Observed Climatology and Trend in Relative Humidity, CAPE, and CIN over India
Abstract
:1. Introduction
2. Data and Analysis Method
2.1. Surface-Based Observations
2.2. Radiosonde Data
2.3. Trend Analysis
3. Results and Discussion
3.1. Distribution and Variability of Relative Humidity
3.2. Variability of CAPE and CIN
4. Discussion
5. Summary and Conclusions
- Relative humidity (RH) shows a large value in all stations except the Northwest stations during monsoon season, followed by post-monsoon season, and minimum in pre-monsoon season. The highest values are observed over the West Coast, followed by the East Coast and Northeast, and the minimum in Northwest in annual variability.
- Monthly variation of RH over the East and West Coasts shows a different picture compared to other regions. The RH starts increasing from January and reaches a maximum during August and then decreases, whereas in other regions (South India, Northwest India, and Central India), the RH starts decreasing from January and reaches a minimum in April and again starts increasing and peaks to a maximum in August and later decreases.
- An increase in RH during monsoons is noticed over central India. This increase in RH can be related to the increase in surface temperature. Northwest India shows a sharp increase in RH annually compared to other regions. This increase in surface RH might be due to the increase in vegetation over this region.
- The highest values of Convective Available Potential Energy (CAPE) are observed over the West and East Coasts during pre-monsoon, monsoon, and post-monsoon seasons. Very low values are noticed during winter in the maximum number of stations. A completely opposite pattern is observed in Convective Inhibition (CIN) compared to CAPE variability, which is expected. The highest values of CAPE correspond to the lowest values of CIN and vice versa.
- Region-wise viability of CAPE follows a similar pattern to RH. In West and East Coast stations, CAPE increases from January and attains a peak value during the month of May and decreases later, again reaching a maximum in September and decreasing thereafter. In these regions, during pre-monsoon season, instability conditions occur during severe land surface heating. In other regions, the increase in CAPE observed from January reaches a peak in August and decreases thereafter.
- A significant increase in CAPE is observed over central India, followed by the East Coast region. The increase in moisture can lead to higher values of CAPE in these regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, D. The role of water vapour in the atmosphere. A short overview from a climate modeller’s point of view. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 523–527. [Google Scholar] [CrossRef]
- DeAngelis, A.M.; Qu, X.; Zelinka, M.D.; Hall, A. An observational radiative constraint on hydrologic cycle intensification. Nature 2015, 528, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Ragi, A.R.; Sharan, M.; Haddad, Z.S. Investigation of WRF’s ability to simulate the monsoon-related seasonal variability in the thermodynamics and precipitation over southern peninsular India. Theor. Appl. Climatol. 2002, 141, 1025–1043. [Google Scholar] [CrossRef]
- Wagner, T.; Beirle, S.; Grzegorski, M.; Platt, U. Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature. J. Geophys. Res. 2006, 111, D12102. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, C.; Samson, P. Extreme Weather and Climate, 1st ed.; Brooks Cole: Pacific Grove, CA, USA, 2011. [Google Scholar]
- IPCC. 2014 Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. [Google Scholar]
- Basha, G.; Kishore, P.; Venkat Ratnam, M.; Jayaraman, A.; Amir, A.K.; Taha, B.; Ouarda, M.J.; Velicogna, I. Historical and projected surface temperature over India during the 20th and 21st century. Nat. Sci. Rep. 2017, 7, 2987. [Google Scholar] [CrossRef] [Green Version]
- Maddu, R.; Vanga, A.R.; Sajja, J.K.; Basha, G.; Shaik, R. Prediction of land surface temperature of major coastal cities of India using bidirectional LSTM neural networks. J. Water Clim. Change 2021, 12, 3801–3819. [Google Scholar] [CrossRef]
- Dai, A. Recent climatology, variability, and trends in global surface humidity. J. Clim. 2006, 19, 3589–3606. [Google Scholar] [CrossRef] [Green Version]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- You, Q.L.; Min, J.Z.; Lin, N.H.B.; Pepin, N.; Sillanpää, M.; Kang, S.C. Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau. J. Geophys. Res. 2015, 120, 3610–3621. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Revuelto, J.; López-Moreno, J.I.; Espejo, F. Temporal evolution of surface humidity in Spain: Recent trends and possible physical mechanisms. Clim. Dyn. 2014, 42, 2655–2674. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.J.; Elliott, W. Tropospheric water vapor climatology and trends over North America: 1973–1993. J. Climate 1996, 9, 3561–3574. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.J.; Elliott, W. Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Clim. 2001, 14, 1602–1612. [Google Scholar] [CrossRef]
- Zhai, P.; Eskridge, R.E. Atmospheric water vapor over China. J. Clim. 1997, 10, 2643–2652. [Google Scholar] [CrossRef]
- Bock, O.; Guichard, F.; Janicot, S.; Lafore, J.P.; Bouin, M.N.; Sultan, B. Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses, Geophys. Res. Lett. 2007, 34, L09705. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Dai, A.; Wang, J. Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Clim. 2012, 25, 4549–4567. [Google Scholar] [CrossRef] [Green Version]
- Simmons, A.J.; Willett, K.M.; Jones, P.D.; Thorne, P.W.; Dee, D.P. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. 2010, 115, D01110. [Google Scholar] [CrossRef]
- Brown, P.J.; DeGaetano, A.T. Trends in U.S. surface humidity, 1930–2010. J. Appl. Meteor. Climatol. 2013, 52, 147–163. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V. Moisture variability over Indian monsoon regions observed using high resolution radiosonde measurements. Atmos. Res. 2013, 132–133, 35–45. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V.; Krishna Murthy, B.V. Upper tropospheric water vapour variability over tropical latitudes observed using radiosonde and satellite measurements. J. Earth Sys. Sci. 2013, 122, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Ratnam, M.V.; Basha, G.; Krishna Murthy, B.; Jayaraman, A. Relative humidity distribution from SAPHIR experiment onboard Megha-Tropiques satellite mission: Comparison with global radiosonde and other satellite and reanalysis datasets. J. Geophys. Res. 2013, 118, 9622–9630. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V.; Kishore, P. Asian summer monsoon anticyclone: Trends and variability. Atmos. Chem. Phys. 2020, 20, 6789–6801. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V.; Jiang, J.H.; Kishore, P.; Babu, S.R. Influence of Indian Summer Monsoon on Tropopause, Trace Gases and Aerosols in Asian Summer Monsoon Anticyclone Observed by COSMIC, MLS and CALIPSO. Remote Sens. 2021, 13, 3486. [Google Scholar] [CrossRef]
- Chen, J.; Dai, A.; Zhang, Y.; Rasmussen, K.L. Changes in convective available potential energy and convective inhibition under global warming. J. Clim. 2020, 33, 2025–2050. [Google Scholar] [CrossRef]
- Kishore, P.; Jyothi, S.; Basha, G.; Rao, S.V.B.; Rajeevan, M.; Velicogna, I.; Sutterley, T.C. Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Clim. Dyn. 2016, 46, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Meukaleuni, C.; Lenouo, A.; Monkam, D. Climatology of convective available potential energy (CAPE) in ERA-Interim reanalysis over West Africa. Atm. Sci. Let. 2016, 17, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Durre, I.; Vose, R.S.; Wuertz, D.B. Overview of integrated global radiosonde archive. J. Climate 2006, 19, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Basha, G.; Ratnam, M.V. Identification of atmospheric boundary layer height over a tropical station using high resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements. J. Geophys. Res. 2009, 114, D16101. [Google Scholar] [CrossRef]
- Chakraborty, R.; Basha, G.; Ratnam, M.V. Diurnal and long-term variation of instability indices over a tropical region in India. Atmos. Res. 2018, 207, 145–154. [Google Scholar] [CrossRef]
- Chakraborty, R.; Ratnam, M.V.; Basha, S.G. Long-term trends of instability and associated parameters over the Indian region obtained using a radiosonde network, Atmos. Chem. Phys. 2019, 19, 3687–3705. [Google Scholar]
- Chakraborty, R.; Chakraborty, A.; Basha, G.; Ratnam, M.V. Lightning occurrences and intensity over the Indian region: Long-term trends and future projections. Atmos. Chem. Phys. 2021, 21, 11161–11177. [Google Scholar] [CrossRef]
- Kutner, M.; Nachsteim, C.J.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Jaswal, A.K.; Koppar, A.L. Recent climatology and trends in surface humidity over India for 1969–2007. Mausam 2011, 62, 145–162. [Google Scholar] [CrossRef]
- Murugavel, P.; Pawar, S.D.; Gopalakrishnan, V. Trends of Convective Available Potential Energy over the Indian region and its effect on rainfall. Int. J. Climatol. 2012, 32, 1362–1372. [Google Scholar] [CrossRef]
- Gutzler, D.S. Climatic variability of temperature and humidity over the tropical western Pacific. Geophys. Res. Lett. 1992, 19, 1595–1598. [Google Scholar] [CrossRef]
- Gutzler, D.S. Low-frequency ocean-atmosphere variability across the tropical western Pacific. J. Atmos. Sci. 1996, 53, 2773–2785. [Google Scholar] [CrossRef] [Green Version]
- Gaffen, D.J.; Santer, B.D.; Boyle, J.S.; Christy, J.R.; Graham, N.E.; Ross, R.J. Multidecadal changes in the vertical temperature structure of the tropical atmosphere. Science 2000, 287, 1242–1245. [Google Scholar] [CrossRef]
- Gettelman, A.; Seidel, D.J.; Wheeler, M.C.; Ross, R.J. Multidecadal trends in tropical convective available potential energy. J. Geophys. Res. 2002, 107, 4606. [Google Scholar] [CrossRef]
- Brogniez, H.; Pierrehumbert, R.T. Using microwave observations to assess large-scale control of free tropospheric water vapor in the mid-latitudes. Geophys. Res. Lett. 2006, 33, L14801. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Munoz-Arriola, F.; Rehana, S.; Greer, P. Spatial Heterogeneity of Temporal Shifts in Extreme Precipitation across India. J. Clim. Chan. 2019, 5, 19–31. [Google Scholar] [CrossRef]
Station Name | Latitude | Longitude | MSL | Winter | Pre-Monsoon | Monsoon | Post-Monsoon | Annual | Winter | Pre-Monsoon | Monsoon | Post-Monsoon | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitation (mm) | Temperature (°C) | ||||||||||||
East coast | |||||||||||||
Kolkata | 22.65 | 88.45 | 6.0 | 44.83 | 221.20 | 918.41 | 426.13 | 1609.01 | 20.97 | 29.00 | 29.51 | 27.19 | 26.69 |
Balasore | 21.51 | 86.93 | 18.8 | 46.97 | 233.73 | 909.01 | 503.69 | 1693.24 | 21.23 | 29.62 | 29.05 | 26.47 | 26.61 |
Bhubaneshwar | 20.25 | 85.83 | 45.0 | 37.59 | 158.54 | 901.06 | 487.84 | 1585.00 | 21.95 | 29.37 | 28.61 | 26.38 | 26.60 |
Vishakhapatnam | 17.68 | 83.30 | 69.9 | 35.91 | 112.45 | 445.82 | 474.64 | 1068.82 | 23.39 | 29.52 | 28.39 | 26.54 | 26.98 |
Machilipatnam | 16.20 | 81.15 | 3.0 | 38.33 | 74.53 | 550.17 | 478.15 | 1141.03 | 24.94 | 30.98 | 30.05 | 27.71 | 28.44 |
Chennai | 13.00 | 80.18 | 13.7 | 198.12 | 63.64 | 289.14 | 693.051 | 1239.08 | 25.62 | 31.06 | 30.99 | 28.14 | 28.97 |
Karaikal | 10.91 | 79.83 | 6.9 | 326.21 | 102.98 | 194.00 | 718.64 | 1327.79 | 26.20 | 30.70 | 30.89 | 28.44 | 29.07 |
West Coast | |||||||||||||
Thiruvananthapuram | 8.48 | 76.95 | 59.9 | 115.84 | 311.42 | 547.83 | 606.04 | 1576.46 | 26.22 | 28.31 | 26.69 | 26.52 | 26.94 |
Cochin | 9.93 | 76.23 | 1 | 70.59 | 385.34 | 1634.82 | 800.78 | 2889.96 | 26.15 | 28.37 | 26.13 | 26.28 | 26.74 |
Mangalore | 12.95 | 74.83 | 30.8 | 21.43 | 223.72 | 2953.78 | 698.84 | 3897.60 | 24.35 | 27.10 | 23.99 | 24.70 | 25.04 |
Goa | 15.48 | 73.81 | 58.4 | 6.85 | 68.95 | 3041.42 | 533.85 | 3650.84 | 25.20 | 28.60 | 26.24 | 26.54 | 26.65 |
Ratnagiri | 16.98 | 73.33 | 90.5 | 4.89 | 50.16 | 2631.87 | 549.74 | 3236.65 | 25.24 | 28.85 | 26.47 | 26.72 | 26.82 |
Pune | 18.53 | 73.85 | 555.0 | 6.20 | 23.40 | 849.90 | 300.58 | 1179.95 | 23.35 | 28.41 | 25.94 | 25.72 | 25.86 |
Bombay | 19.11 | 72.85 | 14.2 | 3.75 | 15.76 | 2272.47 | 485.72 | 2777.69 | 23.30 | 28.70 | 27.26 | 26.61 | 26.48 |
Surat | 21.20 | 72.83 | 10.0 | 2.99 | 3.53 | 1088.96 | 243.43 | 1338.90 | 22.74 | 30.48 | 29.52 | 27.92 | 27.68 |
Ahmadabad | 23.06 | 72.63 | 55.0 | 2.94 | 6.26 | 649.21 | 132.64 | 791.06 | 19.67 | 29.43 | 28.87 | 26.08 | 26.04 |
Northwest India | |||||||||||||
Bhuj rudramata | 23.25 | 69.80 | 78.0 | 2.83 | 4.10 | 356.03 | 91.00 | 453.84 | 21.55 | 28.88 | 29.71 | 27.65 | 26.96 |
Udaipur | 24.61 | 73.88 | 509.0 | 6.66 | 14.17 | 526.84 | 109.32 | 657.01 | 18.38 | 28.98 | 28.64 | 25.35 | 25.37 |
Jodhpur | 26.30 | 73.01 | 217.0 | 7.04 | 23.82 | 276.24 | 53.41 | 360.52 | 17.58 | 29.57 | 30.88 | 26.17 | 26.09 |
Jaipur | 26.81 | 75.80 | 383.0 | 16.90 | 26.19 | 461.15 | 90.46 | 594.72 | 16.95 | 29.22 | 30.77 | 25.78 | 25.72 |
Bikaner | 28.00 | 73.30 | 223.0 | 12.63 | 34.92 | 212.37 | 39.79 | 299.70 | 16.52 | 29.06 | 32.06 | 26.28 | 26.02 |
New Delhi | 28.58 | 77.20 | 211.0 | 36.61 | 44.91 | 395.48 | 106.20 | 583.19 | 15.36 | 27.86 | 31.28 | 25.24 | 24.97 |
Patiala | 30.33 | 76.46 | 251.0 | 73.66 | 70.38 | 521.68 | 137.23 | 802.76 | 13.30 | 24.51 | 28.89 | 22.72 | 22.39 |
Dehradun | 30.31 | 78.03 | 683.0 | 130.32 | 146.39 | 887.44 | 211.66 | 1375.61 | 11.75 | 21.63 | 25.18 | 20.09 | 19.69 |
West Himalayas | |||||||||||||
Srinagar | 34.08 | 74.83 | 1585.0 | 269.25 | 363.18 | 247.15 | 141.75 | 1020.44 | 6.15 | 16.11 | 23.86 | 16.37 | 15.66 |
Central India | |||||||||||||
Bareilly | 28.36 | 79.40 | 167.0 | 44.65 | 42.48 | 641.98 | 185.53 | 914.65 | 14.93 | 26.20 | 29.08 | 23.84 | 23.55 |
Gorakhpur | 26.75 | 83.36 | 78.3 | 29.18 | 56.59 | 778.23 | 251.98 | 1115.98 | 17.05 | 28.18 | 30.13 | 25.82 | 25.33 |
Agra | 27.15 | 77.96 | 168.0 | 22.79 | 24.98 | 442.07 | 114.74 | 604.60 | 15.77 | 28.68 | 31.62 | 25.56 | 25.45 |
Gwalior | 26.23 | 78.25 | 205.0 | 26.75 | 20.50 | 536.70 | 159.99 | 743.72 | 16.46 | 29.66 | 31.37 | 25.74 | 25.85 |
Allahabad | 25.45 | 81.73 | 98.0 | 33.21 | 22.54 | 589.21 | 215.72 | 860.70 | 17.22 | 29.32 | 30.56 | 25.60 | 25.71 |
Bhopal | 23.28 | 77.35 | 522.0 | 29.53 | 17.57 | 889.76 | 206.65 | 1143.47 | 18.55 | 29.83 | 28.23 | 24.60 | 25.33 |
Jabalpur | 23.20 | 79.95 | 397.0 | 44.33 | 26.82 | 914.66 | 231.09 | 1216.74 | 18.16 | 29.42 | 28.15 | 24.26 | 25.03 |
Jamshedpur | 22.81 | 86.18 | 142.0 | 38.89 | 145.31 | 866.71 | 327.90 | 1378.72 | 20.32 | 29.87 | 29.37 | 26.23 | 26.48 |
Lucknow | 26.75 | 80.88 | 122.0 | 35.91 | 30.59 | 564.56 | 209.19 | 840.23 | 16.82 | 28.78 | 30.55 | 25.63 | 25.48 |
Northeast | |||||||||||||
Jharsiguda | 21.91 | 84.08 | 228.0 | 39.32 | 75.94 | 997.54 | 292.65 | 1405.37 | 20.61 | 30.23 | 28.30 | 25.30 | 26.14 |
Patna | 25.60 | 85.16 | 51.0 | 24.20 | 69.94 | 707.83 | 246.97 | 1048.95 | 17.51 | 28.03 | 29.89 | 25.95 | 25.38 |
Gaya | 24.75 | 84.95 | 116.0 | 28.54 | 51.59 | 699.44 | 250.42 | 1029.98 | 17.29 | 28.44 | 29.42 | 25.06 | 25.09 |
Ranchi | 23.31 | 85.31 | 646.0 | 35.03 | 91.59 | 779.91 | 294.58 | 1201.08 | 18.56 | 28.77 | 28.44 | 24.80 | 25.17 |
Dibrugarh | 27.48 | 95.01 | 110.0 | 89.88 | 614.08 | 1190.24 | 406.77 | 2300.46 | 17.95 | 24.22 | 28.54 | 25.31 | 24.02 |
Guwahati | 26.10 | 91.58 | 54.0 | 40.48 | 479.52 | 1037.38 | 395.10 | 1951.64 | 16.91 | 23.63 | 27.38 | 24.19 | 23.05 |
Imphal | 24.76 | 93.90 | 781.0 | 55.00 | 382.72 | 749.16 | 331.33 | 1517.78 | 17.20 | 23.81 | 26.92 | 24.24 | 23.06 |
Agartala | 23.88 | 91.25 | 16.0 | 32.30 | 460.19 | 726.45 | 298.52 | 1516.90 | 17.38 | 24.24 | 26.92 | 24.29 | 23.22 |
South India | |||||||||||||
Nagpur | 21.10 | 79.05 | 310.0 | 34.85 | 33.08 | 818.34 | 224.97 | 1110.45 | 19.97 | 30.14 | 27.67 | 24.58 | 25.62 |
Raipur | 21.23 | 81.65 | 296.0 | 22.48 | 36.74 | 834.62 | 246.46 | 1140.26 | 19.71 | 30.00 | 28.40 | 25.00 | 25.81 |
Aurangabad | 19.85 | 75.40 | 585.0 | 11.02 | 20.32 | 431.29 | 233.01 | 695.25 | 22.21 | 30.41 | 27.20 | 25.26 | 26.29 |
Jagdalpur | 19.08 | 82.03 | 554.0 | 19.35 | 123.11 | 1048.24 | 361.93 | 1552.66 | 21.93 | 29.85 | 27.68 | 25.49 | 26.26 |
Hyderabad | 17.45 | 78.46 | 530.0 | 16.31 | 67.56 | 447.76 | 276.54 | 808.01 | 23.69 | 31.50 | 28.08 | 25.96 | 27.33 |
Bangalore | 12.96 | 77.58 | 917.0 | 22.76 | 158.23 | 249.71 | 369.58 | 799.84 | 23.18 | 28.23 | 25.87 | 24.67 | 25.50 |
Gadag | 15.41 | 75.63 | 670.0 | 11.85 | 100.60 | 259.34 | 244.078 | 615.63 | 24.14 | 29.16 | 25.74 | 25.40 | 26.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, P.I.; Ratnam, D.V.; Prasad, P.; Basha, G.; Jiang, J.H.; Shaik, R.; Ratnam, M.V.; Kishore, P. Observed Climatology and Trend in Relative Humidity, CAPE, and CIN over India. Atmosphere 2022, 13, 361. https://doi.org/10.3390/atmos13020361
Khan PI, Ratnam DV, Prasad P, Basha G, Jiang JH, Shaik R, Ratnam MV, Kishore P. Observed Climatology and Trend in Relative Humidity, CAPE, and CIN over India. Atmosphere. 2022; 13(2):361. https://doi.org/10.3390/atmos13020361
Chicago/Turabian StyleKhan, Pathan Imran, Devanaboyina Venkata Ratnam, Perumal Prasad, Ghouse Basha, Jonathan H. Jiang, Rehana Shaik, Madineni Venkat Ratnam, and Pangaluru Kishore. 2022. "Observed Climatology and Trend in Relative Humidity, CAPE, and CIN over India" Atmosphere 13, no. 2: 361. https://doi.org/10.3390/atmos13020361
APA StyleKhan, P. I., Ratnam, D. V., Prasad, P., Basha, G., Jiang, J. H., Shaik, R., Ratnam, M. V., & Kishore, P. (2022). Observed Climatology and Trend in Relative Humidity, CAPE, and CIN over India. Atmosphere, 13(2), 361. https://doi.org/10.3390/atmos13020361