Previous Issue
Volume 16, April
 
 

Insects, Volume 16, Issue 5 (May 2025) – 101 articles

Cover Story (view full-size image): Despite their importance for monitoring and conservation, modern inventories of Lepidoptera (butterflies and moths) are lacking for countries in south-eastern Europe, including the endemism-rich island of Crete. We address this gap by critically analyzing the species inventory, incorporating validated publications, photographically documented citizen science observations, and extensive original sampling, including DNA barcode analysis of more than half of the recorded species. The checklist contains 1230 species, including 125 new faunistic records for Crete and/or Greece. Conversely, 212 previously reported species had to be removed as likely invalid. It is noteworthy that almost 10 % of the fauna lacks a clear taxonomic classification, highlighting the urgent need for integrative taxonomic research. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 2156 KiB  
Article
Molecular Characterization and Expression of the Ecdysone Receptor and Ultraspiracle Genes in the Wheat Blossom Midge, Sitodiplosis mosellana
by Qitong Huang, Linqing Meng, Yuhan Liu, Keyan Zhu-Salzman and Weining Cheng
Insects 2025, 16(5), 537; https://doi.org/10.3390/insects16050537 - 19 May 2025
Abstract
20-hydroxyecdysone (20E) is essential for insect development and diapause. Ecdysone receptor (EcR) and ultraspiracle (USP) proteins are crucial regulators of 20E signaling. To explore their potential roles in the development of Sitodiplosis mosellana, a major wheat pest that undergoes obligatory diapause as [...] Read more.
20-hydroxyecdysone (20E) is essential for insect development and diapause. Ecdysone receptor (EcR) and ultraspiracle (USP) proteins are crucial regulators of 20E signaling. To explore their potential roles in the development of Sitodiplosis mosellana, a major wheat pest that undergoes obligatory diapause as a larva, one SmEcR and two SmUSPs (SmUSP-A and SmUSP-B) from this species were isolated and characterized. The deduced SmEcR and SmUSP-A/B proteins contained a conserved DNA-binding domain with two zinc finger motifs that bind to specific DNA sequences. Expression of SmEcR and the SmUSPs was developmentally controlled, as was 20E induction. Their transcription levels increased as the larvae entered pre-diapause, followed by downregulation during diapause and upregulation during the shift to post-diapause quiescence, which is highly consistent with ecdysteroid titers in this species. Topical application of 20E to diapausing larvae also elicited a dose-dependent expression of the three genes. Expression of SmEcR and SmUSPs decreased markedly during the pre-pupal stage and was higher in adult females compared to males. These findings suggested that 20E-induced expression of SmEcR and SmUSPs has key roles in diapause initiation and maintenance, post-diapause quiescence, and adult reproduction, while the larval–pupal transformation may be associated with a decrease in their expression levels. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

12 pages, 4074 KiB  
Article
Phylogenetic Analysis of the Family Lepidostomatidae (Trichoptera: Integripalpia) Using Whole Mitochondrial Genomes
by Xinyu Ge, Jingyuan Wang, Zhen Deng, Lu Chai, Wei Cao, Wenbin Liu, Jiwei Zhang and Chuncai Yan
Insects 2025, 16(5), 536; https://doi.org/10.3390/insects16050536 - 19 May 2025
Abstract
Lepidostomatidae is a relatively large family of the infraorder Plenitentoria (Integripalpia), comprising four fossil genera and seven extant genera. Lepidostomatid adults exhibit pronounced sexual dimorphism and have thus been referred to as the ‘cabinet of curiosities’ within Trichoptera. However, only five annotated mitogenomes [...] Read more.
Lepidostomatidae is a relatively large family of the infraorder Plenitentoria (Integripalpia), comprising four fossil genera and seven extant genera. Lepidostomatid adults exhibit pronounced sexual dimorphism and have thus been referred to as the ‘cabinet of curiosities’ within Trichoptera. However, only five annotated mitogenomes of Lepidostoma have been recorded in the GeneBank database, and some of these mitogenomes are incomplete. To better understand the structure of mitogenome and phylogenetic relationships of Lepidostomatidae, we present mitogenomes of 13 Lepidostoma species and one Paraphlegopteryx species for the first time. We combined these new mitogenomes with previously published data for a comparative analysis. The results showed that the structure of mitogenome was relatively conserved, the nucleotide composition was significantly AT biased, and the control region showed the highest A + T content. Evolutionary rate analysis showed that all protein-coding genes underwent purification selection. The phylogenetic relationships supported the monophyly of Lepidostomatidae and restored the taxonomic positions of the two subfamilies. Meanwhile, two monophyletic branches (Lepidostoma ferox branch and Lepidostoma hirtum branch) within the genus Lepidostoma were also strongly supported. These findings significantly advance our understanding of the mitogenome and phylogeny of Lepidostomatidae. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 3057 KiB  
Article
Complete Mitochondrial Genome Characterization and Phylogenomics of the Stingless Bee, Heterotrigona itama (Apidae: Meliponini)
by Orawan Duangphakdee, Pisit Poolprasert and Atsalek Rattanawannee
Insects 2025, 16(5), 535; https://doi.org/10.3390/insects16050535 - 19 May 2025
Abstract
With increasing demand for stingless bee honey, meliponiculture has gained widespread attention. Heterotrigona itama is one of the most economically important species. However, excessive exploitation for commercial purposes has led to population declines, and the species is now considered vulnerable in Thailand. Despite [...] Read more.
With increasing demand for stingless bee honey, meliponiculture has gained widespread attention. Heterotrigona itama is one of the most economically important species. However, excessive exploitation for commercial purposes has led to population declines, and the species is now considered vulnerable in Thailand. Despite its ecological and economic significance, genomic and taxonomic information on H. itama remains limited. In this study, we sequenced and characterized the complete mitochondrial genome (mitogenome) of H. itama to explore its genome structure and phylogenetic position. The circular mitogenome is 15,318 bp in length and consists of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes. The genome exhibits a strong A+T bias (75.41%), which affects codon usage and amino acid composition. Isoleucine, methionine, and phenylalanine were the most commonly encoded amino acids. Gene arrangement was highly conserved and closely resembled that of Tetragonula species. Phylogenetic analyses confirmed that H. itama clusters with other stingless bees and is more closely related to bumblebees than to honeybees. Several gene rearrangements suggest a high degree of mitogenomic plasticity. This study provides essential genomic resources for future studies in systematics, phylogenetics, population genetics, and conservation of stingless bees in the Meliponini tribe. Full article
(This article belongs to the Special Issue Insect Mitogenome, Phylogeny, and Mitochondrial Genome Expression)
Show Figures

Graphical abstract

14 pages, 1039 KiB  
Article
Taxonomic Revision of Vampire Moths of the Genus Calyptra (Lepidoptera: Erebidae: Calpinae) in Chinese Fauna
by Asad Bashir, Yuqi Cui, Yanling Dong and Zhaofu Yang
Insects 2025, 16(5), 534; https://doi.org/10.3390/insects16050534 - 19 May 2025
Abstract
Calyptra Ochsenheimer, 1816 is an important genus of fruit piercers and blood feeders with 18 described species worldwide. Both sexes of all Calyptra species pierce fruit. Adults feed upon and damage soft-skinned (e.g., Rubus and Vitis) and thicker-skinned fruits (e.g., Ficus and [...] Read more.
Calyptra Ochsenheimer, 1816 is an important genus of fruit piercers and blood feeders with 18 described species worldwide. Both sexes of all Calyptra species pierce fruit. Adults feed upon and damage soft-skinned (e.g., Rubus and Vitis) and thicker-skinned fruits (e.g., Ficus and Citrus) in subtropical and tropical Asia. These moths are rare examples of a lepidopteran lineage that uses its fruit-piercing mouthparts to pierce the skin of vertebrate animals occasionally. In China, 10 species of this genus have been reported. Here, we identified seven species of the genus Calyptra Ochsenheimer, 1816 from Chinese fauna, including C. gruesa, C. thalictri, C. hokkaida, C. albivirgata, C. orthograpta, C. fletcheri, and C. lata. Detailed illustrations of male and female external morphology and genital structures are provided. A comprehensive worldwide checklist of the genus Calyptra is also included. This study highlights significant taxonomic revisions and morphological features for this genus within Chinese fauna. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

12 pages, 1446 KiB  
Article
Effect of Pyrethroids on the Colony Growth and Metabolic Activity of Entomopathogenic Fungi of the Beauveria Genus
by Anna Majchrowska-Safaryan, Sylwia Różalska, Cezary Tkaczuk and Monika Nowak
Insects 2025, 16(5), 533; https://doi.org/10.3390/insects16050533 - 18 May 2025
Abstract
Pyrethroids are chemical insecticides used on a large scale in agriculture, horticulture, and forest protection. In order to reduce their use in IPM, alternative methods of controlling insect pests are introduced, such as the use of biopesticides based on entomopathogenic fungi (EPF). Species [...] Read more.
Pyrethroids are chemical insecticides used on a large scale in agriculture, horticulture, and forest protection. In order to reduce their use in IPM, alternative methods of controlling insect pests are introduced, such as the use of biopesticides based on entomopathogenic fungi (EPF). Species of the Beauveria genus are characterized by a very broad spectrum of action, which is why they are often used to produce preparations based on EPF. The aim of the study was to determine the effect of different doses of tested pyrethroids on the colony growth and metabolic activity of EPF from the Beauveria genus. In vitro, the effect of three pyrethroids (deltamethrin, λ-cyhalothrin, and α-cypermethrin) added to SDA medium at a dose 10 times lower than the recommended field dose (A), the recommended field dose (B), and 10 times higher than the recommended field dose (C) on colony growth and metabolic activity of B. bassiana and B. brongniartii was tested. The research carried out showed that pyrethroid insecticides used in the experiment showed various toxic effects towards the tested EPF of the genus Beauveria. The studies conducted showed that on the 20th day of the observation, λ-cyhalothrin used in the recommended field dose limited the growth of B. bassiana to the least extent in relation to the other tested pyrethroids. However, with respect to the fungus B. brongniartii, no toxic effect of this pyrethroid was found. Based on the results obtained, it was found that λ-cyhalothrin used in the recommended field dose and 10 times lower than recommended significantly increased the metabolic activity of B. bassiana. In relation to the B. brongniartii strain, detlamethrin used in each of the tested concentrations significantly affected its viability. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

10 pages, 1307 KiB  
Article
Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis
by Juntao Zhang, Ziwen Zhou, Xiaobei Liu, Yongjun Zhang and Tiantao Zhang
Insects 2025, 16(5), 532; https://doi.org/10.3390/insects16050532 - 18 May 2025
Abstract
Bacillus thuringiensis (Bt) is an efficacious biocontrol bacterium known for producing various toxins, such as crystal toxins, which disrupt the midgut epithelium of pest larvae, leading to larval mortality. However, the development of resistance to Bacillus thuringiensis in pests poses a significant threat [...] Read more.
Bacillus thuringiensis (Bt) is an efficacious biocontrol bacterium known for producing various toxins, such as crystal toxins, which disrupt the midgut epithelium of pest larvae, leading to larval mortality. However, the development of resistance to Bacillus thuringiensis in pests poses a significant threat to the widespread application of Bt corn. Consequently, we employed high-throughput sequencing of the midgut bacterial 16S ribosomal RNA to characterize the midgut bacteria in four Bt-resistant strains. Specifically, Bt-resistant strains (ACB-FR and ACB-AcR) exhibited lower bacterial diversity compared to ACB-AbR and ACB-IeR. Multivariate analyses and statistical evaluations further demonstrated that the microbiota communities in Bt-resistant pests (AbR, AcR, IeR, and FR) were distinct from those in Bt-susceptible strains. Notably, the genus Klebsiella predominated in BtS, whereas Enterococcus was the genus with peak enrichment in AbR, AcR, IeR, and FR. Bioassays subsequently revealed that Enterococcus enhances the Cry1Ab resistance of ACB larvae. Our investigations indicate that treatment with Bt protein alters the midgut microbiota community of O. furnacalis, and these microbiota differences may potentially modulate the Bt-induced lethality mechanism. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Graphical abstract

10 pages, 215 KiB  
Article
Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source
by Soledad Mora Vásquez and Silverio García-Lara
Insects 2025, 16(5), 531; https://doi.org/10.3390/insects16050531 - 16 May 2025
Viewed by 27
Abstract
Maize (Zea mays) is a critical staple crop whose post-harvest losses, predominantly due to infestations by the maize weevil, Sitophilus zeamais, threaten food security. This study explores the possibility of utilizing S. zeamais, traditionally known as a pest, as [...] Read more.
Maize (Zea mays) is a critical staple crop whose post-harvest losses, predominantly due to infestations by the maize weevil, Sitophilus zeamais, threaten food security. This study explores the possibility of utilizing S. zeamais, traditionally known as a pest, as an alternative protein source by assessing its nutritional profile and food safety attributes. Cultured under controlled conditions, S. zeamais specimens were processed into flour, which was subsequently analyzed for microbiological safety, protein content, and amino acid composition. Microbiological assays confirmed that the flour met established food safety standards, with aerobic mesophilic bacteria, fungi, and yeast present at negligible levels and no detection of coliforms, Salmonella spp., or Escherichia coli. Protein quantification revealed a high total protein content (48.1 ± 0.3%), although the salt-soluble fraction constituted only 13.7% of the total. The amino acid profile exhibited elevated levels of isoleucine, valine, and threonine, while deficiencies in leucine, lysine, sulfur amino acids, and tryptophan were noted. These findings suggest that, despite certain limitations, S. zeamais flour represents a viable protein source. Integrating targeted insect harvesting for protein into pest management strategies could help reduce post-harvest losses and contribute to improved food security and nutritional availability. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Graphical abstract

61 pages, 29845 KiB  
Article
Ameletus Mayflies (Ephemeroptera: Ameletidae) of the Eastern Nearctic
by David H. Funk
Insects 2025, 16(5), 530; https://doi.org/10.3390/insects16050530 - 16 May 2025
Viewed by 35
Abstract
Fourteen Ameletus species are recognized in the eastern Nearctic (south of the Artic zone), including six described as new. Keys to adult males and full-grown larvae are provided. Taxonomic decisions were based on morphologic and genetic evidence. Their justification is discussed in depth [...] Read more.
Fourteen Ameletus species are recognized in the eastern Nearctic (south of the Artic zone), including six described as new. Keys to adult males and full-grown larvae are provided. Taxonomic decisions were based on morphologic and genetic evidence. Their justification is discussed in depth and four species groups are proposed. The vast majority of Ameletus encountered in the eastern Nearctic are members of one of three triploid, clonal parthenogenetic species, at least two of which are of hybrid origin. Bisexual progenitors of the parthenogens were inferred using a combination of mitochondrial and nuclear genetic markers. The parthenogens likely arose during the Late Pleistocene when glacial advances brought previously allopatric species/populations into contact, and as glaciers retreated the parthenogens rapidly expanded their range while the sexual lineages remained in presumed glacial refugia. Although parthenogenesis is relatively common in Ephemeroptera, these Ameletus represent the first known cases of polyploidy and hybrid origin. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

17 pages, 4732 KiB  
Article
Preliminary Development of Global–Local Balanced Vision Transformer Deep Learning with DNA Barcoding for Automated Identification and Validation of Forensic Sarcosaphagous Flies
by Yixin Ma, Lin Niu, Bo Wang, Dianxin Li, Yanzhu Gao, Shan Ha, Boqing Fan, Yixin Xiong, Bin Cong, Jianhua Chen and Jianqiang Deng
Insects 2025, 16(5), 529; https://doi.org/10.3390/insects16050529 - 16 May 2025
Viewed by 31
Abstract
Morphological classification is the gold standard for identifying necrophilous flies, but its complexity and the scarcity of experts make accurate classification challenging. The development of artificial intelligence for autonomous recognition holds promise as a new approach to improve the efficiency and accuracy of [...] Read more.
Morphological classification is the gold standard for identifying necrophilous flies, but its complexity and the scarcity of experts make accurate classification challenging. The development of artificial intelligence for autonomous recognition holds promise as a new approach to improve the efficiency and accuracy of fly morphology identification. In our previous study, we developed a GLB-ViT (Global–Local Balanced Vision Transformer)-based deep learning model for fly species identification, which demonstrated improved identification capabilities. To expand the model’s application scope to meet the practical needs of forensic science, we extended the model based on the forensic science practice scenarios, increased the database of identifiable sarcosaphagous fly species, and successfully developed a WeChat Mini Program based on the model. The results show that the model can achieve fast and effective identification of ten common sarcosaphagous flies in Hainan, and the overall correct rate reaches 94.00%. For the few cases of identification difficulties and suspicious results, we have also constructed a rapid molecular species identification system based on DNA Barcoding technology to achieve accurate species identification of the flies under study. As the local fly database continues to be improved, the model is expected to be applicable to local forensic practice. Full article
(This article belongs to the Special Issue Forensic Entomology: From Basic Research to Practical Applications)
Show Figures

Figure 1

27 pages, 1679 KiB  
Review
Insect Pest Control from Chemical to Biotechnological Approach: Constrains and Challenges
by Stefano Civolani, Massimo Bariselli, Riccardo Osti and Giovanni Bernacchia
Insects 2025, 16(5), 528; https://doi.org/10.3390/insects16050528 - 15 May 2025
Viewed by 96
Abstract
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative [...] Read more.
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative molecules with different modes of action, new non-chemical control strategies that can help maintain efficient integrated pest management programs. The last 30 years have inaugurated a new era characterised by the discovery of new mechanisms of action and new chemical families. Although European programs also promote a green deal in the crop protection sector, the existing thorough regulations slow down its spread and the adoption of new products. In light of these changes, this review will describe in more detail the dynamics of discovery and registration of new conventional insecticides and the difficulties that the agrochemical industries encounter. Subsequently, the different innovative control strategies alternative to conventional insecticides based on natural substances of different origin, entomopathogenic microorganisms, semiochemical and semiophysical compounds, and classical and augmentative biological control will be described. The advantages of these green strategies will be illustrated and also the constrains to their diffusion and commercialisation. Finally, the main biotechnological discoveries will be described, from transgenic plants to symbiotic control, classical genetic control, and, more recently, control based on insect genomic transformation or on RNAi. These new biotechnologies can revolutionise the sector despite some constrains related to the regulatory restrictions present in different countries. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

13 pages, 2190 KiB  
Article
Selection and Validation of Stable Reference Genes for RT-qPCR in Scotogramma trifolii (Lepidoptera: Noctuidae)
by Anpei Yang, Hang Zhang, Weiwei Bai, Ruifeng Ding, Weipeng Li and Guangkuo Li
Insects 2025, 16(5), 527; https://doi.org/10.3390/insects16050527 - 15 May 2025
Viewed by 102
Abstract
The clover cutworm, Scotogramma trifolii Rottemberg (Lepidoptera: Noctuidae), is a globally distributed polyphagous pest causing significant economic losses to agricultural crops. RT-qPCR is a gold-standard technique for gene expression analysis, yet its accuracy depends critically on stable reference genes for data normalization. To [...] Read more.
The clover cutworm, Scotogramma trifolii Rottemberg (Lepidoptera: Noctuidae), is a globally distributed polyphagous pest causing significant economic losses to agricultural crops. RT-qPCR is a gold-standard technique for gene expression analysis, yet its accuracy depends critically on stable reference genes for data normalization. To address the lack of validated reference genes in S. trifolii, we evaluated six candidate genes (β-actin, RPL9, GAPDH, RPL10, EF1-α, and TUB) across four developmental stages (egg, larva, pupa, and adult) and six adult tissues (head, thorax, abdomen, wings, legs, and antennae) using geNorm, NormFinder, BestKeeper, and RefFinder algorithms. Stability analysis identified β-actin, RPL9, and GAPDH as the most reliable reference genes for developmental stage normalization, while RPL10, GAPDH, and TUB were validated for adult tissues. Functional validation using the odorant receptor gene StriOR20 revealed significant discrepancies in relative expression levels when normalized with unstable reference genes (TUB and RPL9), emphasizing the necessity of rigorous reference gene selection. This study establishes the first comprehensive reference gene panel for S. trifolii, providing a robust foundation for gene expression studies in this agriculturally important pest. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 12784 KiB  
Article
Molecular Phylogeny of the Subfamily Notodontinae (Lepidoptera: Noctuoidea: Notodontidae)
by Muyu Guo, Qingliu Geng and Dandan Zhang
Insects 2025, 16(5), 526; https://doi.org/10.3390/insects16050526 - 15 May 2025
Viewed by 85
Abstract
In order to examine the phylogeny and evolutionary history of the subfamily Notodontinae (Noctuoidea: Notodontidae), a molecular systematic study was conducted, mainly based on mitochondrial protein-coding genes (PCGs) generated by high-throughput sequencing, including 57 species belonging to 37 genera, together with 64 other [...] Read more.
In order to examine the phylogeny and evolutionary history of the subfamily Notodontinae (Noctuoidea: Notodontidae), a molecular systematic study was conducted, mainly based on mitochondrial protein-coding genes (PCGs) generated by high-throughput sequencing, including 57 species belonging to 37 genera, together with 64 other species within Notodontidae and 14 outgroups, with the dataset comprising 10,980 bp of nucleotide sequences. An individual dataset of orthologous genes (OGs) comprising 589 loci (919,493 bp in total) was utilized as a supporting analysis for the result from the mitochodrial dataset. In this study, the monophyly of Notodontinae was well supported, with the internal clades consisting of three tribes—Stauropini, Notodontini, and Fentoniini—and supporting evidence found in the male genital characteristics. Furthermore, Neodrymoniaini Kobayashi, 2016 syn. nov. was synonymized with Fentoniini Matsumura, 1929. Divergence time estimation for Notodontinae, conducted using phylogenetic results across five fossil calibration points, suggested that Notodontinae originated around 22.71 Ma, and the most recent common ancestor of Stauropini and Fentoniini diverged between 24.44 and 20.23 Ma, followed by the emergence of Stauropini between 23.83 and 19.53 Ma. Then, Notodontini diverged around 23.60–19.10 Ma, with the youngest tribe, Fentoniini, dividing in 21.70–16.63 Ma. In summary, this study provided a robust foundation for classification within the terminal clades of Notodontidae and laid the groundwork for further research on phylogenetic relationships across the whole family. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

9 pages, 975 KiB  
Article
Efficiency of Unitraps in Capturing Corn Earworm Moths, Helicoverpa zea (Lepidoptera: Noctuidae), in the Field
by Gabriel P. Hughes and Ring T. Cardé
Insects 2025, 16(5), 525; https://doi.org/10.3390/insects16050525 - 15 May 2025
Viewed by 60
Abstract
Pheromone-baited traps are commonly used to monitor and detect moths. Traps and lures are often compared to each other to identify the optimum set up and lure dosage. However, it is also important to understand the efficiency of a trap in capturing the [...] Read more.
Pheromone-baited traps are commonly used to monitor and detect moths. Traps and lures are often compared to each other to identify the optimum set up and lure dosage. However, it is also important to understand the efficiency of a trap in capturing the moths that are attracted to it. In the present study, three pheromone-baited traps were placed at the edge of a cornfield to determine the one with the highest capture rate of Helicoverpa zea (Lepidoptera: Noctuidae): Scentry Heliothis traps, clear Unitraps, and green Unitraps. Once it was determined that green Unitraps captured more H. zea, field observations determined the number of moths captured in the traps compared to the number approaching, i.e., trap efficiency. Green Unitraps had a capture efficiency ranged from 5 to 11%, with an average of 11%. Unitraps, although useful for monitoring existing populations, may not be effective in detecting an invasive incursion. The implications of low capture efficiency in the surveillance of H. zea are considered, including possible explanations and next steps to improve monitoring efforts of heliothine moths. Full article
(This article belongs to the Collection Integrated Pest Management of Crop)
Show Figures

Figure 1

20 pages, 4048 KiB  
Article
Multigeneration Sublethal Chlorantraniliprole Treatment Disrupts Nutritional Metabolism and Inhibits Growth, Development, and Reproduction of Phthorimaea absoluta
by Lun Li, Zunzun Jia, Kaiyun Fu, Xinhua Ding, Weihua Jiang, Xiaowu Wang, Tursun. Ahmat, Jiahe Wu, Yutong Wen, Xiaoqin Ye, Wenchao Guo and Hongying Hu
Insects 2025, 16(5), 524; https://doi.org/10.3390/insects16050524 - 15 May 2025
Viewed by 101
Abstract
Phthorimaea absoluta, an important pest of tomato crops, has reportedly developed high levels of resistance to the insecticide chlorantraniliprole, which has a unique mode of action and high efficacy. This study evaluated the sustained multigenerational effects of chlorantraniliprole on P. absoluta, [...] Read more.
Phthorimaea absoluta, an important pest of tomato crops, has reportedly developed high levels of resistance to the insecticide chlorantraniliprole, which has a unique mode of action and high efficacy. This study evaluated the sustained multigenerational effects of chlorantraniliprole on P. absoluta, focusing on resistance development, growth, development, reproductive capacity, population parameters, and nutritional indicators. After continuous selection with sublethal chlorantraniliprole for eight generations (CX-Sub8), bioassays showed that CX-Sub8 had 225.37-fold higher resistance than the susceptible strain. The age-stage, two-sex life table analysis revealed that the preadult development time and mean generation time were significantly prolonged, while population reproduction and pupal weight were reduced. Moreover, the relative fitness of CX-Sub8 was 0.62, and changes in the life table parameters correlated with an increase in the serial number of selection cycles. The second-instar larvae of CX-Sub8 presented lower triglyceride, glycerol, trehalose, free fatty acid, and protein contents than the unselected strain (CX-S8). Transcriptome analysis identified 2517 differentially expressed genes, with most being enriched in nutrient metabolism-related pathways, such as amino acid biosynthesis and fatty acid degradation metabolism. These results indicate that multigenerational sublethal chlorantraniliprole treatment disrupts the nutritional metabolism, and inhibits the growth, development, and reproduction of P. absoluta. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

14 pages, 1623 KiB  
Article
Mating Disruption of Helicoverpa armigera (Lepidoptera: Noctuidae) Using Yeast-Derived Pheromones in Cotton Fields
by Dimitris Raptopoulos, Petri-Christina Betsi, Neoklis Manikas, Irina Borodina and Maria Konstantopoulou
Insects 2025, 16(5), 523; https://doi.org/10.3390/insects16050523 - 15 May 2025
Viewed by 109
Abstract
The use of insect sex pheromones as an alternative technology for pest control in agriculture and forestry offers a promising solution. The development of a novel technology for the biological production of pheromones through yeast fermentation significantly lowers production costs, enabling the adoption [...] Read more.
The use of insect sex pheromones as an alternative technology for pest control in agriculture and forestry offers a promising solution. The development of a novel technology for the biological production of pheromones through yeast fermentation significantly lowers production costs, enabling the adoption of sustainable pest control practices in field crops, a strategy previously reserved for high-value crops. Over three years of monitoring and mating disruption trials in Greek cotton fields, focusing on the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), it was confirmed that yeast-derived pheromones exhibit equal efficacy compared to their chemically synthesized counterparts. For the mating disruption of H. armigera, a biodegradable, flowable, and paraffin-based matrix was developed. The matrix adheres to plants, protects the labile pheromone molecules (Z)-11-hexadecenal and (Z)-9-hexadecenal, and controls their gradual release into the environment. These biodegradable polymer blobs act as non-retrievable dispensers and can be deployed manually or via unmanned aerial vehicles (UAVs), ensuring efficient and accurate application. This precise, time-efficient, and economically sound technology aligns with European Commission initiatives, such as the Green Deal’s Farm to Fork Strategy and the Biodiversity Strategy, contributing to food sustainability while respecting biodiversity. Full article
(This article belongs to the Special Issue Natural Metabolites as Biocontrol Agents of Insect Pests)
Show Figures

Figure 1

20 pages, 3861 KiB  
Article
Suitability of Three Trunk Traps for Capturing Larvae of Lymantria dispar (L.) (Lepidoptera, Erebidae)
by Tanja Bohinc, Paraskevi Agrafioti, Stelios Vasilopoulos, Evagelia Lampiri, Maria C. Boukouvala, Anna Skourti, Demeter Lorentha S. Gidari, Nickolas G. Kavallieratos, Xavier Pons, Alexandre Levi-Mourao, Elena Domínguez Solera, Enrique Benavent Fernandez, Anna Roig Pinãs, Christos G. Athanassiou and Stanislav Trdan
Insects 2025, 16(5), 522; https://doi.org/10.3390/insects16050522 - 15 May 2025
Viewed by 101
Abstract
In this paper, we present the results of field investigations on the suitability of three types of trunk traps (‘Commercial 1’, ‘Commercial 2’, and ‘Prototype’) for capturing spongy moth (Lymantria dispar) larvae in two areas with different climates and forest ecosystems. [...] Read more.
In this paper, we present the results of field investigations on the suitability of three types of trunk traps (‘Commercial 1’, ‘Commercial 2’, and ‘Prototype’) for capturing spongy moth (Lymantria dispar) larvae in two areas with different climates and forest ecosystems. In areas of NE Slovenia, which were characterized by Pannonian climate and regular rainfall during the research period (2022–2024), the ‘Commercial 2’ trap was the most suitable for the capture of old larvae. In a forest with 20–30 m tall trees with the dominant species Quercus robur, Carpinus betulus, and Pinus sylvestris, it proved easy to set ‘Commercial 2’ on trunks and change their parts upon inspection for captures. ‘Commercial 1’ traps proved to be less suitable, since their bags quickly were filled with water during downpours and consequently fell out of the traps. ‘Prototype’ traps proved to be the most suitable in an area with a Mediterranean climate (Greece), where the trees (Quercus spp.) were smaller (3–4 m) and both younger and older larvae could more easily come into contact with the sticky surface of the inner part of the trap, of which longer-lasting effectiveness was possible in a drier climate. For the mass trapping of larvae in urban areas with a more humid climate, we therefore suggest the use of ‘Commercial 2’ traps, and in areas with a drier climate, the use of ‘Prototype’ traps. Full article
Show Figures

Figure 1

12 pages, 953 KiB  
Article
Effects of Saturated Soil Moisture on Fall Armyworm Pupal Development
by Tianqi Tian, Yingyan Zhai, Zhijie Chen, Yiwei Yang and Bo Hong
Insects 2025, 16(5), 521; https://doi.org/10.3390/insects16050521 - 14 May 2025
Viewed by 109
Abstract
Spodoptera frugiperda, known as the fall armyworm (FAW), a major invasive pest in corn, is rapidly spreading all over the world. Similarly to other Lepidoptera insects, FAW pupae usually develop in soil. Therefore, the soil moisture level is expected to be an [...] Read more.
Spodoptera frugiperda, known as the fall armyworm (FAW), a major invasive pest in corn, is rapidly spreading all over the world. Similarly to other Lepidoptera insects, FAW pupae usually develop in soil. Therefore, the soil moisture level is expected to be an important factor impacting their growth. In order to study the development and emergence of FAW pupae in a 100% soil moisture environment, three factors were selected for experiments in this study: the duration of saturated (100%) moisture treatment (0 h, 24 h, 48 h, and 72 h), the initial soil moisture before the larvae entered the soil (0 and 50%), and pupal age (1 day, 4 days, and 7 days). We discovered that (1) the emergence percentage of FAW pupae decreased with an increase in the saturated soil moisture treatment time, and the emergence percentage dropped to 0 after 72 h of continuous treatment; (2) the younger the age of FAW pupae, the more susceptible they were to being affected by saturated soil moisture treatment, and the emergence percentage of 7-day-old pupae was higher than that of 1-day-old pupae; and (3) FAW larvae that pupated in dry soil (0% moisture) had pupae with higher survival rates under subsequent 100% soil moisture stress, whereas those pupating in moderately moist soil (50% moisture) had lower survival rates under the same condition. Our study showed that the initial moisture level of the soil and the length of time the soil is saturated have a significant impact on FAW pupal development. The three factors of excessive stress time, wet initial soil moisture (50%), and lower pupal age ultimately lead to a decrease in the emergence percentage and survival rate of FAW pupae. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

26 pages, 42762 KiB  
Article
Diversity and the Origin of Perlodinella Klapálek 1912 (Plecoptera: Perlodidae) in Qinghai Province, China
by Qing-Bo Huo, Shi-Xiong Fan, Ya-Fei Zhu and Yu-Zhou Du
Insects 2025, 16(5), 520; https://doi.org/10.3390/insects16050520 - 14 May 2025
Viewed by 124
Abstract
The article presents integrative research of the perlodid genus Perlodinella in Qinghai Province, northwestern China. P. tatunga Wu, 1973 is considered a junior synonym of P. kozlovi Klapálek, 1912, with a further description of intraspecific morphological variability, while P. unimacula Klapálek, 1912 is [...] Read more.
The article presents integrative research of the perlodid genus Perlodinella in Qinghai Province, northwestern China. P. tatunga Wu, 1973 is considered a junior synonym of P. kozlovi Klapálek, 1912, with a further description of intraspecific morphological variability, while P. unimacula Klapálek, 1912 is considered to be nomen dubium. The COI barcodes of the three valid species in Qinghai, P. epiproctalis (Zwick, 1997), P. kozlovi Klapálek, 1912, and P. microlobata Wu, 1938 are firstly sequenced, enabling adult–larva matching and the analysis of genetic diversity. The larval morphology of P. kozlovi and P. microlobata is described for the first time. Additionally, the biology, ecological adaptability, and fungal infections of Perlodinella are firstly recorded with an environment-related comparison. The discussion of the origin and immigration of the genus is also provided. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

19 pages, 6002 KiB  
Article
Aprostocetus nitens (Hymenoptera: Eulophidae), an Ectoparasitoid Proposed for Biological Control of the Destructive Erythrina Gall Wasp, Quadrastichus erythrinae, in Hawaiʻi
by Mohsen M. Ramadan, Juliana A. Yalemar, Daniel Rubinoff, Mark G. Wright, Aimé H. Bokonon-Ganta and Xingeng Wang
Insects 2025, 16(5), 519; https://doi.org/10.3390/insects16050519 - 14 May 2025
Viewed by 210
Abstract
Aprostocetus nitens Prinsloo & Kelly (Hymenoptera: Eulophidae) was identified as one of four hymenopteran ectoparasitoids utilizing three erythrina gall wasps, Quadrastichus bardus, Q. erythrinae, and Q. gallicola) (Hymenoptera: Eulophidae) in the native eastern Africa. In Hawaiʻi, the eurytomid wasp, Eurytoma erythrinae Gates [...] Read more.
Aprostocetus nitens Prinsloo & Kelly (Hymenoptera: Eulophidae) was identified as one of four hymenopteran ectoparasitoids utilizing three erythrina gall wasps, Quadrastichus bardus, Q. erythrinae, and Q. gallicola) (Hymenoptera: Eulophidae) in the native eastern Africa. In Hawaiʻi, the eurytomid wasp, Eurytoma erythrinae Gates & Delvare (Hymenoptera: Eurytomidae), was introduced and approved for statewide release in 2008 to control the erythrina gall wasp (EGW) Q. erythrinae Kim. EGW has devastated the wiliwili trees, Erythrina sandwicensis Degener (Fabaceae), an ecologically and culturally important native Hawaiian tree species. However, the parasitoid’s impact on the galled inflorescences and shoots was not adequate to ensure adequate seed set and maturation for successful tree recruitment. Aprostocetus nitens was thus evaluated as a prospective natural enemy to enhance the biological control of EGW to further protect the wiliwili trees in Hawaiʻi. Both choice and no-choice host specificity tests were conducted on seven non-target gall formers in the Hawaii Department of Agriculture, Insect Containment Facility, and showed that the parasitoid was extremely specific to EGW. The potential for competition between this parasitoid and the established E. erythrinae was also investigated, showing that the release of a second parasitoid will potentially complement the success of the eurytomid wasp for control of EGW. Unlike what was found in the native region, the Hawaiian laboratory colony is thelytokous, producing only female offspring. The life cycle took 20.1 ± 0.28 days under the laboratory conditions. Non-ovipositing female survived for 102.5 ± 2.9 days when fed honey and laid eggs for 25.1 ± 2.3 days with average fecundity of 156.7 ± 22.3 offspring/female. This value is 3.9-fold higher than offspring produced by E. erythrinae. Aprostocetus nitens, host specificity, competition with E. erythrinae, and its tri-trophic association with 15 Erythrina host plants and 5 gall wasp assemblages in the native African regions were defined. Implications to reduce frequent galls on the native Erythrina plants and likely domination over E. erythrinae, are discussed. Full article
Show Figures

Figure 1

18 pages, 1588 KiB  
Review
The Role of Red Wood Ants (Formica rufa Species Group) in Central European Forest Ecosystems—A Literature Review
by Ágnes Fürjes-Mikó, Sándor Csősz, Márton József Paulin and György Csóka
Insects 2025, 16(5), 518; https://doi.org/10.3390/insects16050518 - 13 May 2025
Viewed by 335
Abstract
Red wood ants (RWA), belonging to the Formica rufa species group, play a crucial and fascinating role in Central Europe’s forest ecosystems. They have a high variety of effects, which they exert around their nests. Their generalist feeding on prey in the canopies [...] Read more.
Red wood ants (RWA), belonging to the Formica rufa species group, play a crucial and fascinating role in Central Europe’s forest ecosystems. They have a high variety of effects, which they exert around their nests. Their generalist feeding on prey in the canopies of trees lowers the frequency of defoliator outbreaks, as well as increases local biodiversity. Nearly half of their diverse diet is insects, including species considered harmful by foresters. They also have a mutualistic relation with honeydew-producing aphids and planthoppers, which connection has unclear effects on the forests. The habit of RWAs building nests could also positively influence soil composition, due to its structure and high amount of organic matter, which could potentially benefit tree growth. RWAs are also known to enhance the species richness of forests by supporting various myrmecophilous species associated with them. In this study, we review the role of RWAs in forest protection, drawing on the literature focusing on Hungary and Central Europe. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

16 pages, 1786 KiB  
Article
A Little Peek May Be Enough: How Small Hive Beetle Estimates Can Help Address Immediate Colony Management Needs
by Ethel M. Villalobos, Luis Medina Medina, Zhening Zhang, Scott Nikaido, Emanuel Miranda, Jason Wong, Jessika Santamaria and Micaela Buteler
Insects 2025, 16(5), 517; https://doi.org/10.3390/insects16050517 - 13 May 2025
Viewed by 221
Abstract
Due to the ongoing global spread of the small hive beetle (SHB), Aethina tumida, there is a significant need for detection and practical management strategies against this pest. The standard inspection strategies for SHBs involve (1) detailed visual examination of the colony, [...] Read more.
Due to the ongoing global spread of the small hive beetle (SHB), Aethina tumida, there is a significant need for detection and practical management strategies against this pest. The standard inspection strategies for SHBs involve (1) detailed visual examination of the colony, which is challenging in areas with defensive bees, or (2) sampling beetles via traps, which requires repeated visits to the apiary and can be difficult for beekeepers with apiaries in rural areas. In this study, we modified the inspection sequence to examine the in-hive distribution of the beetle and assess whether a limited, yet targeted, inspection could provide valuable information on beetle infestation. We conducted our modified sampling in three different countries: Hawai’i (USA), Mexico, and Costa Rica. We found that targeted screening of the top areas of the hive (cover and top-side frames) provided reliable information about the relative prevalence of SHBs in a colony. The results also suggested that SHBs do not naturally congregate on a bare bottom board but migrate downward during inspection. Trap placement on the bottom floor of the hive may underestimate beetle presence in low to medium pest levels. The proposed inspection protocol is not influenced by the genetic origin of the bees (Africanized or European) and could be a practical alternative for assessing SHB infestation levels in honeybee colonies. Full article
(This article belongs to the Special Issue Bee Health and Beehive Management in a Changing World)
Show Figures

Graphical abstract

17 pages, 1435 KiB  
Review
The Role of Insect-Based Feed in Mitigating Climate Change: Sustainable Solutions for Ruminant Farming
by Nelly Kichamu, Putri Kusuma Astuti and Szilvia Kusza
Insects 2025, 16(5), 516; https://doi.org/10.3390/insects16050516 - 13 May 2025
Viewed by 307
Abstract
There has been an unprecedented demand for livestock production due to factors such as the ever-increasing population, limited resources (land, water, feed, etc.), and changing human lifestyles. Moreover, due to the interconnected nature of the world’s biodiversity crisis, pollution, and climate change, environmental [...] Read more.
There has been an unprecedented demand for livestock production due to factors such as the ever-increasing population, limited resources (land, water, feed, etc.), and changing human lifestyles. Moreover, due to the interconnected nature of the world’s biodiversity crisis, pollution, and climate change, environmental sustainability is going to play a pivotal role in addressing these pressing issues. Because of their high nutritional value and environmental benefits compared to conventional livestock feeds, insects as animal feed have demonstrated great potential for long-term sustainability. The current state of the IBF application on ruminants is presented in this review, together with its challenges, future direction, and strength–weakness–opportunity–threat analysis. The results from many studies on ruminants have demonstrated that insect nutrients—primarily amino acids, protein, and fat—are highly digestible, safe, and beneficial to ruminant health and productivity. Additionally, they do not harm the ruminant fermentation and microbiota, even having the benefit of possibly lowering ruminant farms’ well-known methane emissions. Nevertheless, concerns continue to arise because this method is still relatively new and there is a lot of unexplored knowledge; as a result, regulation is not yet well established globally, which is a barrier to its implementation. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Insects)
Show Figures

Figure 1

18 pages, 3396 KiB  
Article
microRNA Targeting Cytochrome P450 Is Involved in Chlorfenapyr Tolerance in the Silkworm, Bombyx mori (Lepidoptera: Bombycidae)
by Ying Shao, Jian-Hao Ding, Wang-Long Miao, Yi-Ren Wang, Miao-Miao Pei, Sheng Sheng and Zhong-Zheng Gui
Insects 2025, 16(5), 515; https://doi.org/10.3390/insects16050515 - 12 May 2025
Viewed by 203
Abstract
We first measured the content of chlorfenapyr and tralopyril in silkworm larvae using HPLC, revealing that chlorfenapyr can be biotransformed into tralopyril in silkworms. Then, a differential transcriptomic database of small RNA was constructed through Illumina RNA-Sequencing. qRT-PCR was conducted to determine the [...] Read more.
We first measured the content of chlorfenapyr and tralopyril in silkworm larvae using HPLC, revealing that chlorfenapyr can be biotransformed into tralopyril in silkworms. Then, a differential transcriptomic database of small RNA was constructed through Illumina RNA-Sequencing. qRT-PCR was conducted to determine the expression levels of Bmo-miR-6497-5p and the target CYP450 gene, and Bmo-miR-6497-5p was significantly upregulated in the L3 silkworm larvae 24, 48, and 72 h after they were treated with chlorfenapyr. Furthermore, the target P450 gene CYP337A2 was downregulated at these time points. Dual-luciferase validation revealed that the luciferase activity significantly decreased after Bmo-miR-6497-5p bound to CYP337A2. In addition, miRNA mimics/inhibitor injection and bioassays of chlorfenapyr and tralopyril revealed that the mortality of third silkworm larvae injected with the antagomir of Bmo-miR-6497-5p was significantly increased after exposure to a sublethal concentration of chlorfenapyr. These results imply that Bmo-miR-6497-5p targets CYP337A2, regulating its expression. Also, silkworms increase their tolerance to chlorfenapyr by upregulating Bmo-miR-6497-5p expression, thereby inhibiting the biotransformation of chlorfenapyr to toxic tralopyril catalyzed by CYP337A2. The present study reveals the function of microRNA in silkworm tolerance to chlorfenapyr and improves understanding regarding insecticide resistance in Lepidopteran insects. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

14 pages, 1352 KiB  
Review
The Baluchistan Melon Fly, Myiopardalis pardalina Bigot: Biology, Ecology, and Management Strategies
by Junyan Liu, Yidie Xu, Mengbo Guo, Kaiyun Fu, Xinhua Ding, Sijia Yu, Xinyi Gu, Wenchao Guo and Jianyu Deng
Insects 2025, 16(5), 514; https://doi.org/10.3390/insects16050514 - 11 May 2025
Viewed by 393
Abstract
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing [...] Read more.
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing on its severe economic repercussions for key crops—including melon, watermelon, and cucumber—across Africa, Asia, and Europe. M. pardalina has a four-stage life cycle (egg, larva, pupa, and adult) and distinct morphological adaptations. The species’ geographic range continues to expand, driven by global trade networks and its adaptability to shifting climatic conditions. Infestations by this pest severely reduce fruit yields, undermining food security and destabilising rural economies reliant on cucurbit cultivation. We evaluate diverse control strategies, including monitoring and quarantine methods, cultural practices, physical controls, chemical management, biological agents, and emerging genetic tools. This review emphasises the urgency of adopting integrated pest management (IPM) to strategically balance efficacy, ecological sustainability, and operational scalability. By consolidating fragmented knowledge and identifying critical research gaps, this work provides a framework for mitigating M. pardalina’s impacts, offering actionable insights to safeguard agricultural productivity and enhance resilience in vulnerable regions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

20 pages, 3501 KiB  
Article
Climate Change: A Major Factor in the Spread of Aedes aegypti (Diptera: Culicidae) and Its Associated Dengue Virus
by Shahid Majeed, Waseem Akram, Muhammad Sufyan, Asim Abbasi, Sidra Riaz, Shahla Faisal, Muhammad Binyameen, Muhammad I. Bashir, Shahzad Hassan, Saba Zafar, Oksana Kucher, Elena A. Piven and Olga D. Kucher
Insects 2025, 16(5), 513; https://doi.org/10.3390/insects16050513 - 11 May 2025
Viewed by 319
Abstract
Climate change is thought to be responsible for the spread of various vector-borne diseases. The current study was conducted to evaluate the impact of different temperature and relative humidity regimes on the developmental stages of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). [...] Read more.
Climate change is thought to be responsible for the spread of various vector-borne diseases. The current study was conducted to evaluate the impact of different temperature and relative humidity regimes on the developmental stages of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). The study also evaluated the impact of larval density on the survival of Ae. aegypti. In addition, the association between vector larval abundance, dengue incidence, and climatic factors were elucidated during 2016–2019 in three populated districts of Punjab, Pakistan, i.e., Lahore, Rawalpindi, and Multan. The results of the study revealed that at 10 °C and 35 °C, egg hatching and adult emergence were significantly reduced, regardless of the relative humidity. In contrast, at 20 °C and 30 °C, the rates of egg and adult survival increased with higher relative humidity. In addition, a density-dependent response was observed regarding larval survival of Ae. aegypti. Moreover, larval incidence was positively correlated with the number of dengue patients, Tmax, RH, and precipitation at Lahore (0.55, 0.23, 0.29, and 0.13), Rawalpindi (0.90, 0.30, 0.21, and 0.14), and Multan (0.05, 0.27, and 0.13) respectively, except in Multan, where a negative correlation (−0.09) with precipitation was observed. The inflow of patients had a positive correlation with the occurrence of a larval population, relative humidity, and precipitation at Lahore, Rawalpindi, and Multan districts, with the scale values of 0.55, 0.25, and 0.16; 0.90, 0.22, and 0.03; and 0.05, 0.06, and 0.03, respectively. In addition, a forecast model, ARIMA, predicted that there was a higher rate of larval occurrence in Rawalpindi, followed by Lahore. This study concluded that the role of precipitation > 200 mm prior to a 1–2-month lag, a 20–30 °C temperature range, and an RH exceeding 60% lead to the occurrence of larvae and dengue case spikes. This study will help to reinforce dengue surveillance and control strategies in Pakistan and to establish early management strategies based on changing climatic factors. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

17 pages, 1593 KiB  
Review
Conservation of Apis mellifera mellifera L. in the Middle Ural: A Review of Genetic Diversity, Ecological Adaptation, and Breeding Perspectives
by Olga Frunze, Alexander V. Petukhov, Anna Z. Brandorf, Mikhail K. Simankov, Hyunjee Kim and Hyung-Wook Kwon
Insects 2025, 16(5), 512; https://doi.org/10.3390/insects16050512 - 11 May 2025
Viewed by 314
Abstract
The European dark bee is well adapted to cold winters and short summers. However, threats from habitat loss, pests, and hybridization with southern bees pose significant challenges to its populations. The Perm region (Middle Ural, Russia) hosts a distinct population of Apis mellifera [...] Read more.
The European dark bee is well adapted to cold winters and short summers. However, threats from habitat loss, pests, and hybridization with southern bees pose significant challenges to its populations. The Perm region (Middle Ural, Russia) hosts a distinct population of Apis mellifera mellifera, known as Prikamskaya. Despite extensive local research, a comprehensive analysis remains lacking. This review presents an analysis based on selected historical, ecological, genetic, and regulatory sources relevant to honey bee populations in northern climates. Inclusion criteria prioritized peer-reviewed scientific literature, regional monographs, institutional reports, and expert contributions published from the 20th century onward. Preference was given to studies addressing environmental conditions, queen-rearing practices, population structure, and conservation strategies. At the northern limit of honey bee distribution, the region has diverse forest zones and a growing season of 145–190 days, influencing nectar availability from lime, honeysuckle, and willow. Although the region’s potential honey yield is estimated at 390,919,300 kg, only 6.7% of its 3,007,200 colonies are commercially utilized, largely due to the low number of apiaries specializing in local honey bees. Distinct northern and southern types of A. m. mellifera have been identified based on morphological (cubital index) and physiological (cold resistance) traits, although links to genetic diversity remain underexplored. This study underscores the importance of regional conservation efforts in preserving the genetic diversity of A. m. mellifera, emphasizing the need for targeted breeding strategies to address climate change and hybridization, ensuring the sustainability of agriculture and natural ecosystems worldwide Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Graphical abstract

22 pages, 12416 KiB  
Article
Rare Chromosomal Uniformity in Black Flies of the Simulium striatum Species Group (Diptera: Simuliidae)
by Peter H. Adler, Sergey Vlasov, Yao-Te Huang, Upik K. Hadi, Khamla Inkhavilay, Banchai Malavong, Varvara Topolenko, Bhuvadol Gomontean, Waraporn Jumpato, Ronnalit Mintara, San Namtaku, Isara Thanee, Wannachai Wannasingha, Komgrit Wongpakam, Chavanut Jaroenchaiwattanachote and Pairot Pramual
Insects 2025, 16(5), 511; https://doi.org/10.3390/insects16050511 - 10 May 2025
Viewed by 229
Abstract
We conducted a comparative chromosomal analysis of 10 nominal species and 3 unidentified species in the Simulium striatum group from six countries. A total of 66 chromosomal rearrangements were found, of which 78.8% were inversions. The group is defined by 11 fixed inversions, [...] Read more.
We conducted a comparative chromosomal analysis of 10 nominal species and 3 unidentified species in the Simulium striatum group from six countries. A total of 66 chromosomal rearrangements were found, of which 78.8% were inversions. The group is defined by 11 fixed inversions, of which 6 are unique, supporting the monophyletic status previously indicated by morphological and molecular characters. Only 1 of the 13 taxa had a unique fixed chromosomal rearrangement. Although the group demonstrates significant macrogenomic reorganization, subsequent speciation occurred largely without chromosomal rearrangement. The results conflict with the pattern seen in all other species groups of Simuliidae, in which one or more diagnostic rearrangements are typically expressed among species in the same group. The chromosomes provide limited evidence that four entities are valid species but no evidence for the nine others. The weight of evidence from combined chromosomal, molecular, and morphological data, in addition to the practical considerations made for insular species, supports the species status of seven of these nominal species; the remaining taxa require further study. The S. striatum group, accordingly, is either over-divided into nominal species or deficient in chromosomal discriminators. If most or all nominal species and unnamed species are valid, all but one are homosequential, an unprecedented condition in Simuliidae. This group illustrates the need for the integration of multiple character sets for discovering and delimiting species. Full article
(This article belongs to the Special Issue Diptera Diversity: Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

13 pages, 2841 KiB  
Article
An Optimized Bioassay System for the Striped Flea Beetle, Phyllotreta striolata
by Liyan Yao, Xinhua Pu, Yuanlin Wu, Ke Zhang, Alexander Berestetskiy, Qiongbo Hu and Qunfang Weng
Insects 2025, 16(5), 510; https://doi.org/10.3390/insects16050510 - 10 May 2025
Viewed by 237
Abstract
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. [...] Read more.
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. However, establishing reliable bioassay systems for SFB has been particularly challenging, especially for larval stages due to their recalcitrant rearing requirements. This study aimed to establish a standardized bioassay protocol to evaluate EPF efficacy against SFB. A specialized larval collection apparatus was developed, and the virulence of three EPF strains (Beauveria bassiana BbPs01, Metarhizium robertii MrCb01, and Cordyceps javanica IjH6102) was assessed against both adult and larval stages using a radish slice-based rearing system. Intriguingly, BbPs01 and MrCb01 exhibited significantly higher LT50 values in larvae than in adults, contrary to the typical pattern of greater larval susceptibility observed in most insect systems. We hypothesized that isothiocyanate—specifically sulforaphane, a compound abundant in radish tissues—exerts fungistatic effects that impair fungal growth and virulence. Follow-up experiments confirmed that radish-derived sulforaphane inhibited fungal activity. Through alternative host plant screening, Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) was identified as an optimal larval diet that minimally interferes with EPF bioactivity, enabling reliable virulence assessments. This study presents critical methodological advancements for SFB biocontrol research, providing a robust framework for standardized larval bioassay and novel insights into plant secondary metabolite interactions with entomopathogens. The optimized system supports the development of targeted mycoinsecticides and contributes to a deeper understanding of tri-trophic interactions in crucifer pest management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 616 KiB  
Review
Strategies to Mitigate the Adverse Impacts of Viral Infections on Honey Bee (Apis mellifera L.) Colonies
by Ivana Tlak Gajger, Hossam F. Abou-Shaara and Maja Ivana Smodiš Škerl
Insects 2025, 16(5), 509; https://doi.org/10.3390/insects16050509 - 10 May 2025
Viewed by 586
Abstract
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics [...] Read more.
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics and survival. There are diverse viruses that infect honey bees at different life stages, with a year-round prevalence. There are multiple pathways through which viruses can be transmitted among colonies. Notably, there is also a lack of commercial treatments against viral infections in bees, but some promising strategies exist to mitigate their negative effects, including vector control, and the implementation of good beekeeping practices and biosecurity measures. While methods for treating infected colonies have garnered attention, they receive less focus compared to aspects like transmission methods and seasonal prevalence of viruses. This article aims to review the aforementioned strategies in light of the available literature. It presents succinct and practical approaches categorized based on their potential direct or indirect effects on viruses, providing beekeepers and researchers with an overview of both fully established and still-developing methods. Controlling the ectoparasitic Varroa destructor mite population, which significantly impacts viral prevalence and virulence in bees, is crucial for reducing infections. Practical approaches such as selectively breeding honey bee populations resistant to viruses and ensuring proper nutrition are important strategies. Moreover, genetic methods have also been proposed and tested. The article not only emphasizes these methods but also discusses knowledge gaps and suggests future solutions to improve the health and productivity of honey bee colonies. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

20 pages, 725 KiB  
Article
Bioconversion of Meat and Fish-Based Former Foodstuffs by Black Soldier Fly Larvae: A Sustainable Pathway for Reducing Food Waste, Enhancing Nutrient Recovery, with a Circular Economy Approach
by Antonio Franco, Valentina Pucciarelli, Seyed Ali Hosseini, Eric Schmitt, Fulvia Bovera, Carmen Scieuzo and Patrizia Falabella
Insects 2025, 16(5), 508; https://doi.org/10.3390/insects16050508 - 9 May 2025
Viewed by 363
Abstract
Food waste containing meat and fish presents a considerable environmental challenge due to regulatory constraints preventing its use in industrial insect farming. Although substrates derived from meat and fish are not currently approved for industrial insect feed production due to regulatory constraints, this [...] Read more.
Food waste containing meat and fish presents a considerable environmental challenge due to regulatory constraints preventing its use in industrial insect farming. Although substrates derived from meat and fish are not currently approved for industrial insect feed production due to regulatory constraints, this study explores their potential in bioconversion through Hermetia illucens larvae. In this study, five different former foodstuffs containing meat and/or fish were tested to evaluate their suitability for BSFL rearing. The substrates included pizza with salami (PIZZA), cheeseburger (CHB), pasta Bolognese with meat (PASTA), chicken salad (CHISA), and fish salad (FISA). Results showed that BSFL successfully developed on all tested substrates. The highest performance was observed for FISA, with a total larval weight of 35.21 ± 3.91 g, dry matter yield of 11.21 ± 0.45 g, survival rate of 96.63 ± 0.40%, and the most efficient feed conversion ratio (FCR, 4.11 ± 0.59). Heavy metal analysis revealed substantial bioaccumulation of lead (Pb) and cadmium (Cd) in larvae. In particular, larvae reared on PIZZA showed a Pb concentration of 4.68 μg/100 g, with a corresponding bioaccumulation factor (BAF) of approximately 1.5. Cadmium accumulation was most notable in larvae fed CHB, with a Cd concentration of 0.41 ± 0.33 μg/100 g and a BAF of about 2.1. Despite this bioaccumulation, all detected concentrations remained well below the regulatory limits set by the European Union for animal feed, indicating not only the feasibility of H. illucens larvae in sustainable waste management but also its use as a safe protein source in animal feed. This research highlights the viability of integrating such food waste into insect bioconversion systems. With appropriate risk management, this practice could significantly improve nutrient recycling, waste management, and the circular economy, urging a regulatory review to allow broader substrate utilization. These positive outcomes underscore the potential of integrating currently restricted animal-derived food waste streams into H. illucens-based bioconversion systems, unlocking additional value for the circular economy and contributing to more efficient waste management practices. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

Previous Issue
Back to TopTop