Next Issue
Volume 13, March
Previous Issue
Volume 13, January
 
 

Atmosphere, Volume 13, Issue 2 (February 2022) – 214 articles

Cover Story (view full-size image): At the cloud top of the Venus atmosphere, equatorial Kelvin waves have been observed and are considered to play an important role in super-rotation. We were able to reproduce the wave in a general circulation model (GCM) by conducting an observing system simulation experiment (OSSE) with the help of a data assimilation system. The synthetic horizontal winds of the Kelvin wave produced by the linear wave propagating model are assimilated at the cloud top (~70 km) in realistic conditions, assuming they are obtained from cloud tracking of ultraviolet images taken by the Akatsuki Venus orbiter. It is demonstrated using Eliassen–Palm fluxes that the reproduced Kelvin wave transports angular momentum and plays an important role in the magnitude and structure of super-rotation. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 3165 KiB  
Article
Temperature Forecasting Correction Based on Operational GRAPES-3km Model Using Machine Learning Methods
by Hui Zhang, Yaqiang Wang, Dandan Chen, Dian Feng, Xiaoxiong You and Weichen Wu
Atmosphere 2022, 13(2), 362; https://doi.org/10.3390/atmos13020362 - 21 Feb 2022
Cited by 6 | Viewed by 2716
Abstract
Postprocess correction is essential to improving the model forecasting result, in which machine learning methods play more and more important roles. In this study, three machine learning (ML) methods of Linear Regression, LSTM-FCN and LightGBM were used to carry out the correction of [...] Read more.
Postprocess correction is essential to improving the model forecasting result, in which machine learning methods play more and more important roles. In this study, three machine learning (ML) methods of Linear Regression, LSTM-FCN and LightGBM were used to carry out the correction of temperature forecasting of an operational high-resolution model GRAPES-3km. The input parameters include 2 m temperature, relative humidity, local pressure and wind speed forecasting and observation data in Shaanxi province of China from 1 January 2019 to 31 December 2020. The dataset from September 2018 was used for model evaluation using the metrics of root mean square error (RMSE), average absolute error (MAE) and coefficient of determination (R2). All three machine learning methods perform very well in correcting the temperature forecast of GRAPES-3km model. The RMSE decreased by 33%, 32% and 40%, respectively, the MAE decreased by 33%, 34% and 41%, respectively, the R2 increased by 21.4%, 21.5% and 25.2%, respectively. Among the three methods, LightGBM performed the best with the forecast accuracy rate reaching above 84%. Full article
Show Figures

Figure 1

13 pages, 5646 KiB  
Article
Observed Climatology and Trend in Relative Humidity, CAPE, and CIN over India
by Pathan Imran Khan, Devanaboyina Venkata Ratnam, Perumal Prasad, Ghouse Basha, Jonathan H. Jiang, Rehana Shaik, Madineni Venkat Ratnam and Pangaluru Kishore
Atmosphere 2022, 13(2), 361; https://doi.org/10.3390/atmos13020361 - 21 Feb 2022
Cited by 4 | Viewed by 3019
Abstract
Water vapor is the most dominant greenhouse gas in the atmosphere and plays a critical role in Earth’s energy budget and hydrological cycle. This study aims to characterize the long-term seasonal variation of relative humidity (RH), convective available potential energy (CAPE), and convective [...] Read more.
Water vapor is the most dominant greenhouse gas in the atmosphere and plays a critical role in Earth’s energy budget and hydrological cycle. This study aims to characterize the long-term seasonal variation of relative humidity (RH), convective available potential energy (CAPE), and convective inhibition (CIN) from surface and radiosonde observations from 1980–2020. The results show that during the monsoon season, very high RH values are depicted while low values are depicted during the pre-monsoon season. West Coast stations represent large RH values compared to other stations throughout the year. Irrespective of the season, the coastal regions show higher RH values during monsoon season. Regardless of season, the coastal regions have higher RH values during the monsoon season. During the pre-monsoon season, the coastal region has high RH values, whereas other regions have high RH values during the monsoon season. The rate of increase in RH in North-West India is 5.4%, followed by the West Coast, Central, and Southern parts of India. An increase in water vapor leads to raised temperature, which alters the instability conditions. In terms of seasonal variation, our findings show that CAPE follows a similar RH pattern. CAPE increases sharply in Central India and the West Coast region, while it declines in South India. Opposite features are observed in CIN with respect to CAPE variability over India. The results of the study provide additional evidence with respect to the role of RH as an influencing factor for an increase in CAPE over India. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 7070 KiB  
Article
Influence Mechanism of a Bridge Wind Barrier on the Stability of a Van-Body Truck under Crosswind
by Zhiqun Yuan, Dandan Xia, Xiaobo Lin, Li Lin, Yufeng Liu and Yuehan Li
Atmosphere 2022, 13(2), 360; https://doi.org/10.3390/atmos13020360 - 21 Feb 2022
Viewed by 1861
Abstract
Understanding the crosswind stability of cars under strong wind loads and research on wind resistance methods is important for improving the safety performance of wind-induced driving on bridges. Taking van-body trucks as the research object, numerical calculation methods and wind tunnel test methods [...] Read more.
Understanding the crosswind stability of cars under strong wind loads and research on wind resistance methods is important for improving the safety performance of wind-induced driving on bridges. Taking van-body trucks as the research object, numerical calculation methods and wind tunnel test methods are used to conduct the wind-induced driving safety analyses of van trucks on a cross-sea bridge. The influence of the structural parameters of the barrier-type wind barrier on the aerodynamic characteristics and straight-line driving stability of the trucks on the bridge is studied and analyzed quantitatively. The results show that the decrease in the porosity of the wind barrier can effectively reduce the average wind speed of the bridge deck, and increasing the height of the wind barrier can effectively reduce the wind speed and increase the occlusion height of the bridge deck. The lateral acceleration, yaw rate, and lateral displacement of trucks decrease with the decrease in the porosity of the wind barrier and decrease with the increase in the height of the wind barrier. The research conclusions can not only provide data support for wind-induced driving safety analysis and the wind-resistant design of bridges but also provide a new method to balance the requirements of bridge wind-induced driving safety and bridge wind-induced structure safety. Full article
(This article belongs to the Special Issue Atmospheric Boundary Layer: Observation and Simulation)
Show Figures

Figure 1

15 pages, 3489 KiB  
Article
Spatio-Temporal Variation and Influencing Factors of Ozone Pollution in Beijing
by Bo Chen, Xinbing Yang and Jingjing Xu
Atmosphere 2022, 13(2), 359; https://doi.org/10.3390/atmos13020359 - 21 Feb 2022
Cited by 6 | Viewed by 1885
Abstract
The temporal and spatial distribution and variation characteristics of ozone (O3) in Beijing, China, are investigated using hourly monitoring data from 2020. Kriging interpolation analysis and correlation analysis are applied to describe the spatial-temporal distribution and to identify associated influencing factors. [...] Read more.
The temporal and spatial distribution and variation characteristics of ozone (O3) in Beijing, China, are investigated using hourly monitoring data from 2020. Kriging interpolation analysis and correlation analysis are applied to describe the spatial-temporal distribution and to identify associated influencing factors. The average concentration of O3 was found to be 59.58 μg·m−3. The daily maximum sliding 8 h average ozone concentration values exceeded the primary standard (100 μg·m−3) for 129 days and exceeded the secondary standard (160 μg·m−3) for 48 days. Temporally, the general pattern of daily maximum 8 h average O3 concentration was high in spring and summer and low in autumn and winter. Monthly average values showed a maximum in June. The highest daily concentrations appeared between 13:00 and 18:00 local time, and O3 concentrations had a distinct weekly pattern of variability with daily average concentrations at weekends higher than those during working days. Spatially, annual average O3 concentrations were highest in the northeast and lowest in the southeast of the city, and the seasonal variation of O3 was most significant in the southwest of the city. In relation to city districts and counties, the annual average O3 concentrations in the Miyun District were the highest, while those in the Haidian District were the lowest. On the whole, annual average O3 concentrations in Beijing were higher in the suburbs than in central areas. Based on daily average values, there was no significant correlation between O3 concentrations and rainfall (p > 0.05), but there were significant correlations between O3 concentration and sunshine hours, wind speed, maximum temperature and minimum temperature (p < 0.05), with correlation coefficients of 0.158, 0.267, 0.724 and 0.703, respectively. O3 concentrations increased with an increasing number of sunshine hours, first increased and then decreased with increasing wind speed and increased with increasing temperature. O3 concentrations were correlated with SO2 concentrations (0.05 < p > 0.001), CO concentrations (p < 0.001) and NO2 concentrations (p < 0.001), the latter having the highest correlation coefficient of −0.553 and exhibiting opposite trends in daily and monthly variations to O3 variations. Analysis of ozone pollution sources showed that automobile exhaust, coal and oil combustion and volatile organic compounds released by industrial plants were the main sources. Terrain affected the distribution of ozone, as well as human activities and industry. Full article
(This article belongs to the Special Issue Ozone Pollution in East Asia: Factors and Sources)
Show Figures

Figure 1

10 pages, 1869 KiB  
Article
Monitoring and Analysis of Outdoor Carbon Dioxide Concentration by Autonomous Sensors
by Paulo Henrique Soares, Johny Paulo Monteiro, Hanniel Ferreira Sarmento de Freitas, Luciano Ogiboski, Felipe Silva Vieira and Cid Marcos G. Andrade
Atmosphere 2022, 13(2), 358; https://doi.org/10.3390/atmos13020358 - 20 Feb 2022
Cited by 5 | Viewed by 2383
Abstract
Countless problems have been caused by the excessive emission of polluting gases, such as carbon dioxide (CO2), into the atmosphere. Therefore, more effective monitoring of CO2 is essential, especially in central or industrial regions. Thus, this work shows the development [...] Read more.
Countless problems have been caused by the excessive emission of polluting gases, such as carbon dioxide (CO2), into the atmosphere. Therefore, more effective monitoring of CO2 is essential, especially in central or industrial regions. Thus, this work shows the development of a platform for monitoring the CO2 concentration, which is composed of autonomous and independent sensors that have their own energy source, storage capacity, and data replication for the central server. To validate the platform, CO2 measurements were taken at three strategic points in an outdoor environment in a Brazilian urban center. This platform proved to be an evolution over another system previously proposed by the group that was based on the use of a wireless network of sensors to monitor CO2. This new project managed to overcome limitations that compromised the efficiency of the first platform, which were mainly related to the interference in the communication signals between the network sensors due to the existence of physical barriers in the monitoring environment. With that, this new platform showed greater security in the maintenance of collected data and allowed for the expansion of the physical complexity of the environments that can be monitored. Full article
Show Figures

Figure 1

15 pages, 4465 KiB  
Article
The Effect of Anthropogenic Heat and Moisture on Local Weather at Industrial Heat Islands: A Numerical Experiment
by Parthasarathi Mishra, Srinivasa Ramanujam Kannan and Chandrasekar Radhakrishnan
Atmosphere 2022, 13(2), 357; https://doi.org/10.3390/atmos13020357 - 20 Feb 2022
Cited by 6 | Viewed by 1723
Abstract
The current study addresses the role of heat and moisture emitted from anthropogenic sources on the local weather with the aid of numerical weather prediction (NWP). The heat and moisture emitted by industries to the atmosphere are considered main sources in this study. [...] Read more.
The current study addresses the role of heat and moisture emitted from anthropogenic sources on the local weather with the aid of numerical weather prediction (NWP). The heat and moisture emitted by industries to the atmosphere are considered main sources in this study. In order to understand the effect of heat and moisture on local weather, the study is conducted to capture the impact of heat with no moisture change. The results are compared against a control run case without perturbation and also against the case where both heat and moisture are perturbed with temperature as a single parameter. The Angul district in Odisha that houses over 4000 industries is considered our study region. The numerical simulations are performed using the mesoscale Weather Research and Forecasting (WRF) model for two rain events, namely a light rain case and a heavy rain case, with different physics options available in the WRF model. The WRF simulated maximum rainfall rate using various microphysics schemes are compared with the Tropical rainfall measuring mission (TRMM) observations for validation purposes. Our study shows that the WDM6 double moment microphysics scheme is better in capturing rain events. The TRMM-validated WRF simulation is considered a reference state of the atmosphere against which comparisons for the perturbed case are made. The surface temperature is perturbed by increasing it by 10 K near the industrial site and exponentially decreasing it with height up to the atmospheric boundary layer. A numerical experiment represents heating without addition of moisture by recalculating the relative humidity (RH) corresponding to the perturbed temperature. The perturbed temperature affects sensible heat (SH) and latent heat (LH) parameters in the numerical experiment. From the results of the numerical investigation, it is found that the near-surface rainfall rate increases locally in a reasonable manner with the addition of sensible heat to the atmosphere. A comparison against the case where moisture is added shows that enhanced rainfall is more sensitive to sensible and latent heat than sensible heat alone. Full article
Show Figures

Figure 1

21 pages, 3763 KiB  
Article
Particulate Matter Ionic and Elemental Composition during the Winter Season: A Comparative Study among Rural, Urban and Remote Sites in Southern Italy
by Elena Chianese, Giuseppina Tirimberio, Adelaide Dinoi, Daniela Cesari, Daniele Contini, Paolo Bonasoni, Angela Marinoni, Virginia Andreoli, Valentino Mannarino, Sacha Moretti, Attilio Naccarato, Francesca Sprovieri, Ivano Ammoscato, Claudia R. Calidonna, Daniel Gullì and Angelo Riccio
Atmosphere 2022, 13(2), 356; https://doi.org/10.3390/atmos13020356 - 20 Feb 2022
Cited by 5 | Viewed by 2010
Abstract
We present an overview of the concentrations and distributions of water-soluble ion species and elemental components in ambient particulate matter for five measurement sites in southern Italy with the aim of investigating the influence of the different site characteristics on PM levels. The [...] Read more.
We present an overview of the concentrations and distributions of water-soluble ion species and elemental components in ambient particulate matter for five measurement sites in southern Italy with the aim of investigating the influence of the different site characteristics on PM levels. The sites encompass different characteristics, ranging from urban to coastal and high-altitude remote areas. PM10 and PM2.5 fractions were collected simultaneously using dual channel samplers during the winter period from November 2015 to January 2016 and analyzed for water-soluble ion species, using ion chromatography, and elemental composition, using inductively coupled plasma mass spectrometry (ICP-MS). In all sites, PM2.5 represented the higher contribution to particulate mass, usually more than two times that of the coarse fraction (PM2.510). At the coastal site in Capo Granitola (Western Sicily), sea salts constituted about 30% of total PM10 mass. On average, ion species accounted for 30% to 60% of total PM10 mass and 15% to 50% of PM2.5 mass. We found that secondary ion species, i.e., SO42, NO3 and NH4+ dominated the identifiable components within both PM2.5 and PM10 fractions. The chlorine–sodium ratio was usually lower than that expected from the natural level in sea salt, evidencing aged air masses. At the monitoring site in Naples, a highly urbanized area affected by high levels of anthropogenic source emissions, an increased contribution of ammonium was found, which was imputed to the increased ammonia emissions from industrial combustion sources and road traffic. The concentrations of the investigated elements showed noteworthy differences from one site to another. The PM10 fraction was highly enriched by sources of anthropogenic origin in the samples from the most urbanized areas. In general, the enrichment factors of the elements were similar between the PM10 and PM2.5 fractions, confirming common sources for all elements. Full article
(This article belongs to the Special Issue Weather Events, Air Pollution and Associated Atmospheric Variability)
Show Figures

Figure 1

13 pages, 2188 KiB  
Article
Optimization of Marine Two-Stroke Diesel Engine Based on Air Intake Composition and Temperature Control
by Xianzhong He, Qinming Tan, Yuehong Wu and Cunfeng Wei
Atmosphere 2022, 13(2), 355; https://doi.org/10.3390/atmos13020355 - 19 Feb 2022
Cited by 5 | Viewed by 3279
Abstract
The influence of gas intake temperature, composition and the volume concentration of each gas component on diesel engine combustion, emission and the output power was studied by building a calculation model of the B&W 6S35ME-B9 marine two-stroke low-speed diesel engine, followed by a [...] Read more.
The influence of gas intake temperature, composition and the volume concentration of each gas component on diesel engine combustion, emission and the output power was studied by building a calculation model of the B&W 6S35ME-B9 marine two-stroke low-speed diesel engine, followed by a comprehensive optimization exploration. The results showed that under 295 K and 18.5% O2 of intake gas, the engine’s NOx emission is only 4.5 g/kWh and reduced to 58% from the normal air gas intake condition. Moreover, their power output is very similar. In addition, the effect of CO2 or H2O added into the intake of the diesel engine on the performance of the diesel engine can be compensated by reducing the intake temperature. At the intake temperature of 295 K, the engine’s NOx emission with 20.58% O2, 77.42% N2 and 2% H2O is 8.62 g/kWh, and 9.06 g/kWh under 20.79% O2, 78.21% N2 and 2% CO2. It is lower than 11.77 g/kWh, which is under normal intake conditions (315 K, 21%O2 and 79%N2). The power output is also similar to the normal intake condition. Therefore, the comprehensive optimization of gas intake temperature, composition and concentration can effectively optimize the diesel engine’s performance in terms of combustion, emission and power output. The research results have an important reference value for the optimization of diesel engine performance. Full article
(This article belongs to the Special Issue Atmospheric Shipping Emissions and Their Environmental Impacts)
Show Figures

Figure 1

16 pages, 7898 KiB  
Article
Possible Relationships between the Interdecadal Anomalies of Heavy Rainfall under Northeastern China Cold Vortexes and the Sea Surface Temperature (SST)
by Dan Zhu, Xiefei Zhi, Zin Mie Mie Sein, Yan Ji, Xiao Tian and Mengting Pan
Atmosphere 2022, 13(2), 354; https://doi.org/10.3390/atmos13020354 - 19 Feb 2022
Cited by 4 | Viewed by 2086
Abstract
As an important component of the East Asian monsoon system, the northeast cold vortex (NECV) exerts a significant impact on weather and climate, especially in Northeast China. This study investigated the interdecadal spatiotemporal variability of heavy rainfall under the cold vortex of Northeast [...] Read more.
As an important component of the East Asian monsoon system, the northeast cold vortex (NECV) exerts a significant impact on weather and climate, especially in Northeast China. This study investigated the interdecadal spatiotemporal variability of heavy rainfall under the cold vortex of Northeast China (NECVHR) and its relationship with sea surface temperature (SST) during 1961–2019 over Northeast China. To investigate the dominant factors affecting variability in the heavy rainfall between May and September, an empirical orthogonal function (EOF) analysis was performed. To detect the trends and changes, a Mann-Kendall (MK) test was used. The sliding t-test was used to identify the change points and the significance. Pearson correlation analysis was used to analyze the relationship between SST and NECVHR, and the t-test was used to verify the significance. The results showed that the total amount of cold vortex heavy rainfall during May–September ranged from 153 to 12,509 mm for 1961–2019. An abrupt interdecadal change was seen after 2014 in Northeast China. The EOF analyses revealed that the first, second, and third EOFs explain 76%, 12.1%, and 5.5% of the total variance, respectively. The EOF followed the heavy rainfall pattern, with increases in the south (southeast) and decreases in the north (northwest) over Northeast China. Heavy rainfall over Northeast China positively correlated with the Atlantic multidecadal oscillation (AMO) index. The heavier rainfall under cold vortex (MCVHR) years revealed that the equipotential height was obviously located over the Sea of Japan, west of Northeast China and the Qinghai Tibet plateau. The cyclonic circulation over the East China Sea and north (northeasterly) wind prevails over Northeast China during less heavy rainfall under cold vortex (LCVHR) years. A high anticyclonic circulation over the Qinghai Tibet plateau resulted in stronger cold advection over Northeast China. The anticyclonic circulations over the East China Sea and the Sea of Japan (east), and the western (southwesterly) winds prevail over Northeast China, with a relatively shallow cold trough over the Qinghai Tibet plateau. The findings in this paper provided a better understanding of the interdecadal variability of NECVHR over Northeast China. The findings can be helpful for several stakeholders regarding agricultural production, water resource management, and natural habitat conversation in Northeast China. Full article
Show Figures

Figure 1

21 pages, 6254 KiB  
Article
Response of Potential Evapotranspiration to Warming and Wetting in Northwest China
by Biao Zhu, Qiang Zhang, Jin-Hu Yang and Chun-Hua Li
Atmosphere 2022, 13(2), 353; https://doi.org/10.3390/atmos13020353 - 19 Feb 2022
Cited by 9 | Viewed by 1499
Abstract
In the last few decades, the climate in Northwest China has exhibited a warming–wetting tendency, which has been particularly prominent since the beginning of the 21st century. In this context, we analyzed the change in potential evapotranspiration (PET)in the corresponding period and its [...] Read more.
In the last few decades, the climate in Northwest China has exhibited a warming–wetting tendency, which has been particularly prominent since the beginning of the 21st century. In this context, we analyzed the change in potential evapotranspiration (PET)in the corresponding period and its response to warming and wetting, which revealed clear periodic changes. The most significant changes occurred in the 1970s and 1980s, when PET decreased in the humid climate zone and increased in the semi-arid climate zone. Factor effect analysis showed that PET had a positive response to temperature; the highest and lowest temperatures in the region continued to rise. Relative humidity reduced the overall PET in the region, especially in the humid zone. Sunshine duration has continued to decrease rapidly since the 1980s, especially in humid and arid zones, resulting in a corresponding decrease in PET. Similarly, corresponding to the consistent wind speed decrease, there has also been a significant decrease in PET, with the largest decrease in the arid zone, followed by the humid zone. In general, PET in the central and eastern parts of Northwest China has mainly been affected by the temperature, whereas wind speed has been the main factor in the western part of the region. Relative humidity and sunshine duration have had relatively little effect on the PET (below 20% in most places). The reasons and processes that affect PET are very complicated. Owing to the unique climate characteristics and underlying surface energy mechanisms in Northwest China, it is still difficult to offer a scientific explanation for its warming and wetting. Therefore, the extent to which PET impacts climate change in this region is currently unclear, and systematic and scientific research on this is needed. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

20 pages, 4513 KiB  
Article
Intra-Seasonal and Intra-Annual Variation of the Latent Heat Flux Transfer Coefficient for a Freshwater Lake
by Gabriella Lükő, Péter Torma and Tamás Weidinger
Atmosphere 2022, 13(2), 352; https://doi.org/10.3390/atmos13020352 - 19 Feb 2022
Cited by 3 | Viewed by 1914
Abstract
In the case of lakes, evaporation is one of the most significant losses of water and energy. Based on high-frequency eddy-covariance (EC) measurements between May and September of 2019, the offshore heat and water vapor exchanges are evaluated for the large (~600 km [...] Read more.
In the case of lakes, evaporation is one of the most significant losses of water and energy. Based on high-frequency eddy-covariance (EC) measurements between May and September of 2019, the offshore heat and water vapor exchanges are evaluated for the large (~600 km2) but shallow (~3.2 m deep) Lake Balaton (Transdanubian region, Hungary). The role of local driving forces of evaporation in different time scales (from 20 min to one month) is explored, such as water surface and air temperatures, humidity, atmospheric stability, net radiation, and energy budget components. EC-derived water vapor roughness lengths and transfer coefficients (Cq) show an apparent intra-seasonal variation. Different energy balance-based evaporation estimation methods (such as the Priestley-Taylor and the Penman-Monteith) confirm this observation. Furthermore, this has suggested the existence of an intra-annual variation in these parameters. This hypothesis is verified using ten years of water balance measurements, from which, as a first step, evaporation rates and, second, transfer coefficients are derived on a monthly scale. Cq is highly reduced in winter months (~1 × 10−3) compared to summer months (~2.5 × 10−3) and strongly correlated with net radiation. The application of time-varying Cq significantly increases the accuracy of evaporation estimation when the Monin-Obukhov similarity theory-based aerodynamic method is applied. The determination coefficient increases to 0.84 compared to 0.52 when a constant Cq is employed. Full article
(This article belongs to the Special Issue Eddy Covariance Methodology for Carbon, Water and Energy Exchanges)
Show Figures

Figure 1

15 pages, 3463 KiB  
Article
Clustering Analysis on Drivers of O3 Diurnal Pattern and Interactions with Nighttime NO3 and HONO
by Xue Wang, Shanshan Wang, Sanbao Zhang, Chuanqi Gu, Aimon Tanvir, Ruifeng Zhang and Bin Zhou
Atmosphere 2022, 13(2), 351; https://doi.org/10.3390/atmos13020351 - 19 Feb 2022
Cited by 4 | Viewed by 2307
Abstract
The long-path differential optical absorption spectroscopy (LP-DOAS) technique was deployed in Shanghai to continuously monitor ozone (O3), formaldehyde (HCHO), nitrogen dioxide (NO2), nitrous acid (HONO), and nitrate radical (NO3) mixing ratios from September 2019 to August 2020. [...] Read more.
The long-path differential optical absorption spectroscopy (LP-DOAS) technique was deployed in Shanghai to continuously monitor ozone (O3), formaldehyde (HCHO), nitrogen dioxide (NO2), nitrous acid (HONO), and nitrate radical (NO3) mixing ratios from September 2019 to August 2020. Through a clustering method, four typical clusters of the O3 diurnal pattern were identified: high during both the daytime and nighttime (cluster 1), high during the nighttime but low during the daytime (cluster 2), low during both the daytime and nighttime (cluster 3), and low during the nighttime but high during the daytime (cluster 4). The drivers of O3 variation for the four clusters were investigated for the day- and nighttime. Ambient NO caused the O3 gap after midnight between clusters 1 and 2 and clusters 3 and 4. During the daytime, vigorous O3 generation (clusters 1 and 4) was found to accompany higher temperature, lower humidity, lower wind speed, and higher radiation. Moreover, O3 concentration correlated with HCHO for all clusters except for the low O3 cluster 3, while O3 correlated with HCHO/NOx, but anti-correlated with NOx for all clusters. The lower boundary layer height before midnight hindered O3 diffusion and accordingly determined the final O3 accumulation over the daily cycle for clusters 1 and 4. The interactions between the O3 diel profile and other atmospheric reactive components established that higher HONO before sunrise significantly promoted daytime O3 generation, while higher daytime O3 led to a higher nighttime NO3 level. This paper summarizes the interplays between day- and nighttime oxidants and oxidation products, particularly the cause and effect for daytime O3 generation from the perspective of nighttime atmospheric components. Full article
(This article belongs to the Special Issue Recent Advances in Optical Remote Sensing of Atmosphere)
Show Figures

Figure 1

17 pages, 5545 KiB  
Article
Study on the Optimized Muffler with Function of PM Filtration for Non-Road Diesel Engines
by Long Feng, Lizhuang Dou, Xiang Wen, Mingfei Mu, Xiaotong Ma, Bisheng Chen, Chao Shi and Xiude Hu
Atmosphere 2022, 13(2), 350; https://doi.org/10.3390/atmos13020350 - 19 Feb 2022
Cited by 1 | Viewed by 2232
Abstract
With a high thermal efficiency, high reliability and good fuel economy, diesel engines have been widely used. However, with the increasingly stringent standards regarding non-road diesel engine emissions, diesel engines can hardly satisfy the particle emission requirements through internal purification alone. To reduce [...] Read more.
With a high thermal efficiency, high reliability and good fuel economy, diesel engines have been widely used. However, with the increasingly stringent standards regarding non-road diesel engine emissions, diesel engines can hardly satisfy the particle emission requirements through internal purification alone. To reduce the particle emission and noise levels of the non-road diesel engine R180, this paper optimized the original muffler, and endowed the muffler with a particulate matter (PM) filtering function to improve the muffling. This study first proposed stainless steel fiber as the filtering medium as it is inexpensive and accessible; a bench experiment was conducted to verify the particle filtration performance and its effect on the overall engine performance. Then, the structure of the existing muffler in non-road diesel engines R180 was optimized, and the stainless steel fiber filtering was integrated. The internal flow field of the optimized muffler was obtained in the computational fluid dynamics software FLUENT, and the acoustic and filtration performance was studied. The experimental and simulation results indicated that the optimized muffler could achieve both particle filtration and noise reduction. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

16 pages, 2025 KiB  
Article
A New Method for the Assessment of the Oxidative Potential of Both Water-Soluble and Insoluble PM
by Maria Agostina Frezzini, Gianluca Di Iulio, Caterina Tiraboschi, Silvia Canepari and Lorenzo Massimi
Atmosphere 2022, 13(2), 349; https://doi.org/10.3390/atmos13020349 - 19 Feb 2022
Cited by 6 | Viewed by 1970
Abstract
Water-soluble and insoluble fractions of airborne particulate matter (PM) exhibit different toxicological potentials and peculiar mechanisms of action in biological systems. However, most of the research on the oxidative potential (OP) of PM is focused exclusively on its water-soluble fraction, since experimental criticisms [...] Read more.
Water-soluble and insoluble fractions of airborne particulate matter (PM) exhibit different toxicological potentials and peculiar mechanisms of action in biological systems. However, most of the research on the oxidative potential (OP) of PM is focused exclusively on its water-soluble fraction, since experimental criticisms were encountered for detaching the whole PM (soluble and insoluble species) from field filters. However, to estimate the actual potential effects of PM on human health, it is essential to assess the OP of both its water-soluble and insoluble fractions. In this study, to estimate the total OP (TOP), an efficient method for the detachment of intact PM10 from field filters by using an electrical toothbrush was applied to 20 PM10 filters in order to obtain PM10 water suspensions to be used for the DCFH, AA and DTT oxidative potential assays (OPDCFH, OPAA and OPDTT). The contribution of the insoluble PM10 to the TOP was evaluated by comparing the TOP values to those obtained by applying the three OP assays to the water-soluble fraction of 20 equivalent PM10 filters. The OP of the insoluble fraction (IOP) was calculated as the difference between the TOP and the WSOP. Moreover, each PM10 sample was analyzed for the water-soluble and insoluble fractions of 10 elements (Al, Cr, Cs, Cu, Fe, Li, Ni, Rb, Sb, Sn) identified as primary elemental tracers of the main emission sources in the study area. A principal component analysis (PCA) was performed on the data obtained to identify the predominant sources for the determination of TOP, WSOP, and IOP. Results showed that water-soluble PM10 released by traffic, steel plant, and biomass burning is mainly responsible for the generation of the TOP as well as of the WSOP. This evidence gave strength to the reliability of the results from OP assays performed only on the water-soluble fraction of PM. Lastly, the IOPDCFH and IOPDTT were found to be principally determined by insoluble PM10 from mineral dust. Full article
Show Figures

Graphical abstract

19 pages, 3429 KiB  
Article
Amateur Observers Witness the Return of Venus’ Cloud Discontinuity
by Emmanuel (Manos) Kardasis, Javier Peralta, Grigoris Maravelias, Masataka Imai, Anthony Wesley, Tiziano Olivetti, Yaroslav Naryzhniy, Luigi Morrone, Antonio Gallardo, Giovanni Calapai, Joaquin Camarena, Paulo Casquinha, Dzmitry Kananovich, Niall MacNeill, Christian Viladrich and Alexia Takoudi
Atmosphere 2022, 13(2), 348; https://doi.org/10.3390/atmos13020348 - 18 Feb 2022
Cited by 2 | Viewed by 7293
Abstract
Firstly identified in images from JAXA’s orbiter Akatsuki, the cloud discontinuity of Venus is a planetary-scale phenomenon known to be recurrent since, at least, the 1980s. Interpreted as a new type of Kelvin wave, this disruption is associated to dramatic changes in [...] Read more.
Firstly identified in images from JAXA’s orbiter Akatsuki, the cloud discontinuity of Venus is a planetary-scale phenomenon known to be recurrent since, at least, the 1980s. Interpreted as a new type of Kelvin wave, this disruption is associated to dramatic changes in the clouds’ opacity and distribution of aerosols, and it may constitute a critical piece for our understanding of the thermal balance and atmospheric circulation of Venus. Here, we report its reappearance on the dayside middle clouds four years after its last detection with Akatsuki/IR1, and for the first time, we characterize its main properties using exclusively near-infrared images from amateur observations. In agreement with previous reports, the discontinuity exhibited temporal variations in its zonal speed, orientation, length, and its effect over the clouds’ albedo during the 2019/2020 eastern elongation. Finally, a comparison with simultaneous observations by Akatsuki UVI and LIR confirmed that the discontinuity is not visible on the upper clouds’ albedo or thermal emission, while zonal speeds are slower than winds at the clouds’ top and faster than at the middle clouds, evidencing that this Kelvin wave might be transporting momentum up to upper clouds. Full article
Show Figures

Figure 1

13 pages, 4227 KiB  
Article
Spatial Distribution of Primary and Secondary PM2.5 Concentrations Emitted by Vehicles in the Guanzhong Plain, China
by Pan Lu, Shunxi Deng, Guanghua Li, Jianghao Li, Ke Xu and Zhenzhen Lu
Atmosphere 2022, 13(2), 347; https://doi.org/10.3390/atmos13020347 - 18 Feb 2022
Cited by 5 | Viewed by 1969
Abstract
With the rapid increase of the vehicle population in the Guanzhong Plain (GZP), the fine particulate matter (PM2.5) emitted by vehicles has an impact on regional air quality and public health. The spatial distribution of primary and secondary PM2.5 concentrations [...] Read more.
With the rapid increase of the vehicle population in the Guanzhong Plain (GZP), the fine particulate matter (PM2.5) emitted by vehicles has an impact on regional air quality and public health. The spatial distribution of primary and secondary PM2.5 concentrations from vehicles in GZP in January and July 2017 was simulated in this study by using the Weather Research and Forecasting (WRF) model and the California Puff (CALPUFF) air quality model. The contributions of vehicle-related emission sources to total PM2.5 concentrations were also calculated. The results show that although the emissions of primary PM2.5, NOx, and SO2 in July were greater than those in January, the hourly average concentrations of primary and secondary PM2.5 in January were significantly higher than those in July. The highest concentrations of primary and total PM2.5 were mostly located in the urban areas of Xi’an and Xianyang in the central region of GZP. The contributions of exhaust emissions, secondary nitrates, brake wear, tire wear, and secondary sulfate to the total PM2.5 concentrations in GZP were 50.37%, 34.76%, 10.79%, 4.06%, and 0.04% in January and 71.91%, 11.14%, 11.89%, 5.03%, and 0.03% in July, respectively. These results will help us to further control PM2.5 pollution caused by vehicles. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

13 pages, 1005 KiB  
Review
Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes
by Ioanna Tsagouri
Atmosphere 2022, 13(2), 346; https://doi.org/10.3390/atmos13020346 - 18 Feb 2022
Cited by 4 | Viewed by 3445
Abstract
During geomagnetic storm events, the highly variable solar wind energy input in the magnetosphere significantly alters the structure of the Earth’s upper atmosphere through the interaction of the ionospheric plasma with atmospheric neutrals. A key element of the ionospheric storm-time response is considered [...] Read more.
During geomagnetic storm events, the highly variable solar wind energy input in the magnetosphere significantly alters the structure of the Earth’s upper atmosphere through the interaction of the ionospheric plasma with atmospheric neutrals. A key element of the ionospheric storm-time response is considered to be the large-scale increases and decreases in the peak electron density that are observed globally to formulate the so-called positive and negative ionospheric storms, respectively. Mainly due to their significant impact on the reliable performance of technological systems, ionospheric storms have been extensively studied in recent decades, and cumulated knowledge and experience have been assigned to their understanding. Nevertheless, ionospheric storms constitute an important link in the complex chain of solar-terrestrial relations. In this respect, any new challenge introduced in the field by a better understanding of the geospace environment, new modeling and monitoring capabilities and/or new technologies and requirements also introduces new challenges for the interpretation of ionospheric storms. This paper attempts a brief survey of present knowledge on the fundamental aspects of large-scale ionospheric storm time response at middle latitudes. Further attention is paid to the results obtained regarding the critical role that solar wind conditions which trigger disturbances may play on the morphology and the occurrence of ionospheric storm effects. Full article
Show Figures

Figure 1

14 pages, 1478 KiB  
Article
Ambient Particulate Air Pollution and Daily Hospital Admissions in 31 Cities in Poland
by Łukasz Adamkiewicz, Katarzyna Maciejewska, Daniel Rabczenko and Anetta Drzeniecka-Osiadacz
Atmosphere 2022, 13(2), 345; https://doi.org/10.3390/atmos13020345 - 18 Feb 2022
Cited by 6 | Viewed by 2072
Abstract
A strong and consistent association has been observed between morbidity or mortality rates and PM concentration, and is well documented in many countries. In Poland, despite poor air quality, studies concerning the evaluation of acute health effects of ambient air pollution on morbidity [...] Read more.
A strong and consistent association has been observed between morbidity or mortality rates and PM concentration, and is well documented in many countries. In Poland, despite poor air quality, studies concerning the evaluation of acute health effects of ambient air pollution on morbidity from respiratory or cardiovascular diseases are rare. We examined the short-term impact of PMx concentration on hospital admission in 31 Polish cities based on the daily PM10, PM2.5 concentration, meteorological variables, and hospital data. The generalized additive model (GAM) and a random-effects meta-analysis were used to assess the impact of air pollution on morbidity within the exposed population. Almost 1.6 million cardiovascular admissions and 600 thousand respiratory disorders were analyzed. The RR values for PM10-related cardiovascular and respiratory hospital admissions in Poland are equal to 1.0077 (95% confidence interval, 1.0062 to 1.0092) and 1.0218 (95% confidence interval, 1.0182 to 1.0253), respectively, while for PM2.5 1.0088 (95% confidence interval, 1.0072 to 1.0103) and 1.0289 (95% confidence interval, 1.0244 to 1.0335), respectively. Moreover, a moderate heterogeneity of RR estimates was observed between the analyzed cities (I2 values from 27% to 45%). The presented analysis confirms the significant association between hospital admission and PMx concentration, especially during heating seasons. Full article
(This article belongs to the Special Issue Air Pollution, Air Quality and Human Health)
Show Figures

Figure 1

21 pages, 8632 KiB  
Article
Valley–Mountain Circulation Associated with the Diurnal Cycle of Precipitation in the Tropical Andes (Santa River Basin, Peru)
by Alan G. Rosales, Clementine Junquas, Rosmeri P. da Rocha, Thomas Condom and Jhan-Carlo Espinoza
Atmosphere 2022, 13(2), 344; https://doi.org/10.3390/atmos13020344 - 18 Feb 2022
Cited by 7 | Viewed by 3018
Abstract
The Cordillera Blanca (central Andes of Peru) represents the largest concentration of tropical glaciers in the world. The atmospheric processes related to precipitations are still scarcely studied in this region. The main objective of this study is to understand the atmospheric processes of [...] Read more.
The Cordillera Blanca (central Andes of Peru) represents the largest concentration of tropical glaciers in the world. The atmospheric processes related to precipitations are still scarcely studied in this region. The main objective of this study is to understand the atmospheric processes of interaction between local and regional scales controlling the diurnal cycle of precipitation over the Santa River basin located between the Cordillera Blanca and the Cordillera Negra. The rainy season (December–March) of 2012–2013 is chosen to perform simulations with the WRF (Weather Research and Forecasting) model, with two domains at 6 km (WRF-6 km) and 2 km (WRF-2 km) horizontal resolutions, forced by ERA5. WRF-2 km precipitation shows a clear improvement over WRF-6 km in terms of the daily mean and diurnal cycle, compared to in situ observations. WRF-2 km shows that the moisture from the Pacific Ocean is a key process modulating the diurnal cycle of precipitation over the Santa River basin in interaction with moisture fluxes from the Amazon basin. In particular, a channeling thermally orographic flow is described as controlling the afternoon precipitation along the Santa valley. In addition, in the highest parts of the Santa River basin (in both cordilleras) and the southern part, maximum precipitation occurs earlier than the lowest parts and the bottom of the valley in the central part of the basin, associated with the intensification of the channeling flow by upslope cross-valley winds during mid-afternoon and its decrease during late afternoon/early night. Full article
(This article belongs to the Special Issue State-of-Art in Regional Climate Models)
Show Figures

Figure 1

21 pages, 3886 KiB  
Article
Sulfur and Nitrogen Depositions in BULGARIA—Model Results and Observations
by Emilia Georgieva, Elena Hristova, Dimiter Syrakov, Maria Prodanova, Ilian Gospodinov and Blagorodka Veleva
Atmosphere 2022, 13(2), 343; https://doi.org/10.3390/atmos13020343 - 18 Feb 2022
Cited by 1 | Viewed by 1744
Abstract
Atmospheric deposition processes are of primary importance for human health, forests, agricultural lands, aquatic bodies, and ecosystems. South-East Europe is still characterized by numerous hot spots of elevated sulfur deposition, despite the reduction in European emission sources. The purpose of this study is [...] Read more.
Atmospheric deposition processes are of primary importance for human health, forests, agricultural lands, aquatic bodies, and ecosystems. South-East Europe is still characterized by numerous hot spots of elevated sulfur deposition, despite the reduction in European emission sources. The purpose of this study is to discuss the results from two chemical transport models and observations for wet and dry depositions of sulfur (S), reduced nitrogen (RDN) and oxidized nitrogen (OXN) in Bulgaria in 2016–2017. The spatial distribution and the domain main deposition values by EMEP MSC-W (model of the MSC-W Centre of the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmissions of Air Pollutants in Europe) and BgCWFS (Bulgarian Chemical Weather Forecast System) demonstrated S wet depositions to be higher than N depositions, and identified a rural area in south-east Bulgaria as a possible hot-spot. The chemical analysis of deposition samples at three sites showed a prevalence of sulfate in the western part of the country, and prevalence of Cl and Na at a coastal site. The comparison between modeled and observed depositions demonstrated that both models captured the prevalence of S wet depositions at all sites. Better performance of BgCWFS with an average absolute value of the normalized mean bias of 16% was found. Full article
(This article belongs to the Special Issue Atmospheric Composition and Regional Climate Studies in Bulgaria)
Show Figures

Figure 1

17 pages, 2030 KiB  
Article
Assessment of the Carbon Budget of Local Governments in South Korea
by Gyung Soon Kim, A Reum Kim, Bong Soon Lim, Jaewon Seol, Ji Hong An, Chi Hong Lim, Seung Jin Joo and Chang Seok Lee
Atmosphere 2022, 13(2), 342; https://doi.org/10.3390/atmos13020342 - 18 Feb 2022
Cited by 4 | Viewed by 2089
Abstract
This study was carried out to assess the carbon budget of local governments in South Korea. The carbon budget was obtained from the difference between net ecosystem productivity (NEP) that the natural ecosystem displays, and carbon dioxide emissions calculated from energy consumption in [...] Read more.
This study was carried out to assess the carbon budget of local governments in South Korea. The carbon budget was obtained from the difference between net ecosystem productivity (NEP) that the natural ecosystem displays, and carbon dioxide emissions calculated from energy consumption in each local government. NEP was obtained from the difference between net primary productivity, measured by an allometric method, and soil respiration, measured with EGM-4 in natural forests and artificial plantations. Heterotrophic respiration was adjusted to 55% level of the total soil respiration based on existing research results. A field survey to obtain information for components of the carbon cycle was conducted in Cheongju (central Korea) and Yeosu (southern Korea). Pinus densiflora, Quercus acutissima, and Quercus mongolica (central Korea) and P. densiflora and Q. acutissima (southern Korea) forests were selected as the natural forests. Pinus rigida and Larix kaempferi (central Korea) and P. rigida (southern Korea) plantations were selected as the artificial plantations. Vegetation types were classified by analyzing LandSat images by applying a GIS program. CO2 emissions were the highest in Pohang, Gwangyang, and Yeosu, where the iron and the petrochemical industrial complexes are located. CO2 emissions per unit area were the highest in Seoul, followed by Pohang and Gwangyang. CO2 absorption was the highest in the Gangwon province, where the forest area ratio to the total area is the highest, and the lowest in the metropolitan areas such as Seoul, Incheon, Daegu, Daejeon, and Gwangju. The number of local governments in which the amount of absorption is more than the emission amount was highest in Gangwon-do, where 10 local governments showed a negative carbon budget. Eight, seven, five, five, three, and three local governments in Gyeongsangbuk-do, Jeollanam-do, Gyeongsangnam-do, Jeollabuk-do, Gyeonggi-do, and Chungcheongbuk-do, respectively, showed a negative carbon budget where the amount of carbon absorption was greater than the emission amount. The carbon budget showed a very close correlation with carbon emission, and the carbon emission showed a significant correlation with population size. Moreover, the amount of carbon absorption showed a negative correlation with population size, population density, and non-forest area, and a positive correlation with the total area of the forest, coniferous forest area, and broad-leaved forest area. Considering the reality that carbon emissions exceed their absorption, measures to secure absorption sources should be considered as important as measures to reduce carbon emissions to achieve carbon neutrality in the future. As a measure to secure absorption sources, it is proposed to improve the quality of existing absorption sources, secure new absorption sources such as riparian forests, and efficiently arrange absorption sources. Full article
(This article belongs to the Special Issue Frontiers in Quantifying CO2 Uptake by Forests)
Show Figures

Figure 1

18 pages, 14324 KiB  
Article
Transboundary Air Pollution Transport of PM10 and Benzo[a]pyrene in the Czech–Polish Border Region
by Vladimíra Volná, Daniel Hladký, Radim Seibert and Blanka Krejčí
Atmosphere 2022, 13(2), 341; https://doi.org/10.3390/atmos13020341 - 17 Feb 2022
Cited by 4 | Viewed by 1731
Abstract
The article is occupied with the evaluation of the transboundary transport of pollutants in the Czech–Polish border region (between the Moravian-Silesian region and the Silesian Voivodeship) in Central Europe. It focuses on the evaluation of concentrations of benzo[a]pyrene (BaP) and suspended [...] Read more.
The article is occupied with the evaluation of the transboundary transport of pollutants in the Czech–Polish border region (between the Moravian-Silesian region and the Silesian Voivodeship) in Central Europe. It focuses on the evaluation of concentrations of benzo[a]pyrene (BaP) and suspended particles of PM10 depending on meteorological conditions, especially wind direction. The whole area of interest is heavily affected with air pollution of BaP and PM10. Limits of BaP and PM10 are still exceeded. Annual concentrations of benzo[a]pyrene are even several times higher than the value of its annual limit. The elaboration follows the results of the Czech–Polish project “Air Silesia”, which dealt with air pollution and the transboundary transport of pollutants in this area and took place in 2010 to 2013. Within this project, a higher transport of pollutants from Poland to the Czech Republic was established. The evaluation of the dependences of PM10 concentrations is based on hourly and daily data of PM10 and hourly data of meteorological quantities. To assess the dependences of daily BaP and PM10 concentrations, a methodology for evaluating daily types of wind direction was implemented into the processing. The results confirm that the problem of above-limit concentrations of BaP and PM10 in the Moravian-Silesian Region in the Czech Republic and the Silesian Voivodeship in Poland remains. The article confirms there is a higher transport of PM10 concentrations from Poland to the Czech Republic in the area of interest. Higher transport in the same direction is also predicted for daily concentrations of benzo[a]pyrene, although this cannot be clearly confirmed due to the lack of more detailed and identifiable data. Full article
(This article belongs to the Special Issue Air Quality in Poland)
Show Figures

Figure 1

10 pages, 1922 KiB  
Brief Report
SARS-CoV-2 RNA Recovery from Air Sampled on Quartz Fiber Filters: A Matter of Sample Preservation?
by Sabina Licen, Luisa Zupin, Lorenzo Martello, Valentina Torboli, Sabrina Semeraro, Anna Lilian Gardossi, Enrico Greco, Francesco Fontana, Sergio Crovella, Maurizio Ruscio, Jolanda Palmisani, Alessia Di Gilio, Prisco Piscitelli, Alberto Pallavicini and Pierluigi Barbieri
Atmosphere 2022, 13(2), 340; https://doi.org/10.3390/atmos13020340 - 17 Feb 2022
Cited by 3 | Viewed by 2198
Abstract
The airborne route of transmission of SARS-CoV-2 was confirmed by the World Health Organization in April 2021. There is an urge to establish standardized protocols for assessing the concentration of SARS-CoV-2 RNA in air samples to support risk assessment, especially in indoor environments. [...] Read more.
The airborne route of transmission of SARS-CoV-2 was confirmed by the World Health Organization in April 2021. There is an urge to establish standardized protocols for assessing the concentration of SARS-CoV-2 RNA in air samples to support risk assessment, especially in indoor environments. Debates on the airborne transmission route of SARS-CoV-2 have been complicated because, among the studies testing the presence of the virus in the air, the percentage of positive samples has often been very low. In the present study, we report preliminary results on a study for the evaluation of parameters that can influence SARS-CoV-2 RNA recovery from quartz fiber filters spotted either by standard single-stranded SARS-CoV-2 RNA or by inactivated SARS-CoV-2 virions. The analytes were spiked on filters and underwent an active or passive sampling; then, they were preserved at −80 °C for different numbers of days (0 to 54) before extraction and analysis. We found a mean recovery of 2.43%, except for the sample not preserved (0 days) that showed a recovery of 13.51%. We found a relationship between the number of days and the recovery percentage. The results presented show a possible issue that relates to the quartz matrix and SARS-CoV-2 RNA recovery. The results are in accordance with the already published studies that described similar methods for SARS-CoV-2 RNA field sampling and that reported non-detectable concentrations of RNA. These outcomes could be false negatives due to sample preservation conditions. Thus, until further investigation, we suggest, as possible alternatives, to keep the filters: (i) in a sealed container for preservation at 4 °C; and (ii) in a viral transport medium for preservation at a temperature below 0 °C. Full article
Show Figures

Figure 1

17 pages, 6830 KiB  
Article
Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico
by Martín José Montero-Martínez, Oscar Pita-Díaz and Mercedes Andrade-Velázquez
Atmosphere 2022, 13(2), 339; https://doi.org/10.3390/atmos13020339 - 17 Feb 2022
Cited by 7 | Viewed by 1974
Abstract
One of the main current challenges is detecting changes in the climate at the regional level. The present study tried to address this issue by looking for some influence of large-scale climate oscillations on the climate of a small and complex topography basin [...] Read more.
One of the main current challenges is detecting changes in the climate at the regional level. The present study tried to address this issue by looking for some influence of large-scale climate oscillations on the climate of a small and complex topography basin in Central Mexico. We collected temperature and precipitation data from 44 climate stations within an area of up to 20 km around the Apatlaco River sub-basin (~30 km south of Mexico City) during the period 1950–2013. Posteriorly, quality analysis and homogenization of the climate databases were performed by using the Climatol algorithm. We analyzed the trend of five ETCCDI climate indices through several statistical tests. Finally, we calculated simple Pearson correlations of those indices with four climate oscillation indices that have affected Mexico’s climate in the recent past. The results revealed that the Atlantic Multidecadal Oscillation had a clear influence on four of the five indices analyzed in the study area. The summer days and the extreme maximum and minimum temperatures accounted for a small increase in the temperature of the middle east (urban) basin compared to the middle west (rural), which could be a manifestation of the heat island effect or the difference in soil type (and therefore albedo) of the two zones. As expected, the midsummer drought effect predominated in most of the sub-basin, with only the uppermost part showing monsoon-type precipitation during a typical year. Full article
(This article belongs to the Special Issue Application of Homogenization Methods for Climate Records)
Show Figures

Figure 1

14 pages, 3642 KiB  
Article
Weight Loss Function for the Cooperative Inversion of Atmospheric Duct Parameters
by Jie Han, Jia-Ji Wu, Hong-Guang Wang, Qing-Lin Zhu, Li-Jun Zhang, Chao Zhang, Qian-Nan Wang and Hui Zhao
Atmosphere 2022, 13(2), 338; https://doi.org/10.3390/atmos13020338 - 17 Feb 2022
Cited by 4 | Viewed by 1544
Abstract
Low-altitude atmospheric ducts are abnormal atmospheric phenomena in the troposphere, impacting the operation of microwave or ultrashort wave radio systems. Therefore, the real-time acquisition of low-altitude atmospheric duct parameters is essential to ensure the successful operation of radio systems. Remote sensing methods based [...] Read more.
Low-altitude atmospheric ducts are abnormal atmospheric phenomena in the troposphere, impacting the operation of microwave or ultrashort wave radio systems. Therefore, the real-time acquisition of low-altitude atmospheric duct parameters is essential to ensure the successful operation of radio systems. Remote sensing methods based on deep learning are, presently, the most important tools to infer duct parameters. In a traditional deep learning loss function, different duct parameters adopt the same weight coefficient. This study establishes a weight loss function and proposes a method for determining the weight coefficient based on the extended Fourier amplitude sensitivity test method. Based on Global Navigation Satellite System (GNSS) occultation signals, the cooperative inversion model of atmospheric duct parameters is established. Test results show that our proposed loss function was feasible, effective, and yielded a higher inversion accuracy than the traditional loss function. Full article
(This article belongs to the Special Issue Radar Sensing Atmosphere: Modelling, Imaging and Prediction)
Show Figures

Figure 1

21 pages, 5531 KiB  
Article
Venus’ Cloud-Tracked Winds Using Ground- and Space-Based Observations with TNG/NICS and VEx/VIRTIS
by Pedro Machado, Javier Peralta, José E. Silva, Francisco Brasil, Ruben Gonçalves and Miguel Silva
Atmosphere 2022, 13(2), 337; https://doi.org/10.3390/atmos13020337 - 17 Feb 2022
Cited by 1 | Viewed by 11794
Abstract
Characterizing the wind speeds of Venus and their variability at multiple vertical levels is essential for a better understanding of the atmospheric superrotation, constraining the role of large-scale planetary waves in the maintenance of this superrotation, and in studying how the wind field [...] Read more.
Characterizing the wind speeds of Venus and their variability at multiple vertical levels is essential for a better understanding of the atmospheric superrotation, constraining the role of large-scale planetary waves in the maintenance of this superrotation, and in studying how the wind field affects clouds’ distribution. Here, we present cloud-tracked wind results of the Venus nightside, obtained with unprecedented quality using ground-based observations during July 2012 with the near-infrared camera and spectrograph (NICS) of the Telescopio Nazionale Galileo (TNG) in La Palma. These observations were performed during 3 consecutive days for periods of 2.5 h starting just before dawn, sensing the nightside lower clouds of Venus close to 48 km of altitude with images taken at continuum K filter at 2.28 μm. Our observations cover a period of time when ESA’s Venus Express was not able to observe these deeper clouds of Venus due to a failure in the infrared channel of its imaging spectrometer, VIRTIS-M, and the dates were chosen to coordinate these ground-based observations with Venus Express’ observations of the dayside cloud tops (at about 70 km) with images at 380 nm acquired with the imaging spectrometer VIRTIS-M. Thanks to the quality and spatial resolution of TNG/NICS images and the use of an accurate technique of template matching to perform cloud tracking, we present the most detailed and complete profile of wind speeds ever performed using ground-based observations of Venus. The vertical shear of the wind was also obtained for the first time, obtained by the combination of ground-based and space-based observations, during the Venus Express mission since the year 2008, when the infrared channel of VIRTIS-M stopped working. Our observations exhibit day-to-day changes in the nightside lower clouds, the probable manifestation of the cloud discontinuity, no relevant variations in the zonal winds, and an accurate characterization of their decay towards the poles, along with the meridional circulation. Finally, we also present the latitudinal profiles of zonal winds, meridional winds, and vertical shear of the zonal wind between the upper clouds’ top and lower clouds, confirming previous findings by Venus Express. Full article
(This article belongs to the Special Issue Planetary Atmospheres: From Solar System to Exoplanets)
Show Figures

Figure 1

17 pages, 1741 KiB  
Article
Does Agricultural Credit Mitigate the Effect of Climate Change on Cereal Production? Evidence from Sichuan Province, China
by Wensong He, Wei Chen, Abbas Ali Chandio, Bangzheng Zhang and Yuansheng Jiang
Atmosphere 2022, 13(2), 336; https://doi.org/10.3390/atmos13020336 - 17 Feb 2022
Cited by 26 | Viewed by 2702
Abstract
This study attempts to investigate the effects of global climate change (via temperature and rainfall) on cereal production in Sichuan over the 1978–2018 period, whether agricultural credit combining with technical progress (i.e., mechanical farming rate) mitigate the effect of climate change. The present [...] Read more.
This study attempts to investigate the effects of global climate change (via temperature and rainfall) on cereal production in Sichuan over the 1978–2018 period, whether agricultural credit combining with technical progress (i.e., mechanical farming rate) mitigate the effect of climate change. The present study empirically analyzed the short-term and long-term interrelation among all the considered variables by using the autoregressive distributed lag (ARDL) model. The results of the ARDL bounds testing revealed that there is a long-term cointegration relationship between the variables. The findings showed that temperature significantly negatively affected cereal production, while rainfall significantly contributed to cereal production in the context of Sichuan province, China. Agricultural credit, especially in the long run, significantly improved cereal production, implying that agricultural credit is used to invest in climate mitigation technologies in cereal production. Findings further indicated that the mechanical farming rate significantly enhanced cereal production, indicating that technical progress has been playing a vital role. This study suggests that the policymakers should formulate more comprehensive agricultural policies to meet the financial needs of the agricultural sector and increase support for production technology. Full article
Show Figures

Figure 1

14 pages, 4481 KiB  
Article
Improvement of Airflow Distribution and Contamination Control for a Biotech Cleanroom
by Fujen Wang, Indra Permana, Kwowhei Lee, Dibakar Rakshit and Parisya Premiera Rosulindo
Atmosphere 2022, 13(2), 335; https://doi.org/10.3390/atmos13020335 - 17 Feb 2022
Cited by 5 | Viewed by 3330
Abstract
The biotech cleanroom industry presents a biological basis for living organisms or their components (bacteria or enzymes) to produce helpful medicine. However, biotech industries such as vaccine production need a clean critical environment and contamination control that is always a vital concern for [...] Read more.
The biotech cleanroom industry presents a biological basis for living organisms or their components (bacteria or enzymes) to produce helpful medicine. However, biotech industries such as vaccine production need a clean critical environment and contamination control that is always a vital concern for the manufacturing process. This study investigates a biotech cleanroom through a comprehensive field measurement and numerical simulation. The field measurement test results conformed to the design specification to satisfactorily meet with the cleanroom standard of PIC/S and EU GMP. Furthermore, the field measurement data were used as a basic validation and boundary condition for numerical simulation. The numerical simulation results revealed that the concentration distribution in case 1 as a baseline case showed satisfactory results, with a removal efficiency of 75.2% and ventilation efficiency of 80%. However, there was still a high concentration accumulated in certain areas. The improvement strategy was analyzed through non-unidirectional flow ventilation with different face velocities and by adding one return air grille for case 2 and two return air grilles for case 3. The results revealed that case 2 presented the best results in this study, with a removal efficiency of 86.7% and ventilation efficiency of 82% when supplying air velocity at 0.2 m/s. In addition, increasing the supply air velocity to 0.3 m/s could enhance removal ventilation by around 19% and ventilation efficiency by around 5%. Full article
(This article belongs to the Special Issue Atmospheric Boundary Layer: Observation and Simulation)
Show Figures

Figure 1

12 pages, 1927 KiB  
Article
Zinc Oxide Nanoparticles Promote YAP/TAZ Nuclear Localization in Alveolar Epithelial Type II Cells
by Vincent Laiman, Didik Setyo Heriyanto, Yueh-Lun Lee, Ching-Huang Lai, Chih-Hong Pan, Wei-Liang Chen, Chung-Ching Wang, Kai-Jen Chuang, Jer-Hwa Chang and Hsiao-Chi Chuang
Atmosphere 2022, 13(2), 334; https://doi.org/10.3390/atmos13020334 - 16 Feb 2022
Cited by 5 | Viewed by 2239
Abstract
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated [...] Read more.
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated using multiple-path particle dosimetry (MPPD) model. MLE-12 AECII were cultured and exposed to 0, 1, and 5 μg/mL of ZnONPs for 24 h. Western blots were used to investigate signaling pathways associated with Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), cell adherens junctions, differentiation, and senescence. ZnONPs morphology was irregular, with Zn and O identified. Approximately 72% of inhaled ZnONPs were deposited in lungs, with 26% being deposited in alveolar regions. ZnONP exposure increased nuclear YAP expression and decreased cytoplasmic YAP expression by AECII. Adherens junction proteins, E-cadherin, α-catenin, and β-catenin, on AECII decreased after ZnONP exposure. ZnONP exposure of AECII increased alveolar type I (AECI) transition protein, LGALS3, and the AECI protein, T1α, while decreasing AECII SPC expression. ZnONP exposure induced Sirt1 and p53 senescence proteins by AECII. Our findings showed that inhalable ZnONPs can deposit in alveoli, which promotes YAP nuclear localization in AECII, resulting in decrease tight junctions, cell differentiation, and cell senescence. Full article
(This article belongs to the Special Issue Feature Papers in Atmosphere Science)
Show Figures

Graphical abstract

19 pages, 2903 KiB  
Article
Effect of Diesel Soot on the Heterogeneous Reaction of NO2 on the Surface of γ-Al2O3
by Chao Wang, Lingdong Kong, Shengyan Jin, Lianghai Xia, Jie Tan and Yuwen Wang
Atmosphere 2022, 13(2), 333; https://doi.org/10.3390/atmos13020333 - 16 Feb 2022
Cited by 2 | Viewed by 1461
Abstract
Soot and aged soot are often found to be mixed with atmospheric particles, which inevitably affect various atmospheric heterogeneous reactions and secondary aerosol formation. Previous studies have investigated the heterogeneous reaction of NO2 with different types of soot, but there are few [...] Read more.
Soot and aged soot are often found to be mixed with atmospheric particles, which inevitably affect various atmospheric heterogeneous reactions and secondary aerosol formation. Previous studies have investigated the heterogeneous reaction of NO2 with different types of soot, but there are few studies on the heterogeneous reaction of NO2 with mixtures containing diesel soot (DS) or aged DS and mineral dust particles. In this study, the effects of DS and aged DS on the heterogeneous reaction of NO2 on the surface of γ-Al2O3 were investigated via in-situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS). The results showed that the DS or DS n-hexane extract significantly inhibited the formation of nitrate on γ-Al2O3 particles and promoted the formation of nitrite. At 58% RH, with the increase of DS or DS n-hexane extract loading amount, the effect of DS or DS n-hexane extract on the formation of nitrate changed from promotion to inhibition, but DS or DS n-hexane extract always promoted the formation of nitrite. The results also showed that light was conducive to the formation of nitrate on the DS-γ-Al2O3 or DS-n-hexane extract-γ-Al2O3 particles. Furthermore, the influence of soot aging on the heterogeneous reaction of NO2 was investigated under light and no light. In the dark, O3-aged DS-γ-Al2O3 or O3-aged DS-n-hexane extract-γ-Al2O3 firstly inhibited the formation of nitrate on the mixed particles and then promoted it, while the effect of aged DS on nitrite formation was complex. Under light, the O3-aged DS-γ-Al2O3 firstly promoted the formation of nitrate on the mixed particles and then inhibited it, while the O3-aged DS-n-hexane extract-γ-Al2O3 promoted the formation of nitrate on the mixed particles. Our results further showed that the production of nitrate on the O3-aged particles under light or no light was greater than that of the UV-nitrate-aged particles. This study is helpful to deeply understand the atmospheric chemical behavior of soot and the heterogeneous conversion of atmospheric NO2. Full article
(This article belongs to the Special Issue Brown Carbon and Its Atmospheric Chemical Evolution)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop