metals 2024, 14(5), 596; https://doi.org/10.3390/met14050596 - 19 May 2024
Viewed by 823
Abstract
The Ti-4Al-2V (wt. %) titanium alloy has garnered widespread applications across diverse fields due to its exceptional strength-to-weight ratio, high toughness, specific strength, and corrosion resistance. The welding of Ti-4Al-2V titanium alloy components is often necessary in manufacturing processes, where the reliability of [...] Read more.
The Ti-4Al-2V (wt. %) titanium alloy has garnered widespread applications across diverse fields due to its exceptional strength-to-weight ratio, high toughness, specific strength, and corrosion resistance. The welding of Ti-4Al-2V titanium alloy components is often necessary in manufacturing processes, where the reliability of a welded joint critically influences the overall service life of these components. Consequently, a comprehensive understanding of the welded joint’s microstructure and mechanical properties is imperative. In this study, Ti-4Al-2V titanium alloy was welded using multi-layer and multi-pass TIG welding techniques, and a detailed examination was conducted to analyze the microstructure and grain morphology of each microzone of the welded joint. The results revealed the presence of an initial α phase and a secondary lamellar α phase in the heat affected zone (HAZ). Meanwhile, the fusion zone (FZ) primarily comprised a coarse secondary α phase and a small amount of an acicular martensitic α’ phase. Both the recrystallization zone and the superheated zone exhibited a distinct preferred orientation, with grains smaller than 10 μm accounting for 65.9% and 55.1%, respectively. To assess the mechanical properties of the various microzones and the typical microstructure within the welded joint, nanoindentation tests were performed. The results indicated that the recrystallization zone possessed a higher nanohardness (3.753 GPa) than the incomplete recrystallization zone (3.563 GPa) and the superheated zone (3.48 GPa). Among all the microzones, the FZ exhibited the lowest average nanohardness (3.058 GPa). Notably, the basket-weave microstructure demonstrated the highest average nanohardness, reaching 3.93 GPa. This was followed by the fine-grain microstructure, which possessed a slightly lower nanohardness. The Widmanstätten microstructure, on the other hand, exhibited the lowest nanohardness among the three microstructures within the HAZ. Therefore, the basket-weave microstructure stands out as the most desirable microstructure to achieve in the welded joint. In summary, this study provides a comprehensive characterization and analysis of the microstructure and properties of Ti-4Al-2V titanium alloy TIG welds, aiming to contribute to the optimization of the TIG welding process for Ti-4Al-2V titanium alloy. Full article
(This article belongs to the Special Issue Advances in Welding and Mechanical Joining of Metals)
Show Figures

Figure 1

13 pages, 3541 KiB  
Article
Heterostructure Engineering Enables MoSe2 with Superior Alkali-Ion Storage
by Huabin Kong, Yihan Wen, Siying Chen, Xiyao Chen, Runzhi Chen, Jiamou Yan and Nianjie Mao
Metals 2024, 14(5), 595; https://doi.org/10.3390/met14050595 - 19 May 2024
Viewed by 777
Abstract
Molybdenum diselenide (MoSe2) is a promising anode for alkali-ion storage due to its intrinsic advantages. However, MoSe2 still encounters the issues of structural instability and poor rate performance caused by drastic volume change and sluggish reaction kinetics. Reasonable design of [...] Read more.
Molybdenum diselenide (MoSe2) is a promising anode for alkali-ion storage due to its intrinsic advantages. However, MoSe2 still encounters the issues of structural instability and poor rate performance caused by drastic volume change and sluggish reaction kinetics. Reasonable design of electrode structure is crucial for achieving superior electrochemical performance. Herein, a novel hierarchical structure coupled with 1D/1D subunits is elaborately designed and constructed, in which the MoSe2/CoSe2 heterostructure is the “trunk” and the N-doped carbon nanotubes are the “branches” (MoSe2/CoSe2/NCNTs). Benefiting from the properties endowed by unique configurations, MoSe2/CoSe2/NCNTs electrodes manifest faster reaction kinetics and better structure durability. Evaluated as an anode for LIBs and SIBs, MoSe2/CoSe2/NCNTs deliver high reversible capacity, superior rate capability (452 at 10 A g−1 in LIBs and 296 at 10 A g−1 in SIBs), and prominent cycle life (553 after 2000 cycles at 5 A g−1 in LIBs and 310 after 2000 cycles at 5 A g−1 in SIBs). Such design conception can also provide guidance for the development of other high-performance electrodes. Full article
Show Figures

Graphical abstract

12 pages, 3660 KiB  
Article
Study on the Optimization of the Preparation Process of ZM5 Magnesium Alloy Micro-Arc Oxidation Hard Ceramic Coatings and Coatings Properties
by Bingchun Jiang, Zejun Wen, Peiwen Wang, Xinting Huang, Xin Yang, Minghua Yuan and Jianjun Xi
Metals 2024, 14(5), 594; https://doi.org/10.3390/met14050594 - 19 May 2024
Cited by 1 | Viewed by 1011
Abstract
Hard ceramic coatings were successfully prepared on the surface of ZM5 magnesium alloy by micro-arc oxidation (MAO) technology in silicate and aluminate electrolytes, respectively. The optimization of hard ceramic coatings prepared in these electrolyte systems was investigated through an orthogonal experimental design. The [...] Read more.
Hard ceramic coatings were successfully prepared on the surface of ZM5 magnesium alloy by micro-arc oxidation (MAO) technology in silicate and aluminate electrolytes, respectively. The optimization of hard ceramic coatings prepared in these electrolyte systems was investigated through an orthogonal experimental design. The microstructure, elemental composition, phase composition, and tribological properties of the coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and tribological testing equipment. The results show that the growth of the hard ceramic coatings is significantly influenced by the different electrolyte systems. Coatings prepared from both systems have shown good wear resistance, with the aluminate electrolyte system being superior to the silicate system in performance. The optimized formulation for the silicate electrolyte solution has been determined to be sodium silicate at 8 g/L, sodium dihydrogen phosphate at 0.2 g/L, sodium tetraborate at 2 g/L, and potassium hydroxide at 1 g/L. The optimized formulation for the aluminate electrolyte solution consists of sodium aluminate at 5 g/L, sodium fluoride at 3 g/L, sodium citrate at 3 g/L, and sodium hydroxide at 0.5 g/L. Full article
(This article belongs to the Special Issue Preparation and Processing Technology of Advanced Magnesium Alloys)
Show Figures

Figure 1

18 pages, 4034 KiB  
Article
A Methodology for Post-Necking Analysis in Isotropic Metals
by Martina Scapin and Marta Beltramo
Metals 2024, 14(5), 593; https://doi.org/10.3390/met14050593 - 18 May 2024
Cited by 1 | Viewed by 743
Abstract
Metallic materials are commonly characterized through tensile tests. For ductile metals, a consistent part of the test occurs after the necking onset. A first estimate of the post-necking behavior could be obtained by extrapolating the mathematical model that fits the pre-necking law. However, [...] Read more.
Metallic materials are commonly characterized through tensile tests. For ductile metals, a consistent part of the test occurs after the necking onset. A first estimate of the post-necking behavior could be obtained by extrapolating the mathematical model that fits the pre-necking law. However, as well known, the accuracy of the predictions would not be guaranteed. Therefore, over the past decades many efforts have been devoted to dealing with the necking phenomenon. The most popular correction formula proposed by Bridgman is an analytical method based on the neck geometry. Despite being widely used, it may not be accurate at large strains due to the assumption of uniform distribution of the equivalent stress and equivalent strain in the specimen minimum cross-section. Starting from Bridgman’s idea and in order to overcome its limitations, the present paper develops an efficient method to calibrate the hardening law of isotropic metallic materials at large strains. The proposed method requires to record the outer contour of the necking zone during the test and to build a dataset of necking deformed shapes. Experimental quasi-static tensile tests were analyzed with the proposed approach, which appears promising when critically compared with other methods. Full article
Show Figures

Figure 1

13 pages, 5057 KiB  
Article
Utilization of Charcoal Obtained from Woody Biomass in Metallurgical Processes Based on Solid–Gas Reactions
by Christian Dornig, Gustav Hanke and Jürgen Antrekowitsch
Metals 2024, 14(5), 592; https://doi.org/10.3390/met14050592 - 18 May 2024
Cited by 1 | Viewed by 857
Abstract
The high demand for carbon-based products within pyrometallurgy is placing the industry in an increasingly challenging position to meet stringent requirements. To transition away from fossil carbon carriers, biochar emerges as a sustainable and CO2-neutral alternative, presenting a viable solution without [...] Read more.
The high demand for carbon-based products within pyrometallurgy is placing the industry in an increasingly challenging position to meet stringent requirements. To transition away from fossil carbon carriers, biochar emerges as a sustainable and CO2-neutral alternative, presenting a viable solution without necessitating fundamental adjustments to plant technology, unlike hydrogen as an alternative reducing agent. Prior investigations have underscored the potential of woody biomass pyrolysis products for CO2-neutral metallurgy. Nonetheless, it is imperative to recognize that biochar must meet distinct requirements across various metallurgical processes. This paper conducts a comparative analysis between biochar and petroleum coke using thermogravimetric analyses, surface measurements, reactivity assessments, and scanning electron microscopy. Furthermore, the performance in a furnace for simulating the Waelz process, specifically regarding ZnO reduction, is scrutinized. The results illustrate the optical differences between petroleum coke and biochar and the significantly higher reactivity and specific surface area of biochar. When used in solid–gas reactors, it is observed that due to its high reactivity, biochar reacts more vigorously and carbon is completely consumed. However, during the reduction of ZnO, only minor differences were monitored, making biochar comparable to petroleum coke. Therefore, under certain constraints, biochar can be considered a potential substitute for metallurgical solid–gas reactions. Full article
Show Figures

Figure 1

19 pages, 5056 KiB  
Article
Homogenization Path Based on 250 mm × 280 mm Bloom under Mixed Light and Heavy Presses: Simulation and Industrial Studies
by Aiguo Dang, Mingyue Wang, Haida Wang, Xiaoming Feng and Wei Liu
Metals 2024, 14(5), 591; https://doi.org/10.3390/met14050591 - 17 May 2024
Viewed by 723
Abstract
This study proposed a new method for homogenizing continuous casting blooms based on solidification simulation calculations and industrial tests. The text describes a theoretical analysis of the solidification route of a cast billet of high-carbon alloy steel (B300A) under different process conditions. It [...] Read more.
This study proposed a new method for homogenizing continuous casting blooms based on solidification simulation calculations and industrial tests. The text describes a theoretical analysis of the solidification route of a cast billet of high-carbon alloy steel (B300A) under different process conditions. It summarizes the changing law of different under-pressure process parameters and under-pressure efficiency. The text also presents a solution to the seriousness of center shrinkage defects in the continuous casting of a large square billet of high-carbon alloy steel with the synergistic control technology of mixed light and heavy mixing under pressure. The study indicates that the center carbon segregation index of a high carbon steel continuous casting billet is 1.05, with a carbon extreme difference of not more than 0.08% and a proportion of 98.4%. Additionally, the center shrinkage is not more than a 0.5 level with a proportion of 99.5%. Meanwhile, the internal quality of cast billets has been improved, allowing for the rolling of large-size bars with a low consolidation ratio. The pass rate for internal ultrasonic flaw detection using the GB/T4162A grade is now higher than 99.95%, significantly reducing process costs and improving production efficiency for continuous casting and rolling. Full article
Show Figures

Figure 1

16 pages, 2548 KiB  
Article
Tensile Properties of a Non-Equiatomic Ni–Co–V Medium Entropy Alloy at Cryogenic Temperature
by Dawei Zhou, Caijuan Shi, Caixia Wang, Ruixin Sheng, Weidong Li and Yang Tong
Metals 2024, 14(5), 590; https://doi.org/10.3390/met14050590 - 17 May 2024
Viewed by 811
Abstract
The development of strong and ductile alloys for application in cryogenic temperatures has long been sought after. In this work, we have developed a face-centered cubic Ni10Co56.5V33.5 multi-principal element alloy (MPEA) that exhibits a balanced combination of high [...] Read more.
The development of strong and ductile alloys for application in cryogenic temperatures has long been sought after. In this work, we have developed a face-centered cubic Ni10Co56.5V33.5 multi-principal element alloy (MPEA) that exhibits a balanced combination of high strength and good ductility at 77 K, based on the considerations of large local lattice distortion (LLD) and low stacking fault energy. The small-grained Ni10Co56.5V33.5 MPEA exhibits a yield strength of 1400 MPa and an ultimate tensile strength of 1890 MPa, while preserving a good ductility of 23%. Moreover, precession electron diffraction and transmission electron microscopy revealed multiple deformation mechanisms, including wavy dislocations, atypically severely twisted dislocation bands, hierarchical stacking faults, and deformation twins, which are implicated in the alloy’s outstanding mechanical performance. These insights offer a strategic guide for the design of strong and ductile alloys, particularly for utilization in extreme environments. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

40 pages, 10987 KiB  
Review
An Overview Analysis of Current Research Status in Iron Oxides Reduction by Hydrogen
by Zuzana Miškovičová, Jaroslav Legemza, Peter Demeter, Branislav Buľko, Slavomír Hubatka, Martina Hrubovčáková, Peter Futáš and Róbert Findorák
Metals 2024, 14(5), 589; https://doi.org/10.3390/met14050589 - 17 May 2024
Viewed by 2963
Abstract
This paper focuses on the study of current knowledge regarding the use of hydrogen as a reducing agent in the metallurgical processes of iron and steel production. This focus is driven by the need to introduce environmentally suitable energy sources and reducing agents [...] Read more.
This paper focuses on the study of current knowledge regarding the use of hydrogen as a reducing agent in the metallurgical processes of iron and steel production. This focus is driven by the need to introduce environmentally suitable energy sources and reducing agents in this sector. This theoretical study primarily examines laboratory research on the reduction of Fe-based, metal-bearing materials. The article presents a critical analysis of the reduction in iron oxides using hydrogen, highlighting the advantages and disadvantages of this method. Most experimental facilities worldwide employ their unique original methodologies, with techniques based on Thermogravimetric analysis (TGA) devices, fluidized beds, and reduction retorts being the most common. The analysis indicates that the mineralogical composition of the Fe ores used plays a crucial role in hydrogen reduction. Temperatures during hydrogen reduction typically range from 500 to 900 °C. The reaction rate and degree of reduction increase with higher temperatures, with the transformation of wüstite to iron being the slowest step. Furthermore, the analysis demonstrates that reduction of iron ore with hydrogen occurs more intensively and quickly than with carbon monoxide (CO) or a hydrogen/carbon monoxide (H2/CO) mixture in the temperature range of 500 °C to 900 °C. The study establishes that hydrogen is a superior reducing agent for iron oxides, offering rapid reduction kinetics and a higher degree of reduction compared to traditional carbon-based methods across a broad temperature range. These findings underscore hydrogen’s potential to significantly reduce greenhouse gas emissions in the steel production industry, supporting a shift towards more sustainable manufacturing practices. However, the implementation of hydrogen as a primary reducing agent in industrial settings is constrained by current technological limitations and the need for substantial infrastructural developments to support large-scale hydrogen production and utilization. Full article
Show Figures

Figure 1

22 pages, 10891 KiB  
Article
Effect of Hydrogen Charging on the Mechanical Properties of High-Strength Copper-Base Alloys, Austenitic Stainless Steel AISI 321, Inconel 625 and Ferritic Steel 1.4511
by Jens Jürgensen, Andreas Frehn, Klaus Ohla, Sandra Stolz and Michael Pohl
Metals 2024, 14(5), 588; https://doi.org/10.3390/met14050588 - 17 May 2024
Viewed by 1418
Abstract
Hydrogen embrittlement (HE) poses the risk of premature failure for many metals, especially high-strength steels. Due to the utilization of hydrogen as an environmentally friendly energy source, efforts are made to improve the resistance to HE at elevated pressures and temperatures. In addition, [...] Read more.
Hydrogen embrittlement (HE) poses the risk of premature failure for many metals, especially high-strength steels. Due to the utilization of hydrogen as an environmentally friendly energy source, efforts are made to improve the resistance to HE at elevated pressures and temperatures. In addition, applications in hydrogen environments might require specific material properties in terms of thermal and electrical conductivity, magnetic properties as well as corrosion resistance. In the present study, three high-strength Cu-base alloys (Alloy 25, PerforMet® and ToughMet® 3) as well as austenitic stainless AISI 321, Ni-base alloy IN 625 and ferritic steel 1.4511 are charged in pressurized hydrogen and subsequently tested by means of Slow Strain Rate Testing (SSRT). The results show that high-strength Cu-base alloys exhibit a great resistance to HE and could prove to be suitable for materials for a variety of hydrogen applications with rough conditions such as high pressure, elevated temperature and corrosive environments. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals and Alloys)
Show Figures

Figure 1

18 pages, 7024 KiB  
Article
Effect of Pre-Weld Heat Treatment on the Microstructure and Properties of Coarse-Grained Heat-Affected Zone of a Wind Power Steel after Simulated Welding
by Zhixing Wang, Xuelin Wang and Chengjia Shang
Metals 2024, 14(5), 587; https://doi.org/10.3390/met14050587 - 17 May 2024
Cited by 1 | Viewed by 897
Abstract
The effect of pre-weld heat treatment on the microstructure and low-temperature impact toughness of the coarse-grained heat-affected zone (CGHAZ) after simulated welding was systematically investigated through the utilization of scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD). The Charpy impact test validated [...] Read more.
The effect of pre-weld heat treatment on the microstructure and low-temperature impact toughness of the coarse-grained heat-affected zone (CGHAZ) after simulated welding was systematically investigated through the utilization of scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD). The Charpy impact test validated the presence of an optimal pre-weld heat treatment condition, resulting in the highest impact toughness observed in the CGHAZ. Three temperatures for pre-weld heat treatment (690, 720 and 750 °C) were used to obtain three different matrices (Steel 1, Steel 2, Steel 3) for simulated welding. The optimal pre-weld heat treatment is 720 °C for 15 min followed by water quench. Microstructure characterization showed that there is an evident microstructure comprising bainite (B) in Steel 1 and Steel 2 after pre-weld heat treatment, while the addition of martensite (M) with the pre-weld heat treatment temperature exceeds Ac1 by almost 60 °C (Steel 3). These differences in microstructures obtained from pre-weld heat treatment influence the refinement of high-temperature austenite during subsequent simulated welding reheating processes, resulting in distinct microstructural characteristics in the CGHAZ. After the optimal pre-weld heat treatment, Steel 2 subjected to single-pass welding thermal simulation demonstrates a refined microstructure characterized by a high density of high-angle grain boundaries (HAGBs) within the CGHAZ, particularly evident in block boundaries. These boundaries effectively prevent the propagation of brittle cracks, thereby enhancing the impact toughness. Full article
(This article belongs to the Special Issue Recent Advances in Welding Technology of Alloys and Metals)
Show Figures

Graphical abstract

13 pages, 10598 KiB  
Article
Solidification Mechanism of Microstructure of Al-Si-Cu-Ni Alloy Manufactured by Laser Powder Bed Fusion and Mechanical Properties Effect
by Zhichao Shi, Pengfei Yan and Biao Yan
Metals 2024, 14(5), 586; https://doi.org/10.3390/met14050586 - 17 May 2024
Viewed by 957
Abstract
Based on previous work, where Al-Si-Cu-Ni alloy was successfully manufactured by laser powder bed fusion (PBF-LB/M) technology, in this study, we further observe the microstructure of the alloy, analyze the formation mechanism of the microstructure during solidification, and discuss their implications for the [...] Read more.
Based on previous work, where Al-Si-Cu-Ni alloy was successfully manufactured by laser powder bed fusion (PBF-LB/M) technology, in this study, we further observe the microstructure of the alloy, analyze the formation mechanism of the microstructure during solidification, and discuss their implications for the mechanical properties. The results indicate that the microstructure comprises multi-level cellular heterogeneous structures, with an α-Al matrix in the interior of the cellular structure and Cu- and Ni-rich phases clustered at the boundaries, intertwined with the silicon network. During solidification, α-Al solidifies first and occupies the core of the cells, while Si phases and Cu- and Ni-rich phases deposit along the cellular boundaries under the influence of surface tension. During the solidification process of cellular boundaries, influenced by spinodal decomposition and lattice spacing, Si phases and Cu- and Ni-rich phases interconnect and distribute crosswise, collectively forming multi-level cellular structures. The refined cellular microstructure of the PBF-LB/M Al-Si-Cu-Ni alloy enhances the mechanical properties of the alloy. The alloy exhibits a bending strength of 766 ± 30 MPa, a tensile strength and yield strength of 437 ± 6 MPa and 344 ± 4 MPa, respectively, with a relatively low fracture elongation of approximately 1.51 ± 0.07%. Subsequent improvement can be achieved through appropriate heat treatment processes. Full article
(This article belongs to the Special Issue Additive Manufacturing of Light Metal Alloys)
Show Figures

Figure 1

21 pages, 4690 KiB  
Article
Predictive Modelling and Optimization of the Mechanical Properties of Laser-Coated NB/SiC/Ni Welds Using an ANFIS
by Zhe Zou, Juan Chen and Ming-Der Jean
Metals 2024, 14(5), 585; https://doi.org/10.3390/met14050585 - 16 May 2024
Viewed by 788
Abstract
In the present work, predictive modelling and optimization with the adaptive network based fuzzy inference system (ANFIS) modelling of the mechanical properties of laser-coated NB/SiC/Ni welds was studied based on the Taguchi design by laser cladding. An ANFIS model based on a Sugeno [...] Read more.
In the present work, predictive modelling and optimization with the adaptive network based fuzzy inference system (ANFIS) modelling of the mechanical properties of laser-coated NB/SiC/Ni welds was studied based on the Taguchi design by laser cladding. An ANFIS model based on a Sugeno type fuzzy inference system was developed for predicting the hardness properties of SiC/BN/Ni welds by laser cladding with experimental data required for network training and prediction. Based on analysis of variance, three important factors were taken as inputs for the fuzzy logic inferences, while the hardness properties were taken as the output of the ANFIS. The microstructure of welds was analysed using scanning electron microscopy with an energy-dispersive X-Ray spectrometer. Highly developed leaf-like dendrites and eutectic crystals were found in some areas of the melting zone for the BN/SiC/Ni weld, which was significantly hardened. The ANFIS model based on Taguchi’s design provides a better pattern of response because the predicted and experimental values were highly similar. As a result, a satisfactory result was achieved between the predicted and experimental values of hardness in laser-coated NB/SiC/Ni welds, whereby the success and validity of the method was verified. Full article
Show Figures

Figure 1

21 pages, 9047 KiB  
Article
Large-Scale Multi-Phase-Field Simulation of 2D Subgrain Growth
by Ali Khajezade, Warren J. Poole, Michael Greenwood and Matthias Militzer
Metals 2024, 14(5), 584; https://doi.org/10.3390/met14050584 - 16 May 2024
Viewed by 899
Abstract
The characteristics of subgrains in a deformed state after the high-temperature deformation of aluminum alloys control the subsequent recrystallization process and corresponding mechanical properties. In this study, systematic 2D phase-field simulations have been conducted to determine the role of deformed state parameters such [...] Read more.
The characteristics of subgrains in a deformed state after the high-temperature deformation of aluminum alloys control the subsequent recrystallization process and corresponding mechanical properties. In this study, systematic 2D phase-field simulations have been conducted to determine the role of deformed state parameters such as subgrain size and disorientation distributions on subgrain growth in an individual grain representing a single crystallographic orientation. The initial subgrain size and disorientation distributions have been varied by ±50%. To have a statistically relevant number of subgrains, large-scale simulations have been conducted using an in-house-developed phase-field code that takes advantage of distributed computing. The results of these simulations indicate that the growth of subgrains reaches a self-similar regime regardless of the initial subgrain structure. A narrower initial subgrain size distribution leads to faster growth rates, but it is the initial disorientation distribution that has a larger impact on the growth of subgrains. The results are discussed in terms of the evolution of the average diameter of subgrains and the average disorientation in the microstructure. Full article
Show Figures

Figure 1

20 pages, 8717 KiB  
Article
Investigation of Surface Integrity of 304 Stainless Steel in Turning Process with Nanofluid Minimum-Quantity Lubrication Using h-BN Nanoparticles
by Min Fu, Guangchun Xiao, Hui Chen, Jingjie Zhang, Mingdong Yi, Zhaoqiang Chen and Chonghai Xu
Metals 2024, 14(5), 583; https://doi.org/10.3390/met14050583 - 16 May 2024
Cited by 1 | Viewed by 836
Abstract
This paper investigates the influence of the concentration and particle size of h-BN nanoparticles in a nanofluid on the surface integrity of 304 austenitic stainless steel during turning, focusing on the cutting force, friction coefficient, cutting temperature, surface roughness, surface residual stress, work [...] Read more.
This paper investigates the influence of the concentration and particle size of h-BN nanoparticles in a nanofluid on the surface integrity of 304 austenitic stainless steel during turning, focusing on the cutting force, friction coefficient, cutting temperature, surface roughness, surface residual stress, work hardening capacity, and 3D surface topography. The results show that, compared to dry cutting, the addition of 3 wt.% h-BN nanofluid can reduce the friction coefficient on the rake face by 38.9%, lower the cutting temperature by 43.5%, decrease the surface roughness by 53.8%, decrease the surface residual stress by 61.6%, and reduce the work hardening degree by 27.5%. Two-dimensional profiles and the 3D surface topography display a more balanced peak–valley distribution. Furthermore, by studying the effect of different h-BN particle sizes in nanofluids on the surface integrity of the machined workpiece, it was found that nanoscale particles have a greater tendency to penetrate the tool–chip interface than submicron particles. Moreover, the h-BN particles in the nanofluid play a “rolling effect” and “microsphere” effect, and the sesame oil will also form a lubricating oil film in the knife-chip contact area, thereby reducing the friction coefficient, reducing the cutting force, and improving the machining surface quality. Full article
Show Figures

Figure 1

13 pages, 7428 KiB  
Article
Effects of Strain Rate on the GND Characteristics of Deformed Polycrystalline Pure Copper
by Yidan Ma, Guisen Liu, Shuqing Yang, Ran Chen, Shuopeng Xu and Yao Shen
Metals 2024, 14(5), 582; https://doi.org/10.3390/met14050582 - 16 May 2024
Cited by 1 | Viewed by 1019
Abstract
Geometrically necessary dislocations (GNDs) play a pivotal role in polycrystalline plastic deformation, with their characteristics notably affected by strain rate and other factors, but the underlying mechanisms are not well understood yet. We investigate GND characteristics in pure copper polycrystals subjected to tensile [...] Read more.
Geometrically necessary dislocations (GNDs) play a pivotal role in polycrystalline plastic deformation, with their characteristics notably affected by strain rate and other factors, but the underlying mechanisms are not well understood yet. We investigate GND characteristics in pure copper polycrystals subjected to tensile deformation at varying strain rates (0.001 s−1, 800 s−1, 1500 s−1, 2500 s−1). EBSD analysis reveals a non-linear increase in global GND density with the strain rate rising, and a similar trend is also observed for local GND densities near the grain boundaries and that in the grain interiors. Furthermore, GND density decreases from the grain boundaries towards the grain interiors and this decline slows down at high strain rates. The origin of these trends is revealed by the connections between the GND characteristics and the behaviors of relevant microstructural components. The increase in grain boundary misorientations at higher strain rates promotes the increase of GND density near the grain boundaries. The denser distribution of dislocation cells, observed previously at high strain rates, is presumed to increase the GND density in the grain interiors and may also contribute to the slower decline in GND density near the grain boundaries. Additionally, grain refinement by higher strain rates also promotes the increase in total GND density. Further, the non-linear variation with respect to the strain rate, as well as the saturation at high strain rates, for grain boundary misorientations and grain sizes align well with the non-linear trend of GND density, consolidating the intimate connections between the characteristics of GNDs and the behaviors of these microstructure components. Full article
Show Figures

Figure 1

12 pages, 29069 KiB  
Article
Zr as an Alternative Grain Refiner in the Novel AlSi5Cu2Mg Alloy
by Dana Bolibruchová, Marek Matejka, Lukáš Širanec and Martin Švec
Metals 2024, 14(5), 581; https://doi.org/10.3390/met14050581 - 15 May 2024
Viewed by 1029
Abstract
Al-Si-Cu-Mg alloys are among the most significant types of aluminum alloys, accounting for 85–90% of all castings used in the automotive sector. These alloys are used, for example, in the manufacturing of engine blocks and cylinder heads due to their excellent specific strength [...] Read more.
Al-Si-Cu-Mg alloys are among the most significant types of aluminum alloys, accounting for 85–90% of all castings used in the automotive sector. These alloys are used, for example, in the manufacturing of engine blocks and cylinder heads due to their excellent specific strength (ratio of strength to specific weight) and superior castability and thermal conductivity. This study investigated the effect of using Zr as an alternative grain refiner in the novel AlSi5Cu2Mg cylinder head alloy. The microstructure of this alloy could not be refined via common Al-Ti-B grain refiners due to its specifically designed chemical composition, which limits the maximum Ti content to 0.03 wt.%. The results showed that the addition of Zr via the AlZr20 master alloy led to a gradual increase in the solidus temperature and to the grain refinement of the microstructure with the addition of as little as 0.05 wt.% Zr. The addition of more Zr (0.10, 0.15, and 0.20 wt.%) led to a gradual grain refinement effect for the alloy. The presence of Zr in the AlSi5Cu2Mg alloy was reflected in the formation of Zr-rich intermetallic phases with acicular morphology. Such phases acted as potent nucleants for the α-Al grain. Full article
(This article belongs to the Special Issue Grain Refinement and Mechanical Properties of Cast Alloys)
Show Figures

Graphical abstract

19 pages, 3276 KiB  
Article
Analysis of Shift in Nil-Ductility Transition Reference Temperature for RPV Steels Due to Irradiation Embrittlement Using Probability Distributions and Gamma Process
by Kaikai Tang, Yan Li, Yuebing Li, Weiya Jin and Jiameng Liu
Metals 2024, 14(5), 580; https://doi.org/10.3390/met14050580 - 15 May 2024
Viewed by 927
Abstract
Reactor pressure vessel (RPV) steels are highly susceptible to irradiation embrittlement due to prolonged exposure to high temperature, high pressure, and intense neutron irradiation. This leads to the shift in nil-ductility transition reference temperature—∆RTNDT. The change in ∆RTNDT follows a [...] Read more.
Reactor pressure vessel (RPV) steels are highly susceptible to irradiation embrittlement due to prolonged exposure to high temperature, high pressure, and intense neutron irradiation. This leads to the shift in nil-ductility transition reference temperature—∆RTNDT. The change in ∆RTNDT follows a certain distribution pattern and is impacted by factors including chemical composition, neutron fluence, and irradiation temperature. Existing empirical procedures can estimate ∆RTNDT based on fitting extensive irradiation embrittlement data, but their reliability has not been thoroughly investigated. Probability statistical distributions and the Gamma stochastic process were performed to model material property degradation in RPV steels from a pressurized water reactor due to irradiation embrittlement, with the probability models considered being normal, Weibull, and lognormal distributions. Comparisons with existing empirical procedures showed that the Weibull distribution model and the Gamma stochastic model demonstrate good reliability in predicting ∆RTNDT for RPV steels. This provides a valuable reference for studying irradiation embrittlement in RPV materials. Full article
(This article belongs to the Special Issue Advances in Nuclear Reactor Pressure Vessel Steels)
Show Figures

Figure 1

22 pages, 27655 KiB  
Article
Research on and Application of Feature Recognition and Intelligent Retrieval Method for Multi-Component Alloy Powder Injection Molding Gear Based on Partition Templates
by Yan Kong, Xiaoyi Cui, Zhibing Zhang and Yuqi Liu
Metals 2024, 14(5), 579; https://doi.org/10.3390/met14050579 - 14 May 2024
Viewed by 1278
Abstract
The forming process of multi-alloy gears by metal powder injection molding is tedious, and the current design process mainly depends on the experience of designers, which seriously affects the product development cycle and forming quality. In order to solve the problem of the [...] Read more.
The forming process of multi-alloy gears by metal powder injection molding is tedious, and the current design process mainly depends on the experience of designers, which seriously affects the product development cycle and forming quality. In order to solve the problem of the gear feature expression being missing, which hinders the automatic retrieval of similar parts in the analogical design process, a feature recognition and intelligent retrieval method for a multi-alloy powder injection molding gear based on partition templates is proposed in this paper. The partition templates of the gear are defined, and gear digitization is completed by using the automatic recognition algorithm. Searching for similar gear parts in the knowledge base, designers can analogically design the forming process for new parts according to the mature process of the parts in the knowledge base. The automatic identification and intelligent retrieval system developed according to this method has been implemented in two MIM (metal injection molding) product manufacturing enterprises. Case studies and industrial applications have proved the effectiveness of the system, the efficiency of identification and retrieval has been improved by more than 97%, and the number of mold tests has been reduced by 60%. Full article
(This article belongs to the Special Issue Structural and Functional Performances of Multi-Component Alloys)
Show Figures

Figure 1

21 pages, 5683 KiB  
Article
An Enhanced Approach for High-Strain Plasticity in Flat Anisotropic Specimens with Progressively Distorting Neck Sections
by Giuseppe Mirone, Raffaele Barbagallo, Giuseppe Bua, Pietro Licignano and Michele Maria Tedesco
Metals 2024, 14(5), 578; https://doi.org/10.3390/met14050578 - 14 May 2024
Cited by 1 | Viewed by 1070
Abstract
Characterizing the behavior of ductile metals at high strains is essential in various fields. In the case of thin sheets, rectangular cross-section specimens are used to characterize these materials, typically by tensile tests. Unlike cylindrical specimens, flat ones pose additional challenges for the [...] Read more.
Characterizing the behavior of ductile metals at high strains is essential in various fields. In the case of thin sheets, rectangular cross-section specimens are used to characterize these materials, typically by tensile tests. Unlike cylindrical specimens, flat ones pose additional challenges for the hardening characterization at high strains, especially in the post-necking phase, which, for many high-strength steels, may cover most of the plastic strain range. After the onset of global necking, the rectangular cross-sections tend to distort with respect to their original shape, as their edges progressively curve and bulge inward. The localized necking occurring after the global one in thinner specimens, further distorts the necked zone. Additionally, sheet metals usually exhibit anisotropic characteristics that affect the derivation of the stress–strain curve and need to be dealt with. No exact method exists for the stress–strain characterization of ductile thin sheets at high strains from tensile tests. Although several approximate methods are available in the literature, they either discard the post-necking range or require highly advanced and complex experimental setups not suitable for industrial applications (e.g., 3D DIC). Then, this work proposes a relatively simple methodology for the experimental characterization of anisotropic thin sheet metals through tensile tests on rectangular cross-section specimens that delivers the true stress–strain curve of the material, extended over the necking range and up to fracture, accurately assessing the anisotropy and the distortion of the neck section. The proposed methodology, employing a standard single-camera experimental setup, is illustrated here, referring to four different steels for automotive applications with reference to a single material orientation; it is intended as representative of the repeated procedure involving tensile tests along 3 or more material directions in order to describe the whole anisotropic plastic response. A detailed comparison between the novel methodology and four other common approaches is carried out, highlighting the differences and the enhanced capabilities of the novel one proposed. Full article
(This article belongs to the Special Issue Feature Papers in Structural Integrity of Metals)
Show Figures

Figure 1

15 pages, 7268 KiB  
Article
Thermomechanical Pathways for Accurate Microstructural Control of Ti–7Ag Alloy: Towards a New Generation of Antibacterial Materials for Medical Applications
by Julie Deya, Stéphanie Delannoy, Philippe Vermaut and Frédéric Prima
Metals 2024, 14(5), 577; https://doi.org/10.3390/met14050577 - 14 May 2024
Cited by 1 | Viewed by 1144
Abstract
This study delved into exploring microstructural states in a Ti–7Ag alloy to achieve targeted functional and structural properties. Specifically, the focus was on attaining a homogeneously precipitated state and a solid solution, known for their potential to combine functional traits like corrosion resistance [...] Read more.
This study delved into exploring microstructural states in a Ti–7Ag alloy to achieve targeted functional and structural properties. Specifically, the focus was on attaining a homogeneously precipitated state and a solid solution, known for their potential to combine functional traits like corrosion resistance and antibacterial activity with structural properties such as mechanical strength. However, obtaining these optimized microstructures presents challenges due to kinetic considerations. A key finding of this study was the crucial role of a pre-deformation stage, prior to heat treatment, to create an even distribution of fine Ti2Ag precipitates. Moreover, we demonstrated that starting from this precipitated state, a controlled dissolution step could yield a single-phase solid solution with similar grain size. Therefore, a tailored set of thermomechanical treatments was developed to achieve both microstructures, and these metallurgical states were fully characterized combining SEM (BSE imaging and EDS analysis), TEM, and XRD. Associated mechanical properties were also assessed by tensile testing. In addition, the process was proven to be robust enough to overcome potential industrial problems, such as slow cooling rates when water-quenching large ingots. Considering the limited existing documentation on microstructural features in Ti–Ag alloys, this work on this model alloy significantly advanced our current understanding of the broader Ti–Ag alloy system by providing new data and showcasing a tailored approach involving thermomechanical treatments. Full article
Show Figures

Figure 1

21 pages, 13201 KiB  
Article
Estimation of Mechanical Properties of Aluminum Alloy Based on Indentation Curve and Projection Area of Contact Zone
by Yunfeng Bai and Chunguo Liu
Metals 2024, 14(5), 576; https://doi.org/10.3390/met14050576 - 13 May 2024
Viewed by 1233
Abstract
This study proposes a method for determining aluminum alloys’ yield stress and hardening index based on indentation experiments and finite element simulations. Firstly, the dimensionless analysis of indentation variables was performed on three different aluminum alloys using the same maximum indentation depth to [...] Read more.
This study proposes a method for determining aluminum alloys’ yield stress and hardening index based on indentation experiments and finite element simulations. Firstly, the dimensionless analysis of indentation variables was performed on three different aluminum alloys using the same maximum indentation depth to obtain load-displacement curves. Then, laser confocal microscopy was used to observe the residual indentation morphology. And four dimensionless parameters were derived from the load-displacement curves while another dimensionless parameter was obtained from the projection area of the contact zone. Subsequently, a genetic algorithm was employed to solve these five dimensionless parameters and estimate the yield stress and hardening index. Finally, the predicted results are compared with uniaxial tensile experiments and the results obtained are essentially the same. The yield stress and hardening index can be predicted using this method. And an example is used to verify that this method enables predictions for unidentified “mysterious material” and the expected results agree with the experiments. Full article
Show Figures

Figure 1

34 pages, 2290 KiB  
Review
A Comprehensive Understanding of Thermal Barrier Coatings (TBCs): Applications, Materials, Coating Design and Failure Mechanisms
by Maria Bogdan and Ildiko Peter
Metals 2024, 14(5), 575; https://doi.org/10.3390/met14050575 - 13 May 2024
Cited by 4 | Viewed by 3867
Abstract
This review offers a comprehensive analysis of thermal barrier coatings (TBCs) applied to metallic materials. By reviewing the recent literature, this paper reports on a collection of technical information, involving the structure and role of TBCs, various materials and coating processes, as well [...] Read more.
This review offers a comprehensive analysis of thermal barrier coatings (TBCs) applied to metallic materials. By reviewing the recent literature, this paper reports on a collection of technical information, involving the structure and role of TBCs, various materials and coating processes, as well as the mechanisms involved in the durability and failure of TBCs. Although TBCs have been successfully utilized in advanced applications for nearly five decades, they continue to be a subject of keen interest and ongoing study in the world of materials science, with overviews of the field’s evolution remaining ever relevant. Thus, this paper outlines the current requirements of the main application areas of TBCs (aerospace, power generation and the automotive and naval industries) and the properties and resistance to thermal, mechanical and chemical stress of the different types of materials used, such as zirconates, niobates, tantalates or mullite. Additionally, recent approaches in the literature, such as high-entropy coatings and multilayer coatings, are presented and discussed. By analyzing the failure processes of TBCs, issues related to delamination, spallation, erosion and oxidation are revealed. Integrating TBCs with the latest generations of superalloys, as well as examining heat transfer mechanisms, could represent key areas for in-depth study. Full article
Show Figures

Figure 1

17 pages, 85567 KiB  
Article
High Temperature Oxidation Behavior of High Al-Si Alloyed Vermicular Graphite Cast Iron for Internal Combustion Engine’s Hot-End Exhaust Components
by Rifat Yilmaz, Fatma Bayata and Nuri Solak
Metals 2024, 14(5), 574; https://doi.org/10.3390/met14050574 - 13 May 2024
Viewed by 1045
Abstract
This study investigated the influence of high silicon (4.2 wt%) and varying aluminum (3.5–4.8 wt%) content on the high temperature oxidation behavior and thermophysical properties of SiMoAl vermicular graphite cast iron for hot-end exhaust components. Isothermal oxidation tests at 800 °C and nonisothermal [...] Read more.
This study investigated the influence of high silicon (4.2 wt%) and varying aluminum (3.5–4.8 wt%) content on the high temperature oxidation behavior and thermophysical properties of SiMoAl vermicular graphite cast iron for hot-end exhaust components. Isothermal oxidation tests at 800 °C and nonisothermal oxidation tests in a dry-air atmosphere were conducted on SiMo nodular iron, along with two SiMoAl vermicular graphite cast iron variants alloyed with 3.5 wt% Al and 4.8 wt% Al. The investigations revealed the formation of a thin duplex layer of oxide scale, consisting of an iron-rich external oxide layer and continuous aluminum oxide at the metal/oxide interface. Although aluminum oxide acted as a protective barrier by impeding the solid-state diffusion of oxygen, severe subsurface oxidation was observed due to the interconnected vermicular graphite covered by aluminum oxides after decarburization. Furthermore, based on nonisothermal oxidation experiments, the effective activation energy of oxidation was found to be significantly increased by the addition of aluminum, even though the oxidation activation energies of SiMoAl samples exhibited small changes in comparison to each other. Additionally, thermophysical analysis demonstrated a substantial decrease in the thermal conductivity and a slight increase in the thermal expansion with the addition of aluminum. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop