Next Issue
Volume 16, June
Previous Issue
Volume 16, April
 
 

Insects, Volume 16, Issue 5 (May 2025) – 111 articles

Cover Story (view full-size image): Despite their importance for monitoring and conservation, modern inventories of Lepidoptera (butterflies and moths) are lacking for countries in south-eastern Europe, including the endemism-rich island of Crete. We address this gap by critically analyzing the species inventory, incorporating validated publications, photographically documented citizen science observations, and extensive original sampling, including DNA barcode analysis of more than half of the recorded species. The checklist contains 1230 species, including 125 new faunistic records for Crete and/or Greece. Conversely, 212 previously reported species had to be removed as likely invalid. It is noteworthy that almost 10 % of the fauna lacks a clear taxonomic classification, highlighting the urgent need for integrative taxonomic research. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 4353 KiB  
Article
A Comparative Morphological Study of the Ultrastructure of Antennal Sensilla in Sclerodermus guani (Hymenoptera: Bethylidae)
by Youcheng Chen, Chunxia Wang, Xiuju Yu, Bo Wang and Zhudong Liu
Insects 2025, 16(5), 547; https://doi.org/10.3390/insects16050547 - 21 May 2025
Viewed by 731
Abstract
The morphology, number, and distribution of antennal sensilla differ between males and females, reflecting adaptations to sex-specific ecological roles and life histories. In this study, scanning electron microscopy was employed to examine the antennal structure and sensilla types of adult males and females [...] Read more.
The morphology, number, and distribution of antennal sensilla differ between males and females, reflecting adaptations to sex-specific ecological roles and life histories. In this study, scanning electron microscopy was employed to examine the antennal structure and sensilla types of adult males and females of Sclerodermus guani Xiao et Wu 1983 (Hymenoptera: Bethylidae), with a focus on identifying morphological differences between the sexes. The results revealed that the antennae of both sexes are geniculate; however, female antennae are shorter and broader than those of males. Each antenna comprises 13 segments, including a scape (1 segment), a pedicel (1 segment), and a flagellum (11 segments). Eight distinct types of sensilla were identified on the antennae of both males and females, with notable sex-specific differences in sensilla types and subtypes. Trichoid sensilla subtype III was found exclusively in males, whereas long basiconic sensilla and basiconic sensilla subtype II were unique to females. More than 70% of the antennal sensilla in both sexes were olfactory in nature, highlighting their predominant role in chemical detection. The observed sexual dimorphism in the morphology and distribution of olfactory sensilla suggests functional specialization, potentially linked to host localization in females and mate location in males. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

13 pages, 3764 KiB  
Article
Population Genomics and Morphology Provide Insights into the Conservation and Diversity of Apis laboriosa
by Ri Liu, Xuntao Ma, Longfu Zhang, Kang Lai, Changbin Shu, Bin Wang, Mingwang Zhang and Mingxian Yang
Insects 2025, 16(5), 546; https://doi.org/10.3390/insects16050546 - 21 May 2025
Viewed by 531
Abstract
In recent decades, honeybee populations have declined, dramatically owing to destructive honey harvesting practices and the loss of foraging grounds and nesting sites. Among them, Apis laboriosa Smith, 1871 (Hymenoptera, Apidae), an important pollinator species found in the Himalayan region, holds significant economic [...] Read more.
In recent decades, honeybee populations have declined, dramatically owing to destructive honey harvesting practices and the loss of foraging grounds and nesting sites. Among them, Apis laboriosa Smith, 1871 (Hymenoptera, Apidae), an important pollinator species found in the Himalayan region, holds significant economic and ecological value. However, conservation efforts and intraspecific taxonomic studies regarding it have been rather limited, and thus its full geographic range remains elusive. This study is the first to research A. laboriosa in Sichuan. Through a systematic study integrating morphological feature analysis and genomic data, the following conclusions are drawn. Whole-genome resequencing data analysis reveals that the Sichuan population forms a new monophyletic group (Bootstraps = 100). In the past ten thousand years, the population sizes of A. laboriosa in four different regions of China have been decreasing rapidly. Measures should be taken to protect them across the entire distribution range, especially the populations in Tibet and Sichuan, due to their relatively large genetic differences and low intra-population genetic diversity. Based on the significant difference analysis, the following four wing vein morphological features with extremely significant differences were identified: the width of the right forewing (FB), the cubital index a/b (Ci), the forewing vein angle (E9), and the forewing vein angle (K19). These findings are expected to offer a valuable reference for future A. laboriosa conservation endeavors, particularly in protecting populations with a high level of genetic differentiation. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

22 pages, 8365 KiB  
Article
RDW-YOLO: A Deep Learning Framework for Scalable Agricultural Pest Monitoring and Control
by Jiaxin Song, Ke Cheng, Fei Chen and Xuecheng Hua
Insects 2025, 16(5), 545; https://doi.org/10.3390/insects16050545 - 21 May 2025
Viewed by 472
Abstract
Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances [...] Read more.
Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO’s potential for precise and efficient pest detection in sustainable agriculture. Full article
Show Figures

Figure 1

15 pages, 3200 KiB  
Article
20-Hydroxyecdysone Modulates Bmp53-Mediated Apoptosis Regulation by Suppressing Mdm2-like-Dependent Ubiquitination in Silkworm, Bombyx mori
by Meixian Wang, Dingding Han, Luyang Xiang, Jiahao Wang, Benteng Luo and Xingjia Shen
Insects 2025, 16(5), 544; https://doi.org/10.3390/insects16050544 - 21 May 2025
Viewed by 436
Abstract
In the silkworm, 20-hydroxyecdysone (20E) induces apoptosis and autophagy, driving larval organ degeneration and remodeling. This mechanism may be a potential target for eco-friendly strategy for insect pests. However, a major challenge in harnessing this approach lies in the insufficient understanding of 20E’s [...] Read more.
In the silkworm, 20-hydroxyecdysone (20E) induces apoptosis and autophagy, driving larval organ degeneration and remodeling. This mechanism may be a potential target for eco-friendly strategy for insect pests. However, a major challenge in harnessing this approach lies in the insufficient understanding of 20E’s regulatory process in such a cell death mechanism. Our previous research has identified Bmp53 as a crucial gene in promoting the development of Bombyx mori during the pupal stage by inducing apoptosis, and has predicted the potential apoptotic regulatory network of Bmp53, wherein Mdm2-like ubiquitinating structural protein serves as a key component of this network. This study demonstrates that Mdm2-like acts as a ubiquitination regulatory protein, controlling its apoptosis-inducing activity via interaction with Bmp53. Moreover, co-expression of Mdm2-like and Bmp53 indirectly affects gene expression in the 20E-mediated apoptosis pathway. Further investigation revealed that Mdm2-like suppresses 20E-induced apoptosis by downregulating Bmp53 expression. This study reveals that the ubiquitination-mediated Mdm2-like/Bmp53 apoptosis pathway is a novel mechanism regulating silkworm apoptosis, with 20E playing a crucial role in this process. These findings enhance our understanding of the genetic mechanisms underlying tissue degradation during the metamorphic stage of the Bombyx mori. Additionally, these insights provide a theoretical reference for the development of environmentally friendly, hormone-based control strategies targeting protein modification as a means of managing lepidopteran pests. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 2427 KiB  
Article
Mitogenomic Characterization and Comparative Analysis of Three Egg Parasitoid Wasps Parasitizing Nilaparvata lugens (Stål)
by Wei He, Tingting Li, Liyang Wang, Hongxuan Wu, Jie Wang and Qiang Zhou
Insects 2025, 16(5), 543; https://doi.org/10.3390/insects16050543 - 20 May 2025
Viewed by 463
Abstract
This study reports the first complete mitochondrial genomes of three egg parasitoid wasps parasitizing Nilaparvata lugensPseudoligosita nephotetticum, Anagrus frequens, and Anagrus nilaparvatae. Genome sizes ranged from 15,429 to 15,889 bp, with all three mitogenomes displaying strong A + [...] Read more.
This study reports the first complete mitochondrial genomes of three egg parasitoid wasps parasitizing Nilaparvata lugensPseudoligosita nephotetticum, Anagrus frequens, and Anagrus nilaparvatae. Genome sizes ranged from 15,429 to 15,889 bp, with all three mitogenomes displaying strong A + T bias, standard gene content, and characteristic strand asymmetries. While A. frequens and A. nilaparvatae exhibited conserved gene orders, extensive gene rearrangements, including multiple inversions in both protein-coding genes (PCGs) and tRNAs, were observed in P. nephotetticum. Codon usage analyses revealed a preference for codons ending in A or U. The non-synonymous (Ka) to synonymous (Ks) substitution ratio analysis identified signs of positive selection in multiple PCGs, particularly in atp8, nad6, and nad3, suggesting possible adaptive evolution related to host-searching behavior. Secondary structure analyses showed the loss of trnL1 in all Anagrus species, while trnS1 and trnR lacked the DHU arm, indicating possible derived traits in Mymaridae. Phylogenetic analysis was the first time to describe the relationship of the genus Anagrus within Mymaridae from the perspective of 13 protein genes. Furthermore, the grouping of (Pseudoligosita + Megaphragma) + Trichogramma was supporting the distinct evolutionary lineage of Pseudoligosita. This work provides new molecular resources and phylogenetic insight for Chalcidoidea, with implications for parasitoid evolution and biological control strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

12 pages, 1056 KiB  
Article
Adulticidal and Repellent Activity of Essential Oils from Three Cultivated Aromatic Plants Against Musca domestica L.
by Gabriela Antonieta Oyarce, Patricia Loyola, Michelle Iubini-Aravena, Álvaro Romero, J. Concepción Rodríguez-Maciel, José Becerra and Gonzalo Silva-Aguayo
Insects 2025, 16(5), 542; https://doi.org/10.3390/insects16050542 - 20 May 2025
Viewed by 456
Abstract
The house fly, Musca domestica L., is a pest of great medical and agricultural importance, serving as a vector for various diseases and undermining the quality of agricultural products. Traditionally, synthetic insecticides have been the primary means of control; however, their efficacy has [...] Read more.
The house fly, Musca domestica L., is a pest of great medical and agricultural importance, serving as a vector for various diseases and undermining the quality of agricultural products. Traditionally, synthetic insecticides have been the primary means of control; however, their efficacy has declined over time, and they are now less preferred due to their safety and environmental concerns. This study evaluated the insecticidal and repellent properties of essential oils from Eucalyptus globulus, Foeniculum vulgare and Salvia officinalis against M. domestica. All EOs exhibited insecticidal activity: eucalyptus achieved 100% fumigant mortality at 34 µL L−1 air and showed the lowest LC50 (18.1 µL L−1 air), while fennel and sage required 50 µL L−1 air. In contrast, fennel showed the highest contact toxicity (100% mortality at 150 µL L−1). Repellency exceeded 87% for all EOs, with sage being the most repellent at the lowest concentration tested (94% at 5 µL L−1). These results highlight the potential use of essential oils and their constituents as environmentally friendly alternatives for the control of M. domestica. However, further field validation and studies on individual components and their synergistic combinations are needed to understand their efficacy and fully optimize their use. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

21 pages, 4714 KiB  
Article
Morphotype-Specific Antifungal Defense in Cacopsylla chinensis Arises from Metabolic and Immune Network Restructuring
by Jiayue Ji, Xin Gao, Zengli Hu, Ruiyan Ma and Longlong Zhao
Insects 2025, 16(5), 541; https://doi.org/10.3390/insects16050541 - 20 May 2025
Viewed by 634
Abstract
Pear psylla (Cacopsylla chinensis), a major pear tree pest widely distributed in China, is increasingly affecting the productivity of orchards. This species exhibits seasonal polyphenism with two distinct forms, namely, a summer form and a winter form. Through topically applying Beauveria [...] Read more.
Pear psylla (Cacopsylla chinensis), a major pear tree pest widely distributed in China, is increasingly affecting the productivity of orchards. This species exhibits seasonal polyphenism with two distinct forms, namely, a summer form and a winter form. Through topically applying Beauveria bassiana conidial suspensions to the abdominal cuticle of C. chinensis, we demonstrated that the entomopathogenic fungus B. bassiana exhibits significant yet phenotypically divergent virulence against these two forms. Using PacBio SMRT sequencing and Illumina RNA-seq, we analyzed transcriptomic changes post-infection, revealing form-specific immune responses, with 18,232 and 5027 differentially expressed genes identified in summer- and winter-form pear psylla, respectively, and a total of 3715 DEGs shared between the two seasonal phenotypes. In summer-form individuals, B. bassiana infection disrupted oxidative phosphorylation and downregulated immune recognition genes, cellular immune-related genes, and signaling genes, along with the upregulation of the immune inhibitor serpin, indicating immunosuppression. Conversely, in winter-form individuals, immune-related genes and glycolytic rate-limiting enzymes were upregulated after infection, suggesting that the winter-form immune system normally responds to B. bassiana infection and supports efficient defense through metabolic reprogramming to fuel energy-demanding defenses. These findings advance our understanding of C. chinensis/B. bassiana interactions, providing a basis for elucidating immune regulation in seasonally polymorphic insects. The results also inform strategies to optimize B. bassiana-based biocontrol, contributing to sustainable pear psylla management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

19 pages, 5512 KiB  
Article
Nature-Identical Safranal and Dihydrocoumarin from Ageratina adenophora ((Spreng., 1970) King and H. Rob.) Target Energy Metabolism to Control Solenopsis invicta Buren, 1972 (Hymenoptera: Formicidae)
by Mingqi Wu, Rongchao Luo, Mehboob Hussain, Wenmei Wu, Shini Li, Zijun Guo, Boyu Jia, Gaofeng Bi, Xi Gao, Guoxing Wu and Deqiang Qin
Insects 2025, 16(5), 540; https://doi.org/10.3390/insects16050540 - 20 May 2025
Viewed by 465
Abstract
The bio-prospecting of bioactive phytochemicals from invasive flora presents a sustainable paradigm for the ecologically conscious management of major invasive pest S. invicta. Ageratina adenophora, while recognized for its allelopathic insecticidal properties, exhibits poorly characterized toxicological profiles and mechanistic underpinnings against [...] Read more.
The bio-prospecting of bioactive phytochemicals from invasive flora presents a sustainable paradigm for the ecologically conscious management of major invasive pest S. invicta. Ageratina adenophora, while recognized for its allelopathic insecticidal properties, exhibits poorly characterized toxicological profiles and mechanistic underpinnings against S. invicta, warranting systematic investigation to elucidate its mode of action. This study elucidates the bioactive insecticidal compounds of A. adenophora and their toxicological impacts on S. invicta, including behavioral, metabolic, and enzymatic perturbations, via liquid chromatography–mass spectrometry (LC-MS) profiling. The ethanol extracts of the roots, stems, and leaves of A. adenophora have shown control effects on S. invicta, with an LC50 (50% lethal concentration) of 331.847, 188.256, and 166.253 mg/mL at 48 h, respectively. Metabolite profiling of A. adenophora revealed that safranal and dihydrocoumarin are relatively high in plant leaves, and they showed significant insecticidal activity and behavioral inhibitory effects on S. invicta with LC50 349.042 mg/L and 118.336 mg/L at 48 h, respectively. Notably, these two bioactive compounds disrupted the normal energy production through glucose metabolism and the citrate cycle, which eventually led to the death of S. invicta. Further, these two compounds also activated the detoxification metabolic pathway of S. invicta. These findings provide a theoretical basis for the use of these bioactive compounds in the integrated management of S. invicta and may lead to the development of a new biopesticide. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

20 pages, 8549 KiB  
Article
Ultrastructural Characterization of Developmental Stages and Head Sensilla in Portici okadai, Vector of Thelazia callipaeda
by Da Sun, Yang Luo, Yikang Wang, Hongle Cui, Yanting Gou, Juan Zhou, Bo Luo, Hui Liu, Rong Yan and Lingjun Wang
Insects 2025, 16(5), 539; https://doi.org/10.3390/insects16050539 - 20 May 2025
Viewed by 453
Abstract
Phortica okadai, a vector of Thelazia callipaeda, is associated with an increasing incidence of thelaziasis. The complex habitat and chemosensory system of P. okadai are critical for its proliferation and expansion. However, ultrastructural data across developmental stages remain limited. This study [...] Read more.
Phortica okadai, a vector of Thelazia callipaeda, is associated with an increasing incidence of thelaziasis. The complex habitat and chemosensory system of P. okadai are critical for its proliferation and expansion. However, ultrastructural data across developmental stages remain limited. This study used scanning electron microscopy to examine the ultrastructure of P. okadai developmental stages, with a focus on head sensilla. The results showed that the eggs of P. okadai are dark brown and cylindro-oval. The larvae are vermiform, divided into 11 segments. The pupae are marked by a conspicuous respiratory tubercle, and the posterior spiracle contains three distinct spiracular slits. Among five types of sensilla (trichoid, intermediate, chaetica, coeloconic, and basiconic), coeloconic, intermediate, and trichoid sensilla were predominantly found on the antennae, while basiconic and chaetica sensilla were distributed on both the antennae and the maxillary palps of P. okadai. The analysis revealed that the absence of dorsal appendages on the eggs distinguishes P. okadai from D. melanogaster. Males have longer antennae and exhibit sexual dimorphism in the length of sensilla (ChII, TB, and LB). This study provides the first comprehensive ultrastructural characterization of P. okadai developmental stages and head sensilla, laying a foundation for species identification and olfactory system research. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

16 pages, 3687 KiB  
Article
Filling the Spring Gap in Southern Australia: Seasonal Activity of Four Dung Beetle Species Selected to Be Imported from Morocco
by Hasnae Hajji, Abdellatif Janati-Idrissi, Alberto Zamprogna, José Serin, Jean-Pierre Lumaret, Nassera Kadiri, Saleta Pérez Vila, Patrick V. Gleeson, Jane Wright and Valérie Caron
Insects 2025, 16(5), 538; https://doi.org/10.3390/insects16050538 - 20 May 2025
Viewed by 430
Abstract
Dung beetles are important ecosystem engineers, as they utilize the excrement produced by animals. For nearly 60 years, several species of dung beetle have been introduced to Australia to help mitigate the problems caused by the accumulation of livestock dung. The twenty-three successfully [...] Read more.
Dung beetles are important ecosystem engineers, as they utilize the excrement produced by animals. For nearly 60 years, several species of dung beetle have been introduced to Australia to help mitigate the problems caused by the accumulation of livestock dung. The twenty-three successfully established species directly contribute to reducing the environmental impacts from dung accumulation, providing improvements to soil health, pasture productivity and pest fly reduction. Despite this success, there are still geographical and seasonal gaps in dung beetle activity, causing dung to remain on the soil surface. The continued importation of new dung beetle species is warranted to fill these gaps. One of the significant remaining gaps is during spring in southern Australia. Four spring-active dung species from Morocco were selected for a new importation program (2018–2022): Euonthophagus crocatus, Onthophagus vacca, Onthophagus marginalis subsp. andalusicus and Gymnopleurus sturmi. These species were surveyed at four sites in Morocco on an altitudinal gradient to assess their seasonal activity. The four species were found at all sites during spring, but in varying abundances, with different species dominating different sites. This is most likely due to differences in local conditions such as soil type. Seasonal activity varied depending on elevation. Gymnopleurus sturmi was found to be active later in the season and should be considered as a summer species. The four species selected will be, if they establish, a useful addition to the already introduced and established dung beetle fauna in Australia. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

15 pages, 2156 KiB  
Article
Molecular Characterization and Expression of the Ecdysone Receptor and Ultraspiracle Genes in the Wheat Blossom Midge, Sitodiplosis mosellana
by Qitong Huang, Linqing Meng, Yuhan Liu, Keyan Zhu-Salzman and Weining Cheng
Insects 2025, 16(5), 537; https://doi.org/10.3390/insects16050537 - 19 May 2025
Viewed by 519
Abstract
20-hydroxyecdysone (20E) is essential for insect development and diapause. Ecdysone receptor (EcR) and ultraspiracle (USP) proteins are crucial regulators of 20E signaling. To explore their potential roles in the development of Sitodiplosis mosellana, a major wheat pest that undergoes obligatory diapause as [...] Read more.
20-hydroxyecdysone (20E) is essential for insect development and diapause. Ecdysone receptor (EcR) and ultraspiracle (USP) proteins are crucial regulators of 20E signaling. To explore their potential roles in the development of Sitodiplosis mosellana, a major wheat pest that undergoes obligatory diapause as a larva, one SmEcR and two SmUSPs (SmUSP-A and SmUSP-B) from this species were isolated and characterized. The deduced SmEcR and SmUSP-A/B proteins contained a conserved DNA-binding domain with two zinc finger motifs that bind to specific DNA sequences. Expression of SmEcR and the SmUSPs was developmentally controlled, as was 20E induction. Their transcription levels increased as the larvae entered pre-diapause, followed by downregulation during diapause and upregulation during the shift to post-diapause quiescence, which is highly consistent with ecdysteroid titers in this species. Topical application of 20E to diapausing larvae also elicited a dose-dependent expression of the three genes. Expression of SmEcR and SmUSPs decreased markedly during the pre-pupal stage and was higher in adult females compared to males. These findings suggested that 20E-induced expression of SmEcR and SmUSPs has key roles in diapause initiation and maintenance, post-diapause quiescence, and adult reproduction, while the larval–pupal transformation may be associated with a decrease in their expression levels. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

12 pages, 4074 KiB  
Article
Phylogenetic Analysis of the Family Lepidostomatidae (Trichoptera: Integripalpia) Using Whole Mitochondrial Genomes
by Xinyu Ge, Jingyuan Wang, Zhen Deng, Lu Chai, Wei Cao, Wenbin Liu, Jiwei Zhang and Chuncai Yan
Insects 2025, 16(5), 536; https://doi.org/10.3390/insects16050536 - 19 May 2025
Viewed by 488
Abstract
Lepidostomatidae is a relatively large family of the infraorder Plenitentoria (Integripalpia), comprising four fossil genera and seven extant genera. Lepidostomatid adults exhibit pronounced sexual dimorphism and have thus been referred to as the ‘cabinet of curiosities’ within Trichoptera. However, only five annotated mitogenomes [...] Read more.
Lepidostomatidae is a relatively large family of the infraorder Plenitentoria (Integripalpia), comprising four fossil genera and seven extant genera. Lepidostomatid adults exhibit pronounced sexual dimorphism and have thus been referred to as the ‘cabinet of curiosities’ within Trichoptera. However, only five annotated mitogenomes of Lepidostoma have been recorded in the GeneBank database, and some of these mitogenomes are incomplete. To better understand the structure of mitogenome and phylogenetic relationships of Lepidostomatidae, we present mitogenomes of 13 Lepidostoma species and one Paraphlegopteryx species for the first time. We combined these new mitogenomes with previously published data for a comparative analysis. The results showed that the structure of mitogenome was relatively conserved, the nucleotide composition was significantly AT biased, and the control region showed the highest A + T content. Evolutionary rate analysis showed that all protein-coding genes underwent purification selection. The phylogenetic relationships supported the monophyly of Lepidostomatidae and restored the taxonomic positions of the two subfamilies. Meanwhile, two monophyletic branches (Lepidostoma ferox branch and Lepidostoma hirtum branch) within the genus Lepidostoma were also strongly supported. These findings significantly advance our understanding of the mitogenome and phylogeny of Lepidostomatidae. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 3057 KiB  
Article
Complete Mitochondrial Genome Characterization and Phylogenomics of the Stingless Bee, Heterotrigona itama (Apidae: Meliponini)
by Orawan Duangphakdee, Pisit Poolprasert and Atsalek Rattanawannee
Insects 2025, 16(5), 535; https://doi.org/10.3390/insects16050535 - 19 May 2025
Viewed by 717
Abstract
With increasing demand for stingless bee honey, meliponiculture has gained widespread attention. Heterotrigona itama is one of the most economically important species. However, excessive exploitation for commercial purposes has led to population declines, and the species is now considered vulnerable in Thailand. Despite [...] Read more.
With increasing demand for stingless bee honey, meliponiculture has gained widespread attention. Heterotrigona itama is one of the most economically important species. However, excessive exploitation for commercial purposes has led to population declines, and the species is now considered vulnerable in Thailand. Despite its ecological and economic significance, genomic and taxonomic information on H. itama remains limited. In this study, we sequenced and characterized the complete mitochondrial genome (mitogenome) of H. itama to explore its genome structure and phylogenetic position. The circular mitogenome is 15,318 bp in length and consists of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes. The genome exhibits a strong A+T bias (75.41%), which affects codon usage and amino acid composition. Isoleucine, methionine, and phenylalanine were the most commonly encoded amino acids. Gene arrangement was highly conserved and closely resembled that of Tetragonula species. Phylogenetic analyses confirmed that H. itama clusters with other stingless bees and is more closely related to bumblebees than to honeybees. Several gene rearrangements suggest a high degree of mitogenomic plasticity. This study provides essential genomic resources for future studies in systematics, phylogenetics, population genetics, and conservation of stingless bees in the Meliponini tribe. Full article
(This article belongs to the Special Issue Insect Mitogenome, Phylogeny, and Mitochondrial Genome Expression)
Show Figures

Graphical abstract

14 pages, 1039 KiB  
Article
Taxonomic Revision of Vampire Moths of the Genus Calyptra (Lepidoptera: Erebidae: Calpinae) in Chinese Fauna
by Asad Bashir, Yuqi Cui, Yanling Dong and Zhaofu Yang
Insects 2025, 16(5), 534; https://doi.org/10.3390/insects16050534 - 19 May 2025
Viewed by 578
Abstract
Calyptra Ochsenheimer, 1816 is an important genus of fruit piercers and blood feeders with 18 described species worldwide. Both sexes of all Calyptra species pierce fruit. Adults feed upon and damage soft-skinned (e.g., Rubus and Vitis) and thicker-skinned fruits (e.g., Ficus and [...] Read more.
Calyptra Ochsenheimer, 1816 is an important genus of fruit piercers and blood feeders with 18 described species worldwide. Both sexes of all Calyptra species pierce fruit. Adults feed upon and damage soft-skinned (e.g., Rubus and Vitis) and thicker-skinned fruits (e.g., Ficus and Citrus) in subtropical and tropical Asia. These moths are rare examples of a lepidopteran lineage that uses its fruit-piercing mouthparts to pierce the skin of vertebrate animals occasionally. In China, 10 species of this genus have been reported. Here, we identified seven species of the genus Calyptra Ochsenheimer, 1816 from Chinese fauna, including C. gruesa, C. thalictri, C. hokkaida, C. albivirgata, C. orthograpta, C. fletcheri, and C. lata. Detailed illustrations of male and female external morphology and genital structures are provided. A comprehensive worldwide checklist of the genus Calyptra is also included. This study highlights significant taxonomic revisions and morphological features for this genus within Chinese fauna. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

12 pages, 1446 KiB  
Article
Effect of Pyrethroids on the Colony Growth and Metabolic Activity of Entomopathogenic Fungi of the Beauveria Genus
by Anna Majchrowska-Safaryan, Sylwia Różalska, Cezary Tkaczuk and Monika Nowak
Insects 2025, 16(5), 533; https://doi.org/10.3390/insects16050533 - 18 May 2025
Viewed by 580
Abstract
Pyrethroids are chemical insecticides used on a large scale in agriculture, horticulture, and forest protection. In order to reduce their use in IPM, alternative methods of controlling insect pests are introduced, such as the use of biopesticides based on entomopathogenic fungi (EPF). Species [...] Read more.
Pyrethroids are chemical insecticides used on a large scale in agriculture, horticulture, and forest protection. In order to reduce their use in IPM, alternative methods of controlling insect pests are introduced, such as the use of biopesticides based on entomopathogenic fungi (EPF). Species of the Beauveria genus are characterized by a very broad spectrum of action, which is why they are often used to produce preparations based on EPF. The aim of the study was to determine the effect of different doses of tested pyrethroids on the colony growth and metabolic activity of EPF from the Beauveria genus. In vitro, the effect of three pyrethroids (deltamethrin, λ-cyhalothrin, and α-cypermethrin) added to SDA medium at a dose 10 times lower than the recommended field dose (A), the recommended field dose (B), and 10 times higher than the recommended field dose (C) on colony growth and metabolic activity of B. bassiana and B. brongniartii was tested. The research carried out showed that pyrethroid insecticides used in the experiment showed various toxic effects towards the tested EPF of the genus Beauveria. The studies conducted showed that on the 20th day of the observation, λ-cyhalothrin used in the recommended field dose limited the growth of B. bassiana to the least extent in relation to the other tested pyrethroids. However, with respect to the fungus B. brongniartii, no toxic effect of this pyrethroid was found. Based on the results obtained, it was found that λ-cyhalothrin used in the recommended field dose and 10 times lower than recommended significantly increased the metabolic activity of B. bassiana. In relation to the B. brongniartii strain, detlamethrin used in each of the tested concentrations significantly affected its viability. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

10 pages, 1307 KiB  
Article
Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis
by Juntao Zhang, Ziwen Zhou, Xiaobei Liu, Yongjun Zhang and Tiantao Zhang
Insects 2025, 16(5), 532; https://doi.org/10.3390/insects16050532 - 18 May 2025
Viewed by 490
Abstract
Bacillus thuringiensis (Bt) is an efficacious biocontrol bacterium known for producing various toxins, such as crystal toxins, which disrupt the midgut epithelium of pest larvae, leading to larval mortality. However, the development of resistance to Bacillus thuringiensis in pests poses a significant threat [...] Read more.
Bacillus thuringiensis (Bt) is an efficacious biocontrol bacterium known for producing various toxins, such as crystal toxins, which disrupt the midgut epithelium of pest larvae, leading to larval mortality. However, the development of resistance to Bacillus thuringiensis in pests poses a significant threat to the widespread application of Bt corn. Consequently, we employed high-throughput sequencing of the midgut bacterial 16S ribosomal RNA to characterize the midgut bacteria in four Bt-resistant strains. Specifically, Bt-resistant strains (ACB-FR and ACB-AcR) exhibited lower bacterial diversity compared to ACB-AbR and ACB-IeR. Multivariate analyses and statistical evaluations further demonstrated that the microbiota communities in Bt-resistant pests (AbR, AcR, IeR, and FR) were distinct from those in Bt-susceptible strains. Notably, the genus Klebsiella predominated in BtS, whereas Enterococcus was the genus with peak enrichment in AbR, AcR, IeR, and FR. Bioassays subsequently revealed that Enterococcus enhances the Cry1Ab resistance of ACB larvae. Our investigations indicate that treatment with Bt protein alters the midgut microbiota community of O. furnacalis, and these microbiota differences may potentially modulate the Bt-induced lethality mechanism. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Graphical abstract

10 pages, 215 KiB  
Article
Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source
by Soledad Mora Vásquez and Silverio García-Lara
Insects 2025, 16(5), 531; https://doi.org/10.3390/insects16050531 - 16 May 2025
Viewed by 927
Abstract
Maize (Zea mays) is a critical staple crop whose post-harvest losses, predominantly due to infestations by the maize weevil, Sitophilus zeamais, threaten food security. This study explores the possibility of utilizing S. zeamais, traditionally known as a pest, as [...] Read more.
Maize (Zea mays) is a critical staple crop whose post-harvest losses, predominantly due to infestations by the maize weevil, Sitophilus zeamais, threaten food security. This study explores the possibility of utilizing S. zeamais, traditionally known as a pest, as an alternative protein source by assessing its nutritional profile and food safety attributes. Cultured under controlled conditions, S. zeamais specimens were processed into flour, which was subsequently analyzed for microbiological safety, protein content, and amino acid composition. Microbiological assays confirmed that the flour met established food safety standards, with aerobic mesophilic bacteria, fungi, and yeast present at negligible levels and no detection of coliforms, Salmonella spp., or Escherichia coli. Protein quantification revealed a high total protein content (48.1 ± 0.3%), although the salt-soluble fraction constituted only 13.7% of the total. The amino acid profile exhibited elevated levels of isoleucine, valine, and threonine, while deficiencies in leucine, lysine, sulfur amino acids, and tryptophan were noted. These findings suggest that, despite certain limitations, S. zeamais flour represents a viable protein source. Integrating targeted insect harvesting for protein into pest management strategies could help reduce post-harvest losses and contribute to improved food security and nutritional availability. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Graphical abstract

61 pages, 29845 KiB  
Article
Ameletus Mayflies (Ephemeroptera: Ameletidae) of the Eastern Nearctic
by David H. Funk
Insects 2025, 16(5), 530; https://doi.org/10.3390/insects16050530 - 16 May 2025
Viewed by 722
Abstract
Fourteen Ameletus species are recognized in the eastern Nearctic (south of the Artic zone), including six described as new. Keys to adult males and full-grown larvae are provided. Taxonomic decisions were based on morphologic and genetic evidence. Their justification is discussed in depth [...] Read more.
Fourteen Ameletus species are recognized in the eastern Nearctic (south of the Artic zone), including six described as new. Keys to adult males and full-grown larvae are provided. Taxonomic decisions were based on morphologic and genetic evidence. Their justification is discussed in depth and four species groups are proposed. The vast majority of Ameletus encountered in the eastern Nearctic are members of one of three triploid, clonal parthenogenetic species, at least two of which are of hybrid origin. Bisexual progenitors of the parthenogens were inferred using a combination of mitochondrial and nuclear genetic markers. The parthenogens likely arose during the Late Pleistocene when glacial advances brought previously allopatric species/populations into contact, and as glaciers retreated the parthenogens rapidly expanded their range while the sexual lineages remained in presumed glacial refugia. Although parthenogenesis is relatively common in Ephemeroptera, these Ameletus represent the first known cases of polyploidy and hybrid origin. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

17 pages, 4732 KiB  
Article
Preliminary Development of Global–Local Balanced Vision Transformer Deep Learning with DNA Barcoding for Automated Identification and Validation of Forensic Sarcosaphagous Flies
by Yixin Ma, Lin Niu, Bo Wang, Dianxin Li, Yanzhu Gao, Shan Ha, Boqing Fan, Yixin Xiong, Bin Cong, Jianhua Chen and Jianqiang Deng
Insects 2025, 16(5), 529; https://doi.org/10.3390/insects16050529 - 16 May 2025
Viewed by 531
Abstract
Morphological classification is the gold standard for identifying necrophilous flies, but its complexity and the scarcity of experts make accurate classification challenging. The development of artificial intelligence for autonomous recognition holds promise as a new approach to improve the efficiency and accuracy of [...] Read more.
Morphological classification is the gold standard for identifying necrophilous flies, but its complexity and the scarcity of experts make accurate classification challenging. The development of artificial intelligence for autonomous recognition holds promise as a new approach to improve the efficiency and accuracy of fly morphology identification. In our previous study, we developed a GLB-ViT (Global–Local Balanced Vision Transformer)-based deep learning model for fly species identification, which demonstrated improved identification capabilities. To expand the model’s application scope to meet the practical needs of forensic science, we extended the model based on the forensic science practice scenarios, increased the database of identifiable sarcosaphagous fly species, and successfully developed a WeChat Mini Program based on the model. The results show that the model can achieve fast and effective identification of ten common sarcosaphagous flies in Hainan, and the overall correct rate reaches 94.00%. For the few cases of identification difficulties and suspicious results, we have also constructed a rapid molecular species identification system based on DNA Barcoding technology to achieve accurate species identification of the flies under study. As the local fly database continues to be improved, the model is expected to be applicable to local forensic practice. Full article
(This article belongs to the Special Issue Forensic Entomology: From Basic Research to Practical Applications)
Show Figures

Figure 1

27 pages, 1679 KiB  
Review
Insect Pest Control from Chemical to Biotechnological Approach: Constrains and Challenges
by Stefano Civolani, Massimo Bariselli, Riccardo Osti and Giovanni Bernacchia
Insects 2025, 16(5), 528; https://doi.org/10.3390/insects16050528 - 15 May 2025
Viewed by 812
Abstract
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative [...] Read more.
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative molecules with different modes of action, new non-chemical control strategies that can help maintain efficient integrated pest management programs. The last 30 years have inaugurated a new era characterised by the discovery of new mechanisms of action and new chemical families. Although European programs also promote a green deal in the crop protection sector, the existing thorough regulations slow down its spread and the adoption of new products. In light of these changes, this review will describe in more detail the dynamics of discovery and registration of new conventional insecticides and the difficulties that the agrochemical industries encounter. Subsequently, the different innovative control strategies alternative to conventional insecticides based on natural substances of different origin, entomopathogenic microorganisms, semiochemical and semiophysical compounds, and classical and augmentative biological control will be described. The advantages of these green strategies will be illustrated and also the constrains to their diffusion and commercialisation. Finally, the main biotechnological discoveries will be described, from transgenic plants to symbiotic control, classical genetic control, and, more recently, control based on insect genomic transformation or on RNAi. These new biotechnologies can revolutionise the sector despite some constrains related to the regulatory restrictions present in different countries. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

13 pages, 2190 KiB  
Article
Selection and Validation of Stable Reference Genes for RT-qPCR in Scotogramma trifolii (Lepidoptera: Noctuidae)
by Anpei Yang, Hang Zhang, Weiwei Bai, Ruifeng Ding, Weipeng Li and Guangkuo Li
Insects 2025, 16(5), 527; https://doi.org/10.3390/insects16050527 - 15 May 2025
Viewed by 481
Abstract
The clover cutworm, Scotogramma trifolii Rottemberg (Lepidoptera: Noctuidae), is a globally distributed polyphagous pest causing significant economic losses to agricultural crops. RT-qPCR is a gold-standard technique for gene expression analysis, yet its accuracy depends critically on stable reference genes for data normalization. To [...] Read more.
The clover cutworm, Scotogramma trifolii Rottemberg (Lepidoptera: Noctuidae), is a globally distributed polyphagous pest causing significant economic losses to agricultural crops. RT-qPCR is a gold-standard technique for gene expression analysis, yet its accuracy depends critically on stable reference genes for data normalization. To address the lack of validated reference genes in S. trifolii, we evaluated six candidate genes (β-actin, RPL9, GAPDH, RPL10, EF1-α, and TUB) across four developmental stages (egg, larva, pupa, and adult) and six adult tissues (head, thorax, abdomen, wings, legs, and antennae) using geNorm, NormFinder, BestKeeper, and RefFinder algorithms. Stability analysis identified β-actin, RPL9, and GAPDH as the most reliable reference genes for developmental stage normalization, while RPL10, GAPDH, and TUB were validated for adult tissues. Functional validation using the odorant receptor gene StriOR20 revealed significant discrepancies in relative expression levels when normalized with unstable reference genes (TUB and RPL9), emphasizing the necessity of rigorous reference gene selection. This study establishes the first comprehensive reference gene panel for S. trifolii, providing a robust foundation for gene expression studies in this agriculturally important pest. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 12784 KiB  
Article
Molecular Phylogeny of the Subfamily Notodontinae (Lepidoptera: Noctuoidea: Notodontidae)
by Muyu Guo, Qingliu Geng and Dandan Zhang
Insects 2025, 16(5), 526; https://doi.org/10.3390/insects16050526 - 15 May 2025
Viewed by 468
Abstract
In order to examine the phylogeny and evolutionary history of the subfamily Notodontinae (Noctuoidea: Notodontidae), a molecular systematic study was conducted, mainly based on mitochondrial protein-coding genes (PCGs) generated by high-throughput sequencing, including 57 species belonging to 37 genera, together with 64 other [...] Read more.
In order to examine the phylogeny and evolutionary history of the subfamily Notodontinae (Noctuoidea: Notodontidae), a molecular systematic study was conducted, mainly based on mitochondrial protein-coding genes (PCGs) generated by high-throughput sequencing, including 57 species belonging to 37 genera, together with 64 other species within Notodontidae and 14 outgroups, with the dataset comprising 10,980 bp of nucleotide sequences. An individual dataset of orthologous genes (OGs) comprising 589 loci (919,493 bp in total) was utilized as a supporting analysis for the result from the mitochodrial dataset. In this study, the monophyly of Notodontinae was well supported, with the internal clades consisting of three tribes—Stauropini, Notodontini, and Fentoniini—and supporting evidence found in the male genital characteristics. Furthermore, Neodrymoniaini Kobayashi, 2016 syn. nov. was synonymized with Fentoniini Matsumura, 1929. Divergence time estimation for Notodontinae, conducted using phylogenetic results across five fossil calibration points, suggested that Notodontinae originated around 22.71 Ma, and the most recent common ancestor of Stauropini and Fentoniini diverged between 24.44 and 20.23 Ma, followed by the emergence of Stauropini between 23.83 and 19.53 Ma. Then, Notodontini diverged around 23.60–19.10 Ma, with the youngest tribe, Fentoniini, dividing in 21.70–16.63 Ma. In summary, this study provided a robust foundation for classification within the terminal clades of Notodontidae and laid the groundwork for further research on phylogenetic relationships across the whole family. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

9 pages, 975 KiB  
Article
Efficiency of Unitraps in Capturing Corn Earworm Moths, Helicoverpa zea (Lepidoptera: Noctuidae), in the Field
by Gabriel P. Hughes and Ring T. Cardé
Insects 2025, 16(5), 525; https://doi.org/10.3390/insects16050525 - 15 May 2025
Viewed by 351
Abstract
Pheromone-baited traps are commonly used to monitor and detect moths. Traps and lures are often compared to each other to identify the optimum set up and lure dosage. However, it is also important to understand the efficiency of a trap in capturing the [...] Read more.
Pheromone-baited traps are commonly used to monitor and detect moths. Traps and lures are often compared to each other to identify the optimum set up and lure dosage. However, it is also important to understand the efficiency of a trap in capturing the moths that are attracted to it. In the present study, three pheromone-baited traps were placed at the edge of a cornfield to determine the one with the highest capture rate of Helicoverpa zea (Lepidoptera: Noctuidae): Scentry Heliothis traps, clear Unitraps, and green Unitraps. Once it was determined that green Unitraps captured more H. zea, field observations determined the number of moths captured in the traps compared to the number approaching, i.e., trap efficiency. Green Unitraps had a capture efficiency ranged from 5 to 11%, with an average of 11%. Unitraps, although useful for monitoring existing populations, may not be effective in detecting an invasive incursion. The implications of low capture efficiency in the surveillance of H. zea are considered, including possible explanations and next steps to improve monitoring efforts of heliothine moths. Full article
(This article belongs to the Collection Integrated Pest Management of Crop)
Show Figures

Figure 1

20 pages, 4048 KiB  
Article
Multigeneration Sublethal Chlorantraniliprole Treatment Disrupts Nutritional Metabolism and Inhibits Growth, Development, and Reproduction of Phthorimaea absoluta
by Lun Li, Zunzun Jia, Kaiyun Fu, Xinhua Ding, Weihua Jiang, Xiaowu Wang, Tursun. Ahmat, Jiahe Wu, Yutong Wen, Xiaoqin Ye, Wenchao Guo and Hongying Hu
Insects 2025, 16(5), 524; https://doi.org/10.3390/insects16050524 - 15 May 2025
Viewed by 565
Abstract
Phthorimaea absoluta, an important pest of tomato crops, has reportedly developed high levels of resistance to the insecticide chlorantraniliprole, which has a unique mode of action and high efficacy. This study evaluated the sustained multigenerational effects of chlorantraniliprole on P. absoluta, [...] Read more.
Phthorimaea absoluta, an important pest of tomato crops, has reportedly developed high levels of resistance to the insecticide chlorantraniliprole, which has a unique mode of action and high efficacy. This study evaluated the sustained multigenerational effects of chlorantraniliprole on P. absoluta, focusing on resistance development, growth, development, reproductive capacity, population parameters, and nutritional indicators. After continuous selection with sublethal chlorantraniliprole for eight generations (CX-Sub8), bioassays showed that CX-Sub8 had 225.37-fold higher resistance than the susceptible strain. The age-stage, two-sex life table analysis revealed that the preadult development time and mean generation time were significantly prolonged, while population reproduction and pupal weight were reduced. Moreover, the relative fitness of CX-Sub8 was 0.62, and changes in the life table parameters correlated with an increase in the serial number of selection cycles. The second-instar larvae of CX-Sub8 presented lower triglyceride, glycerol, trehalose, free fatty acid, and protein contents than the unselected strain (CX-S8). Transcriptome analysis identified 2517 differentially expressed genes, with most being enriched in nutrient metabolism-related pathways, such as amino acid biosynthesis and fatty acid degradation metabolism. These results indicate that multigenerational sublethal chlorantraniliprole treatment disrupts the nutritional metabolism, and inhibits the growth, development, and reproduction of P. absoluta. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

14 pages, 1623 KiB  
Article
Mating Disruption of Helicoverpa armigera (Lepidoptera: Noctuidae) Using Yeast-Derived Pheromones in Cotton Fields
by Dimitris Raptopoulos, Petri-Christina Betsi, Neoklis Manikas, Irina Borodina and Maria Konstantopoulou
Insects 2025, 16(5), 523; https://doi.org/10.3390/insects16050523 - 15 May 2025
Viewed by 770
Abstract
The use of insect sex pheromones as an alternative technology for pest control in agriculture and forestry offers a promising solution. The development of a novel technology for the biological production of pheromones through yeast fermentation significantly lowers production costs, enabling the adoption [...] Read more.
The use of insect sex pheromones as an alternative technology for pest control in agriculture and forestry offers a promising solution. The development of a novel technology for the biological production of pheromones through yeast fermentation significantly lowers production costs, enabling the adoption of sustainable pest control practices in field crops, a strategy previously reserved for high-value crops. Over three years of monitoring and mating disruption trials in Greek cotton fields, focusing on the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), it was confirmed that yeast-derived pheromones exhibit equal efficacy compared to their chemically synthesized counterparts. For the mating disruption of H. armigera, a biodegradable, flowable, and paraffin-based matrix was developed. The matrix adheres to plants, protects the labile pheromone molecules (Z)-11-hexadecenal and (Z)-9-hexadecenal, and controls their gradual release into the environment. These biodegradable polymer blobs act as non-retrievable dispensers and can be deployed manually or via unmanned aerial vehicles (UAVs), ensuring efficient and accurate application. This precise, time-efficient, and economically sound technology aligns with European Commission initiatives, such as the Green Deal’s Farm to Fork Strategy and the Biodiversity Strategy, contributing to food sustainability while respecting biodiversity. Full article
(This article belongs to the Special Issue Natural Metabolites as Biocontrol Agents of Insect Pests)
Show Figures

Figure 1

20 pages, 3861 KiB  
Article
Suitability of Three Trunk Traps for Capturing Larvae of Lymantria dispar (L.) (Lepidoptera, Erebidae)
by Tanja Bohinc, Paraskevi Agrafioti, Stelios Vasilopoulos, Evagelia Lampiri, Maria C. Boukouvala, Anna Skourti, Demeter Lorentha S. Gidari, Nickolas G. Kavallieratos, Xavier Pons, Alexandre Levi-Mourao, Elena Domínguez Solera, Enrique Benavent Fernandez, Anna Roig Pinãs, Christos G. Athanassiou and Stanislav Trdan
Insects 2025, 16(5), 522; https://doi.org/10.3390/insects16050522 - 15 May 2025
Viewed by 423
Abstract
In this paper, we present the results of field investigations on the suitability of three types of trunk traps (‘Commercial 1’, ‘Commercial 2’, and ‘Prototype’) for capturing spongy moth (Lymantria dispar) larvae in two areas with different climates and forest ecosystems. [...] Read more.
In this paper, we present the results of field investigations on the suitability of three types of trunk traps (‘Commercial 1’, ‘Commercial 2’, and ‘Prototype’) for capturing spongy moth (Lymantria dispar) larvae in two areas with different climates and forest ecosystems. In areas of NE Slovenia, which were characterized by Pannonian climate and regular rainfall during the research period (2022–2024), the ‘Commercial 2’ trap was the most suitable for the capture of old larvae. In a forest with 20–30 m tall trees with the dominant species Quercus robur, Carpinus betulus, and Pinus sylvestris, it proved easy to set ‘Commercial 2’ on trunks and change their parts upon inspection for captures. ‘Commercial 1’ traps proved to be less suitable, since their bags quickly were filled with water during downpours and consequently fell out of the traps. ‘Prototype’ traps proved to be the most suitable in an area with a Mediterranean climate (Greece), where the trees (Quercus spp.) were smaller (3–4 m) and both younger and older larvae could more easily come into contact with the sticky surface of the inner part of the trap, of which longer-lasting effectiveness was possible in a drier climate. For the mass trapping of larvae in urban areas with a more humid climate, we therefore suggest the use of ‘Commercial 2’ traps, and in areas with a drier climate, the use of ‘Prototype’ traps. Full article
Show Figures

Figure 1

12 pages, 953 KiB  
Article
Effects of Saturated Soil Moisture on Fall Armyworm Pupal Development
by Tianqi Tian, Yingyan Zhai, Zhijie Chen, Yiwei Yang and Bo Hong
Insects 2025, 16(5), 521; https://doi.org/10.3390/insects16050521 - 14 May 2025
Viewed by 417
Abstract
Spodoptera frugiperda, known as the fall armyworm (FAW), a major invasive pest in corn, is rapidly spreading all over the world. Similarly to other Lepidoptera insects, FAW pupae usually develop in soil. Therefore, the soil moisture level is expected to be an [...] Read more.
Spodoptera frugiperda, known as the fall armyworm (FAW), a major invasive pest in corn, is rapidly spreading all over the world. Similarly to other Lepidoptera insects, FAW pupae usually develop in soil. Therefore, the soil moisture level is expected to be an important factor impacting their growth. In order to study the development and emergence of FAW pupae in a 100% soil moisture environment, three factors were selected for experiments in this study: the duration of saturated (100%) moisture treatment (0 h, 24 h, 48 h, and 72 h), the initial soil moisture before the larvae entered the soil (0 and 50%), and pupal age (1 day, 4 days, and 7 days). We discovered that (1) the emergence percentage of FAW pupae decreased with an increase in the saturated soil moisture treatment time, and the emergence percentage dropped to 0 after 72 h of continuous treatment; (2) the younger the age of FAW pupae, the more susceptible they were to being affected by saturated soil moisture treatment, and the emergence percentage of 7-day-old pupae was higher than that of 1-day-old pupae; and (3) FAW larvae that pupated in dry soil (0% moisture) had pupae with higher survival rates under subsequent 100% soil moisture stress, whereas those pupating in moderately moist soil (50% moisture) had lower survival rates under the same condition. Our study showed that the initial moisture level of the soil and the length of time the soil is saturated have a significant impact on FAW pupal development. The three factors of excessive stress time, wet initial soil moisture (50%), and lower pupal age ultimately lead to a decrease in the emergence percentage and survival rate of FAW pupae. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

26 pages, 42762 KiB  
Article
Diversity and the Origin of Perlodinella Klapálek 1912 (Plecoptera: Perlodidae) in Qinghai Province, China
by Qing-Bo Huo, Shi-Xiong Fan, Ya-Fei Zhu and Yu-Zhou Du
Insects 2025, 16(5), 520; https://doi.org/10.3390/insects16050520 - 14 May 2025
Viewed by 401
Abstract
The article presents integrative research of the perlodid genus Perlodinella in Qinghai Province, northwestern China. P. tatunga Wu, 1973 is considered a junior synonym of P. kozlovi Klapálek, 1912, with a further description of intraspecific morphological variability, while P. unimacula Klapálek, 1912 is [...] Read more.
The article presents integrative research of the perlodid genus Perlodinella in Qinghai Province, northwestern China. P. tatunga Wu, 1973 is considered a junior synonym of P. kozlovi Klapálek, 1912, with a further description of intraspecific morphological variability, while P. unimacula Klapálek, 1912 is considered to be nomen dubium. The COI barcodes of the three valid species in Qinghai, P. epiproctalis (Zwick, 1997), P. kozlovi Klapálek, 1912, and P. microlobata Wu, 1938 are firstly sequenced, enabling adult–larva matching and the analysis of genetic diversity. The larval morphology of P. kozlovi and P. microlobata is described for the first time. Additionally, the biology, ecological adaptability, and fungal infections of Perlodinella are firstly recorded with an environment-related comparison. The discussion of the origin and immigration of the genus is also provided. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

19 pages, 6002 KiB  
Article
Aprostocetus nitens (Hymenoptera: Eulophidae), an Ectoparasitoid Proposed for Biological Control of the Destructive Erythrina Gall Wasp, Quadrastichus erythrinae, in Hawaiʻi
by Mohsen M. Ramadan, Juliana A. Yalemar, Daniel Rubinoff, Mark G. Wright, Aimé H. Bokonon-Ganta and Xingeng Wang
Insects 2025, 16(5), 519; https://doi.org/10.3390/insects16050519 - 14 May 2025
Viewed by 630
Abstract
Aprostocetus nitens Prinsloo & Kelly (Hymenoptera: Eulophidae) was identified as one of four hymenopteran ectoparasitoids utilizing three erythrina gall wasps, Quadrastichus bardus, Q. erythrinae, and Q. gallicola) (Hymenoptera: Eulophidae) in the native eastern Africa. In Hawaiʻi, the eurytomid wasp, Eurytoma erythrinae Gates [...] Read more.
Aprostocetus nitens Prinsloo & Kelly (Hymenoptera: Eulophidae) was identified as one of four hymenopteran ectoparasitoids utilizing three erythrina gall wasps, Quadrastichus bardus, Q. erythrinae, and Q. gallicola) (Hymenoptera: Eulophidae) in the native eastern Africa. In Hawaiʻi, the eurytomid wasp, Eurytoma erythrinae Gates & Delvare (Hymenoptera: Eurytomidae), was introduced and approved for statewide release in 2008 to control the erythrina gall wasp (EGW) Q. erythrinae Kim. EGW has devastated the wiliwili trees, Erythrina sandwicensis Degener (Fabaceae), an ecologically and culturally important native Hawaiian tree species. However, the parasitoid’s impact on the galled inflorescences and shoots was not adequate to ensure adequate seed set and maturation for successful tree recruitment. Aprostocetus nitens was thus evaluated as a prospective natural enemy to enhance the biological control of EGW to further protect the wiliwili trees in Hawaiʻi. Both choice and no-choice host specificity tests were conducted on seven non-target gall formers in the Hawaii Department of Agriculture, Insect Containment Facility, and showed that the parasitoid was extremely specific to EGW. The potential for competition between this parasitoid and the established E. erythrinae was also investigated, showing that the release of a second parasitoid will potentially complement the success of the eurytomid wasp for control of EGW. Unlike what was found in the native region, the Hawaiian laboratory colony is thelytokous, producing only female offspring. The life cycle took 20.1 ± 0.28 days under the laboratory conditions. Non-ovipositing female survived for 102.5 ± 2.9 days when fed honey and laid eggs for 25.1 ± 2.3 days with average fecundity of 156.7 ± 22.3 offspring/female. This value is 3.9-fold higher than offspring produced by E. erythrinae. Aprostocetus nitens, host specificity, competition with E. erythrinae, and its tri-trophic association with 15 Erythrina host plants and 5 gall wasp assemblages in the native African regions were defined. Implications to reduce frequent galls on the native Erythrina plants and likely domination over E. erythrinae, are discussed. Full article
Show Figures

Figure 1

18 pages, 1588 KiB  
Review
The Role of Red Wood Ants (Formica rufa Species Group) in Central European Forest Ecosystems—A Literature Review
by Ágnes Fürjes-Mikó, Sándor Csősz, Márton József Paulin and György Csóka
Insects 2025, 16(5), 518; https://doi.org/10.3390/insects16050518 - 13 May 2025
Viewed by 1365
Abstract
Red wood ants (RWA), belonging to the Formica rufa species group, play a crucial and fascinating role in Central Europe’s forest ecosystems. They have a high variety of effects, which they exert around their nests. Their generalist feeding on prey in the canopies [...] Read more.
Red wood ants (RWA), belonging to the Formica rufa species group, play a crucial and fascinating role in Central Europe’s forest ecosystems. They have a high variety of effects, which they exert around their nests. Their generalist feeding on prey in the canopies of trees lowers the frequency of defoliator outbreaks, as well as increases local biodiversity. Nearly half of their diverse diet is insects, including species considered harmful by foresters. They also have a mutualistic relation with honeydew-producing aphids and planthoppers, which connection has unclear effects on the forests. The habit of RWAs building nests could also positively influence soil composition, due to its structure and high amount of organic matter, which could potentially benefit tree growth. RWAs are also known to enhance the species richness of forests by supporting various myrmecophilous species associated with them. In this study, we review the role of RWAs in forest protection, drawing on the literature focusing on Hungary and Central Europe. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop