Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mass-Rearing and Artifical Selection of Bt-Resistant ACB Strains
2.2. Dissection of Gut Tissues and Extraction of DNA
2.3. Amplification of 16S rRNA Gene Sequences for Microbial Community
2.4. PCR-Amplified DNA Sequencing
2.5. Midgut Bacteria Diversity Analysis
2.6. Isolation and Characterization of Enterococcus and Klebsiella Species
2.7. Virulence Assay of E. faecalis and Cry1Ab Susceptibility After Levofloxacin Treatment
3. Results
3.1. Overview of the 16s-RNA Sequencing Data
3.2. Different Gut Bacterial Communities in BtS and BtR ACB Strains
3.2.1. The Relative Abundance of Species at the Genus Level
3.2.2. Isolation and Identification of Microorganisms
3.3. The Impact of Gut Microbiota on Cry1Ab Resistance in Asian Corn Borer
3.3.1. Virulence Evaluation of Enterococcus faecalis on ACB Larvae
3.3.2. E. faecalis Influence in ACB of Cry1Ab Resistance
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Gill, S.S.; Soberon, M. Mode of Action of Bacillus thuringiensis Cry and Cyt Toxins and Their Potential for Insect Control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef]
- Gill, S.S.; Cowles, E.A.; Pietrantonio, P.V. The Mode of Action of Bacillus thuringiensis Endotoxins. Annu. Rev. Entomol. 1992, 37, 615–636. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Carriere, Y. Surge in Insect Resistance to Transgenic Crops and Prospects for Sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L. Current Understandings of Olfactory Molecular Events in the Asian Corn Borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Arch. Insect Biochem. Physiol. 2023, 112, e21996. [Google Scholar] [CrossRef]
- Nafus, D.M.; Schreiner, I.H. Review of the Biology and Control of the Asian Corn Borer, Ostrinia furnacalis (Lep: Pyralidae). Trop. Pest Manag. 1991, 37, 41–56. [Google Scholar] [CrossRef]
- He, K.L.; Wang, Z.Y.; Zhou, D.R.; Wen, L.P.; Song, Y.Y.; Yao, Z.Y. Evaluation of Transgenic Bt Corn for Resistance to the Asian Corn Borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 2003, 96, 935–940. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, Z.; Bravo, A.; Soberon, M.; He, K. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins. PLoS ONE 2016, 11, e0161189. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Quan, Y.; Wang, Z.; Cai, W.; He, K. Characterization of Asian Corn Borer Resistance to Bt Toxin Cry1Ie. Toxins 2017, 9, 186. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; He, K.; Cong, B.; Bai, S.; Wen, L. Temporal and Spatial Expression of Cry1Ab Toxin in Transgenic Bt Corn and Its Effects on Asian Corn Borer, Ostrinia furnacalis (Guenee). Sci. Agric. Sin. 2004, 37, 1155–1159. [Google Scholar]
- Jin, T.; Chang, X.; Gatehouse, A.M.R.; Wang, Z.; Edwards, M.G.; He, K. Downregulation and Mutation of a Cadherin Gene Associated with Cry1Ac Resistance in the Asian Corn Borer, Ostrinia furnacalis (Guenee). Toxins 2014, 6, 2676–2693. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wu, K. Recent Progress on the Interaction between Insects and Bacillus thuringiensis Crops. Philos. Trans. R. Soc. B-Biol. Sci. 2019, 374, 20180316. [Google Scholar] [CrossRef]
- Pinos, D.; Wang, Y.; Hernandez-Martinez, P.; He, K.; Ferre, J. Alteration of a Cry1A Shared Binding Site in a Cry1Ab-Selected Colony of Ostrinia furnacalis. Toxins 2022, 14, 32. [Google Scholar] [CrossRef]
- Tanaka, S.; Miyamoto, K.; Noda, H.; Jurat-Fuentes, J.L.; Yoshizawa, Y.; Endo, H.; Sato, R. The ATP-Binding Cassette Transporter Subfamily C Member 2 in Bombyxmori Larvae Is a Functional Receptor for Cry Toxins from Bacillus thuringiensis. FEBS J. 2013, 280, 1782–1794. [Google Scholar] [CrossRef]
- Knight, P.J.; Crickmore, N.; Ellar, D.J. The Receptor for Bacillus thuringiensis CrylA(c) Delta-Endotoxin in the Brush Border Membrane of the Lepidopteran Manduca Sexta Is Aminopeptidase N. Mol. Microbiol. 1994, 11, 429–436. [Google Scholar] [CrossRef]
- Luo, K.; Sangadala, S.; Masson, L.; Mazza, A.; Brousseau, R.; Adang, M.J. The Heliothis Virescens 170kDa Aminopeptidase Functions as “Receptor a” by Mediating Specific Bacillus thuringiensis Cry1A δ-Endotoxin Binding and Pore Formation. Insect Biochem. Mol. Biol. 1997, 27, 735–743. [Google Scholar] [CrossRef]
- Vadlamudi, R.K.; Weber, E.; Ji, I.H.; Ji, T.H.; Bulla, L.A. Cloning and Expression of a Receptor for an Insecticidal Toxin of Bacillus-thuringiensis. J. Biol. Chem. 1995, 270, 5490–5494. [Google Scholar] [CrossRef]
- Morin, S.; Biggs, R.W.; Sisterson, M.S.; Shriver, L.; Ellers-Kirk, C.; Higginson, D.; Holley, D.; Gahan, L.J.; Heckel, D.G.; Carrière, Y.; et al. Three Cadherin Alleles Associated with Resistance to Bacillus thuringiensis in Pink Bollworm. Proc. Natl. Acad. Sci. USA 2003, 100, 5004–5009. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Lu, X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022, 10, 1234. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Wang, X.; Yin, Y.; Du, Y. Wolbachia Modify Host Cell Metabolite Profiles in Response to Short-term Temperature Stress. Environ. Microbiol. Rep. 2024, 16, e70013. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The Gut Microbiota of Insects—Diversity in Structure and Function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed]
- Broderick, N.A.; Raffa, K.F.; Handelsman, J. Midgut Bacteria Required for Bacillus thuringiensis Insecticidal Activity. Proc. Natl. Acad. Sci. USA 2006, 103, 15196–15199. [Google Scholar] [CrossRef]
- Paddock, K.J.; Pereira, A.E.; Finke, D.L.; Ericsson, A.C.; Hibbard, B.E.; Shelby, K.S. Host Resistance to Bacillus thuringiensis Is Linked to Altered Bacterial Community within a Specialist Insect Herbivore. Mol. Ecol. 2021, 30, 5438–5453. [Google Scholar] [CrossRef]
- Orozco-Flores, A.A.; Valadez-Lira, J.A.; Oppert, B.; Gomez-Flores, R.; Tamez-Guerra, R.; Rodriguez-Padilla, C.; Tamez-Guerra, P. Regulation by Gut Bacteria of Immune Response, Bacillus thuringiensis Susceptibility and Hemolin Expression in Plodia Interpunctella. J. Insect Physiol. 2017, 98, 275–283. [Google Scholar] [CrossRef]
- Rahayu, T.; Trisyono, Y.A. Witjaksono Fitness of Asian Corn Borer, Ostrinia Furnacalis (Lepidoptera: Crambidae) Reared in an Artificial Diet. J. Asia-Pac. Entomol. 2018, 21, 823–828. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Wang, Y.; Bi, S.; Hu, B.; Hu, F.; Xu, L. Comparison of Gut Microbial Community between Bt-Resistant and Susceptible Strains of Ostrinia Furnacalis. Agronomy 2023, 13, 1923. [Google Scholar] [CrossRef]
- Govindharaj, G.-P.-P.; Choudhary, J.S.; Panda, R.M.; Basana-Gowda, G.; Annamalai, M.; Patil, N.; Khan, R.M.; Banra, S.; Srivastava, K.; Mohapatra, S.D. Bacterial Communities in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) Showed Significant Variation among the Developmental Stages with Functional Diversity. Heliyon 2025, 11, e42776. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberon, M. Bacillus thuringiensis: A Story of a Successful Bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef]
- McGaughey, W.H. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science 1985, 229, 193–195. [Google Scholar] [CrossRef]
- Ferré, J.; Van Rie, J. Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2002, 47, 501–533. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E. Evolution of Resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 1994, 39, 47–79. [Google Scholar] [CrossRef]
- Sabree, Z.L.; Kambhampati, S.; Moran, N.A. Nitrogen Recycling and Nutritional Provisioning by Blattabacterium, the Cockroach Endosymbiont. Proc. Natl. Acad. Sci. USA 2009, 106, 19521–19526. [Google Scholar] [CrossRef]
- Voirol, L.R.P.; Frago, E.; Kaltenpoth, M.; Hilker, M.; Fatouros, N.E. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front. Microbiol. 2018, 9, 556. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Wu, H.; Ji, Y.; Liu, Z.; Guo, X.; Guo, W.; Bi, Y. Bt GS57 Interaction with Gut Microbiota Accelerates Spodoptera exigua Mortality. Front. Microbiol. 2022, 13, 835227. [Google Scholar] [CrossRef]
- Deguenon, J.M.; Dhammi, A.; Ponnusamy, L.; Travanty, N.V.; Cave, G.; Lawrie, R.; Mott, D.; Reisig, D.; Kurtz, R.; Roe, R.M. Bacterial Microbiota of Field-Collected Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Bt and Non-Bt Cotton. Microorganisms 2021, 9, 878. [Google Scholar] [CrossRef]
- Mason, K.L.; Stepien, T.A.; Blum, J.E.; Holt, J.F.; Labbe, N.H.; Rush, J.S.; Raffa, K.F.; Handelsman, J. From Commensal to Pathogen: Translocation of Enterococcus Faecalis from the Midgut to the Hemocoel of Manduca sexta. mBio 2011, 2, e00065.11. [Google Scholar] [CrossRef]
- Chen, G.; Li, Q.; Zhang, C.; Zhao, W.; Jurat-Fuentes, J.L.; Zhou, X.; Chen, F.; Yang, X.; Han, L. Synergism of Cry1Ca Toxicity by Gut Resident Enterococcus spp. in the Rice Stem Borer, Chilo suppressalis. Int. J. Biol. Macromol. 2024, 257, 128654. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; De Mandal, S.; Shakeel, M.; Hua, Y.; Shoukat, R.F.; Fu, D.; Jin, F. Gut Microbiota Mediate Plutella xylostella Susceptibility to Bt Cry1Ac Protoxin Is Associated with Host Immune Response. Environ. Pollut. 2021, 271, 116271. [Google Scholar] [CrossRef]
- Perera, O.P.; Shelby, K.S.; Popham, H.J.R.; Gould, F.; Adang, M.J.; Jurat-Fuentes, J.L. Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression. PLoS ONE 2015, 10, e0128563. [Google Scholar] [CrossRef]
Strain IDs | PE Reads | Raw Tags | Clean Tags | Effective Tags | AvgLen (bp) | GC (%) | Q20 (%) | Q30 (%) | Effective (%) |
---|---|---|---|---|---|---|---|---|---|
AbR | 476,918 | 446,887 | 400,958 | 399,519 | 425 | 53.58 | 94.84 | 90.54 | 83.77 |
AcR | 720,884 | 676,881 | 603,479 | 600,280 | 428 | 52.89 | 94.73 | 90.37 | 83.27 |
FR | 793,527 | 746,708 | 666,106 | 664,608 | 429 | 52.77 | 94.79 | 90.51 | 83.75 |
IeR | 696,613 | 654,749 | 586,431 | 583,344 | 427 | 53.10 | 94.82 | 90.52 | 83.74 |
S | 467,691 | 438,890 | 393,593 | 391,221 | 426 | 53.23 | 94.89 | 90.62 | 83.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhou, Z.; Liu, X.; Zhang, Y.; Zhang, T. Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis. Insects 2025, 16, 532. https://doi.org/10.3390/insects16050532
Zhang J, Zhou Z, Liu X, Zhang Y, Zhang T. Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis. Insects. 2025; 16(5):532. https://doi.org/10.3390/insects16050532
Chicago/Turabian StyleZhang, Juntao, Ziwen Zhou, Xiaobei Liu, Yongjun Zhang, and Tiantao Zhang. 2025. "Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis" Insects 16, no. 5: 532. https://doi.org/10.3390/insects16050532
APA StyleZhang, J., Zhou, Z., Liu, X., Zhang, Y., & Zhang, T. (2025). Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis. Insects, 16(5), 532. https://doi.org/10.3390/insects16050532