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Abstract: One of the main current challenges is detecting changes in the climate at the regional level.
The present study tried to address this issue by looking for some influence of large-scale climate
oscillations on the climate of a small and complex topography basin in Central Mexico. We collected
temperature and precipitation data from 44 climate stations within an area of up to 20 km around the
Apatlaco River sub-basin (~30 km south of Mexico City) during the period 1950–2013. Posteriorly,
quality analysis and homogenization of the climate databases were performed by using the Climatol
algorithm. We analyzed the trend of five ETCCDI climate indices through several statistical tests.
Finally, we calculated simple Pearson correlations of those indices with four climate oscillation
indices that have affected Mexico’s climate in the recent past. The results revealed that the Atlantic
Multidecadal Oscillation had a clear influence on four of the five indices analyzed in the study area.
The summer days and the extreme maximum and minimum temperatures accounted for a small
increase in the temperature of the middle east (urban) basin compared to the middle west (rural),
which could be a manifestation of the heat island effect or the difference in soil type (and therefore
albedo) of the two zones. As expected, the midsummer drought effect predominated in most of the
sub-basin, with only the uppermost part showing monsoon-type precipitation during a typical year.

Keywords: regional climate; AMO; central Mexico; homogenization; climate indices

1. Introduction

In search of a better comprehension of global climate variability, research interests
have extended from global warming to internal climate variability [1].

Internal climate variability comprises various timescales, such as the interannual,
decadal, and multidecadal. The sea surface temperature changes related to the dominant
internal climate variability are the El Niño–Southern Oscillation (ENSO), the Pacific Decadal
Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO), which run at 2–7-year,
decadal, and multidecadal (65–80-year) time scales, respectively [2–4].

The decadal to multidecadal internal climate variability is critical for understanding
the timing and magnitude of changes in the global mean surface temperature [5,6], regional
climate [4,7,8], and climate extremes [9].

The interannual climate variability of Mexico is determined by the dynamics of the
Intertropical Convergence Zone (ITCZ) [10,11], the ENSO [12–17], the Madden–Julian Oscil-
lation (MJO) [18–20], the PDO [16,17,21–23], the North Atlantic Oscillation (NAO) [24,25],
and the AMO [21,26].

Climate variability in central Mexico is driven primarily by the PDO/ENSO and the
AMO/NAO signals [27]. The first attempts to relate the precipitation and temperature
behavior with low-frequency oscillations (ENSO, PDO, AMO) in Mexico were reported
in [26,28], respectively. Ref. [21] stated that the AMO probably lost much of its influence in
Central Mexico at the beginning of the 20th century, and since then, the PDO has driven the
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major changes in the climate. The force of the Atlantic plays an important role in regulating
summer rains in central Mexico [29]. The difficulty in detecting the AMO could be due to
the influence of the PDO/ENSO, which complicates the pattern of climate changes related
to the AMO [30,31].

One way to study recent changes in climate and its extremes is through the climate
change indices recommended by the now extinct CCl/WCRP/JCOMM Expert Team on
Climate Change Detection and Indices (ETCCDI). Within the agreements of the 17th edition
of the WMO Commission on Climatology, the ETCCDI was suspended, and the new group
in charge of the now Sector-Specific Climate Indices (SCI) is the Commission for Weather,
Climate, Water, and Related Environmental Services and Applications (SERCOM)—Expert
Team on Climate Information for Decision-Making [32].

On a global scale, several studies have applied the ETCCDI indices to monitor changes
in climatic extremes [33,34] and explain the pause in global warming in the 2010s [35]. The
ETCCDI indices have also been used for the regional analysis of extreme weather events
(both historical and future); for example, in China [36–40], India [41,42], Europe [43,44],
Africa [45,46], and the Middle East [47], among others.

In Mexico, there are several relatively recent studies that analyzed climatic extremes
of surface temperature and precipitation with the ETCCDI indices. In the case of surface
temperature, practically all the studies showed a clear warming signal at the regional level,
particularly in the last decades. For instance, [48] found, in the central and southern parts
of Mexico, positive trends for extreme maximum temperatures and negative trends for
extreme minimum temperatures. Another study found, for most of northern Mexico (above
20◦ N), an increase in the maximums of minimum temperatures that was even greater
than extreme maximum temperatures [49]. Ref. [50] analyzed the behavior of some climate
indices for two basins, one in the north (arid) and the other in the south (humid) of Mexico,
and found an increase in the Diurnal Temperature Range (DTR) in both basins; the same
results were found in another study in Zacatecas, in the north central part of Mexico [51].

For precipitation, no conclusive results have been found in Mexico. For instance, the
study in [48] found no appreciable change in the precipitation mean, but there was in the
extremes, since humid and very humid days increased. Another study found no statistically
significant data for precipitation trends in Mexico [49]. Ref. [23] found that the variability of
the precipitation annual indices was partially linked to natural variations of the combined
effects of ENSO/PDO, and that most of the trends were explained by the PDO. Finally, two
recent studies on Zacatecas reached contrasting conclusions regarding the precipitation
trend, probably due to differences in the database period, since one of them argued that
precipitation increased (period 1976–2015) [51] and the other that it decreased (period
1961–2014) [52].

The objective of this study was to contribute to a better understanding of the mech-
anisms that drive climate variability in the central part of Mexico. To achieve this, we
performed quality and homogenization analyzes on a set of climate stations around the
Apatlaco River sub-basin, located 30 km south of the Mexico City metropolitan area, to im-
prove data reliability. Finally, we calculated some ETCCDI indices for surface temperature
and precipitation, analyzed the results, and correlated them with some of the main climate
oscillations mentioned above in the period of 1950–2013.

Details of how this was done are explained in the next section.

2. Materials and Methods
2.1. Data and Study Domain

The Apatlaco River sub-basin, which belongs to the Amacuzac River basin, is between
the geographical coordinates 18◦36′40′′and 19◦11′40′′ north latitude, and 99◦09′40′′ and
99◦21′00′′ west longitude, about 30 km south of Mexico City. It covers an area of approxi-
mately 806 km2, with 88% in the State of Morelos and the rest in the State of Mexico and
Mexico City [53]. Despite its small size, the sub-basin has a very steep slope, ranging
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from 900 m above sea level (masl) in the southern part of it to more than 3000 masl in the
northern part (Figure 1, bottom left).

Figure 1. Location and topography of the Apatlaco River sub-basin (bottom left), and location of
the 44 climatic stations (bottom right) analyzed in this study, 14 of which were within the limits of
the sub-basin.
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According to the topography, the sub-basin was divided into an upper part (limited
by the 2000 masl level contour), medium part (limited to the south by the 1200 masl level
contour), and lower part (below the 1200 masl level). In addition, the middle part was
subdivided into urban (middle east) and rural (middle west) areas based on land use,
leaving at the end four study areas within the sub-basin.

Information on precipitation and daily maximum and minimum temperature was
collected from 44 climatic stations located in an area of up to 20 km around the Apatlaco
River sub-basin, with only 14 of them within the sub-basin (Figure 1, bottom right). The
20 km area around the sub-basin was used to make the data interpolation more accurate
within the sub-basin area. The source of the data was the Mexican climatological database
of the National Meteorological Service of Mexico (SMN). The available data from the
44 climatic stations covered 49% of the total data in the precipitation time series, and 46% in
the temperature series for the base period of 1950–2013.

2.2. Quality Control Analysis and Homogenization of Climate Data

The series of meteorological observations are of great importance for the study of
climate variability. One of the main problems is that the series can be affected by nonclimatic
factors, whether they are errors in taking measurements, changes in instrumentation, or
in the environment of the station. These alterations are known as inhomogeneities, and
they mask the genuine changes in the climate, causing the study of climatic series to lead
to erroneous conclusions.

The process of quality control, homogenization, and in-filling of the missing data
from the climatic databases was carried out using the Climatol software [54], version
3.1, executed in the R programming language. This method allowed in-filling the gaps
in the time series due to climatic conditions, in addition to detecting anomalous values,
which may have occurred due to the errors mentioned above. Climatol uses the method
of Paulhus and Kohler [55] to fill in daily series through averages of nearby stations; and
normalizes data by dividing by its mean, subtracting means, or full standardization. The
key problem with this method is that the means of the series in the study period are not
known if they are not complete, which is common in a series of real data. To solve this
problem, Climatol calculates these parameters with available data in each series, fills in
missing data using the provisional means and standard deviations, and recalculates them
with the filled series. Subsequently, the initially missing data are recalculated, obtaining
new means and standard deviations, repeating until the mean does not change when
rounding with the initial precision of the data [54].

Once the means are stabilized, all the data are normalized, and they are estimated
using the following expression:

ŷ =
∑

j=n
j=1 wjxj

∑
j=n
j=1 wj

(1)

where ŷ is a data item estimated from the corresponding nearest n data available at each time
step, and wj is the weight assigned to them [54]. The weight wj comes from the application
of the technique of Paulhus and Kohler, which is used by Climatol [54] to interpolate missing
precipitation records in mountainous regions by using the normal-ratio method [55].

To check the homogeneity of the climatic series, Climatol uses the Standard Normal
Homogeneity Test (SNHT) [56]. This process and the spatial interpolation described above
make it possible to correct the inhomogeneities mentioned above. The daily homogenized
data per station were interpolated to a regular mesh of 0.02 × 0.02 degrees (~ 20 × 20 km)
of resolution per cell covering the entire study area.

2.3. Calculation of the ETCCDI Indices

The homogenized database was used to calculate the climatic indices recommended
by the ETCCDI [57] using the ClimPACT2 software.

In this study, we present the results of five indices for analysis:



Atmosphere 2022, 13, 339 5 of 17

a. SU. Summer days.

Let Txij be the maximum daily temperature on day i, period j. Count the number of
days when:

Txij > 30 ◦C (2)

b. Txx. Extreme maximum temperature.

Let Txkj be the maximum daily temperature in month k, period j. The maximum daily
maximum temperature each month is then:

TXxkj = max
(

Txkj

)
(3)

c. Tnn. Extreme minimum temperature.

Let Tnkj be the minimum daily temperature in month k, period j. The minimum daily
minimum temperature each month is then:

TNnkj = max
(

Tnkj

)
(4)

d. PcpT. Total precipitation.

Let RRij be the daily amount of precipitation on day i, period j. If I represents the
number of days in j, then:

PRECPTOTj =
I

∑
i=1

RRij (5)

e. r20 mm. Days with rain greater than 20 mm.

Let RRij be the daily amount of precipitation on day i, period j. Count the number of
days where:

RRij ≥ 20 mm (6)

To suppress the differences between the total accumulated values of the ETCCDI
indices for the different study areas, their standardized anomalies were obtained.

2.4. Trend Analysis of the ETCCDI Indices and Serial Correlation

Since the time series of the five previous indices did not necessarily fulfill the as-
sumption of normality, nonparametric methods generally give better results. Two of the
most robust methods in finding trends, the Mann–Kendall test [58] and Spearman’s rank
correlation coefficient test (also known as Spearman’s rho test) [59,60], were applied in this
study. Slopes were calculated by the Sen’s method [61], which is another nonparametric
method. The two previous tests and the Sen’s slope method are widely used for the anal-
ysis of hydrometeorological time series [62]. All the above parameters were applied at
a significance level of α = 0.05 to assess whether the results were statistically significant
(p ≤ 0.05).

However, it is known that results are seriously affected when the time series are
serially correlated [63]. To test the serial correlation in the data, the lag-1 serial correlation
coefficients were calculated in the same way as in [63]. For the series that were serially
correlated, the Mann–Kendall and Spearman’s rho tests were not sufficient. Since there is
no universal method of considering the serial correlation present in the time series, five
additional statistical tests were applied in the same way as in [63], and we confirmed that
there was a trend if at least three of the five tests were favorable with at least 95% confidence.
The tests carried out were:

1. Prewhitening Mann–Kendall (PWMK) [64,65];
2. Trend-free prewhitening Mann–Kendall (TFPWMK) [66];
3. Bias correction applied to prewhitening (BCPW) [67];
4. Variance correction approach suggested by Hamed and Ramachandra (MMKH) [68];
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5. Variance correction approach suggested by Yue and Wang (MMKY) [69].

These tests are extensively discussed in [63], so we will not repeat them here.

2.5. Calculation of the Pearson Correlations between ETCCDI Indices and Climate Oscillation
Indices, and Their Statistical Significance

Finally, the time series of various oscillation indices were obtained through the NOAA
Physical Sciences Laboratory website for the given study period. The climatic indices were
chosen based on those teleconnections that have had some influence on the climatology of
Mexico according to the literature (e.g., AMO, PDO, NAO, ENSO).

The time series of the oscillation indices were correlated with the time series of the
standardized anomalies of the ETCCDI indices. It was preferred to make comparisons
with the standardized anomalies and not with the direct values of the indices in order
to make a better comparison between the different areas in which the sub-basin was
subdivided. Correlations between ETCCDI indices and those between oscillation indices
were also obtained. Finally, correlations with statistical significance of up to 95% confidence
(p ≤ 0.05) were obtained following a standard statistical method.

The results are shown below.

3. Results
3.1. Homogenization and Climatology of the Apatlaco River Sub-Basin

Some results about the quality control and homogenization procedures applied to
the 44 climatological stations in the neighborhood of the Apatlaco River sub-basin using
Climatol are given in the Supplementary Materials. However, it is worth mentioning that
38.6% of the stations presented inhomogeneities for precipitation (a total of 27 break points;
Table S1), 79.5% of the stations presented inhomogeneities for maximum temperature (a
total of 139 break points; Table S2), and 70.4% of the stations presented inhomogeneities for
minimum temperature (a total of 94 break points; Table S3).

Using the homogenized mesh database (~ 20 × 20 km spatial resolution), the mean
annual precipitation (mm/year) and the mean annual maximum and minimum tempera-
ture (◦C) are presented during the period of 1950–2013 for the Apatlaco River sub-basin
(Figure 2).

Given the size and shape of the sub-basin and its remarkable orographic gradient,
the found behavior of the three variables analyzed agreed with the expectations based
on general climatological knowledge. Precipitation was lower in the lower part of the
sub-basin and higher in the upper part. Higher values were also noted in the northern part
of the middle east zone (compared to the middle west zone at the same latitude), which was
the urbanized zone (metropolitan zone of the city of Cuernavaca) and where a potential
effect related to the heat island caused higher rainfall in that area.

For the maximum and minimum temperatures, the behavior was basically defined by
the topography, with temperatures (both maximum and minimum) higher in the lower part
of the basin and lower in the upper part. Similarly, the thermal gradient in the northern
part of the mideast zone is more pronounced than in the midwest zone, with the possibility
of generating stronger convective events, particularly during the rainy season.

The annual cycles of the analyzed variables are shown through climograms for each
study region (Figure 3). The greatest differences are shown in the precipitation values, in
which we see that a monsoon-type behavior predominated (maximum rainfall in summer
and minimum in winter) for the entire basin, which was defined by the relatively high
rainfall in the upper part of the basin. There was also a minor difference when comparing
the two middle zones: in the eastern (urban) zone, the second maximum of precipitation
was delayed until September, which is the typical maximum in the tropical zone of Mexico
due to the influence of tropical cyclones.
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Figure 2. (a) Annual mean precipitation (mm/year), (b) mean annual maximum temperature (◦C),
and (c) mean annual minimum temperature (◦C) and their maximum and minimum values for the
Apatlaco River sub-basin obtained with the database homogenized in mesh for the period 1950–2013.
The four study areas (high, middle east, middle west, and low) for this work are also delimited.

As expected, the general behavior of the annual temperature cycle was more uniform,
although there were differences in the magnitude of the values for the different regions.
Thus, for the maximum temperature, the maximum values were in April and the minimums
were in December. For the minimum temperature, the maximum values were in June and
the minimums again were in December for all areas.

3.2. Climate Indices

Using the homogenized precipitation and temperature databases of the Apatlaco River
sub-basin, the five indices of climate change mentioned above were calculated. The time
series of the averaged climate change indices for the sub-basin are presented in Figure 4.

The summer days (SU) time series showed relatively high values (>80 days) for most of
the 1950s, despite a very sharp minimum in 1954 (discussed later) (Figure 4a). Subsequently,
the values declined and remained low until the early 1990s, when they increased again
until the end of the period in the early 2010s. The value of a simple linear trend for the
entire period showed a positive slope of 0.5 days/year (Table 1).

The time series for the extreme maximum temperature (Txx) showed the highest values
(>35 ◦C) at the beginning of the period, and the values decreased almost monotonically
until the mid-1970s, and from there they rose again until the end of the period (Figure 4b).
The linear trend for the entire period of this index was practically zero (Table 1).

The extreme minimum temperature (Tnn) presented very low values for several years
in the 1950s (Figure 4c), especially in 1954, which coincided precisely with the minimum
of SU mentioned above, which reinforced a plausible explanation. Since the 1960s and
throughout the period, the average value was around 4 ◦C. The value of the slope for the
linear trend was slightly positive (~0.02 ◦C/year).
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Figure 3. Climograms with the annual precipitation cycle (mm, gray bars) and maximum temperature
(◦C) (red lines) and minimum (blue lines) for the (a) entire sub-basin, (b) upper zone, (c) lower zone,
(d) middle west zone, and (e) middle east zone of the Apatlaco River sub-basin.

For total precipitation (Figure 4d), the highest values clearly were found in the 1950s
(>1250 mm/year), then lower values until the mid-1990s, and then they increased slightly
again toward the end of the period. The linear trend for the entire period was practically
zero, given the average annual values of total precipitation for the sub-basin (Table 1).

Finally, the behavior of days with precipitation greater than 20 mm was very similar
to that of total precipitation, with the highest values (>20 days) during the 1950s, lower
values in the next three decades, and a rise again in the last period (Figure 5d). Again, the
value of the linear trend was negligible (Table 1).
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Figure 4. Time series of (a) days of summer (SU), (b) extreme maximum temperature (Txx, in ◦C),
(c) extreme minimum temperature (Tnn, in ◦C), (d) total precipitation (PcpT, in mm/year), and
(e) days with rain greater than 20 mm (r20), averaged annually for the Apatlaco River sub-basin. The
slope of a simple linear regression is also shown.

Table 1. Calculation of different parameters and statistical tests for the five ETCCDI indices analyzed
here (SU, Txx, Tnn, PcpT, and r20). The results for the linear trend (Trend), the Mann–Kendall
(MK) test, the slope of Sen (SS), and the Spearman’s rho correlation test (SRC), without considering
the possible serial correlation (SC) of the time series, are given; as well as for the prewhitening
Mann–Kendall (PWMK); trend-free prewhitening Mann–Kendall (TFPWMK), bias-correction applied
to prewhitening (BCPW), variance correction approach suggested by Hamed and Ramachandra
(MMKH), and variance correction approach suggested by Yue and Wang (MMKY). Results that were
statistically significant with 95% confidence are highlighted in bold.

Trend MK SS SRC PWMK TFPWMK BCPW MMKH MMKY

SU 0.499 0.268 0.758 0.357 SC 0.135 0.442 0.094 0.266 0.266
Txx −0.002 0.090 0.014 0.084 SC 0.150 0.264 0.145 0.090 0.090
Tnn 0.019 0.111 0.010 0.160
PcpT 0.812 0.125 1.966 0.161
r20 0.024 0.087 0.035 0.125

As mentioned above, the nonparametric Mann–Kendall (MK) and Spearman’s rho
(SRC) tests are more robust for trend detection if the data are not serially correlated. The
calculation of the new slope was made using the nonparametric method of Sen. The results
(Table 1) showed that only the summer days had a statistically significant trend, with a
slope of 0.76 days/year confirmed by both methods (MK and SRC). These results did not
consider the serial correlation of the data.

After calculating the serial correlation coefficient for lag-1, only the SU and Txx series
were the ones that turned out to have a serial correlation. In this way, the five tests
mentioned above in the Materials and Methods section were applied. For Txx, which did
not show any trend, only the TFPWMK test showed statistical significance, and for SU, the
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TFPWMK and MMKY tests showed statistical significance. In none of the cases were three
or more tests statistically significant. Therefore, we concluded that none of the climate
change indices showed a statistically significant linear trend.

Figure 5. Time series of the annual averages of the indices of four climate oscillations for the period
1950–2013: (a) NAO; (b) ONI; (c) AMO; (d) PDO.

3.3. Climate Oscillations and ETCCDI Indices
3.3.1. Climate Oscillations

Given that no significant linear trend was found in the ETCCDI indices for the Apatlaco
River sub-basin, we looked for an explanation of its behavior with the climate oscillations
that have affected the climatology of Mexico in the past (e.g., NAO, PDO, AMO, and ENSO).

The time series of the annual averages of the indices of the four previous climate
oscillations (ONI representing ENSO) are presented in Figure 5 for the period 1950–2013. It
was observed that the NAO (Figure 5a) prevailed, with a negative phase from 1950 to
1972, then passing through a transitory phase from 1972 to 1982, a mainly positive phase
from 1982 to 1996, and finally another predominantly negative phase from 1996 to 2013. The
ENSO, represented here by ONI (Figure 5b), showed the typical interannual variability of
this phenomenon, with an irregular cycle of 2–7 years [70], and the influence of the most
intense El Niño and La Niña events also was reflected. Regarding the AMO (Figure 5c),
a positive phase was observed in the period of 1950–1962, while a negative phase (cold)
was observed from 1962 to 1999, then returning to the warm phase from 1999 until the end
of the record. Finally, in the case of the PDO (Figure 5d), we can see that it was mostly in
a negative (cold) phase from 1950 to 1978, a period of almost 30 years. Subsequently, a
period of approximately 22 years (1978–1999) of positive (hot) phase was recorded, and
from 2000 to the end of the record, it fluctuated every 2–3 years from cold to hot.

3.3.2. Correlations between Climate Oscillations and ETCCDI Indices

We then calculated the Pearson correlations of the NAO, PDO, AMO, and ONI indices
(the latter representing ENSO) versus the ETCCDI indices analyzed here (SU, Txx, Tnn,
PcpT, and r20). The results are shown in Figure 6, where the correlated values between
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the climate oscillations themselves and between the same climatic indices of the ETCCDI
are also shown. Note that all the correlation values shown in Figure 6 are statistically
significant (p ≤ 0.05), and they were obtained with a standard statistical method.

Figure 6. Statistically significant Pearson correlations (95% confidence) for the Apatlaco River sub-
basin between the climate oscillations (NAO, PDO, AMO, and ONI) (upper left), the climatic indices
of the ETCCDI (SU, Txx, Tnn, PcpT and r20) (lower right), and between both groups (inside the
rectangle at the top right after the gray line). The results are for the entire period of 1950–2013. Shades
in blue show positive correlations, and those in red show negative correlations. Blank cells indicate
the correlation was not statistically significant.

The results revealed a correlation of −0.44 between the NAO and the AMO, and a
correlation of +0.5 between the PDO and ONI. This type of correspondence has already been
documented before; for example, in the southwestern United States, the PDO tended to
substantially modulate the strength of the ENSO teleconnections, which implied a positive
correlation between these two indices [71]. On the other hand, as expected, SU and Txx had
an important positive correlation, and in the same way, PcpT and r20 did as well. A more
modest positive correlation existed between Txx and r20, and an even lesser one between
Txx and PcpT and between SU and r20.

However, the most relevant result found in this work was the strong statistically
significant correlation between the AMO with four (of the five) ETCCDI indices analyzed
here (except for Tnn) for the Apatlaco River sub-basin. The strongest correlations were
those of the AMO with the two indices related to the maximum temperature, SU and Txx,
with values of 0.79 and 0.74, respectively (Table 2). The AMO with r20 and PcpT also
had statistically significant correlations for the sub-basin, although they were considerably
lower (0.39 and 0.34, respectively). These results agreed with the aforementioned important
role of the Atlantic forcing in the summer precipitation in Central Mexico [29]. A modest
negative correlation of −0.29 was found between the NAO and r20 for the sub-basin.

Another interesting aspect was that the correlations of the AMO with the different
climatic indices of the ETCCDI were maintained practically for all the subregions of the
study. A clear exception could be the noninclusion of the correlation of the AMO and SU
for the upper zone of the sub-basin, but this result was thus given by the definition taken
here for summer days when the condition of Txij > 30 ◦C was fulfilled for a few days a year
in that area, and therefore it was not significant. Another interesting aspect of the AMO
results was that the correlations were higher for the lower part of the basin compared to the
upper part, and higher in the middle east (urban) regarding the middle west (rural) for the
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maximum temperature indices. The NAO maintained its statistically significant negative
correlation with r20 for the upper and lower zones, and both the NAO and the PDO had
low but significant correlations with Txx only for the lower zone.

Table 2. Statistically significant Pearson correlation values between the mean annual values of climate
oscillations and the annual values of some climatic indices of the ETCCDI for the Apatlaco River
sub-basin in the period of 1950–2013. Titles are for the entire sub-basin (ALL), the upper part (HG),
the lower part (LW), the middle west (MW), and the middle east (ME).

SUB-BASIN ALL

SU Txx PcpT r20

AMO 0.79 0.74 0.34 0.39
NAO −0.29

SUB-BASIN HG SUB-BASIN LW

SU Txx PcpT r20 SU Txx PcpT r20

AMO 0.69 0.3 0.37 AMO 0.77 0.73 0.35 0.41
NAO −0.3 NAO −0.3 −0.27

PDO −0.32

SUB-BASIN MW SUB-BASIN ME

SU Txx PcpT r20 SU Txx PcpT r20

AMO 0.74 0.68 0.36 0.29 AMO 0.77 0.69 0.33 0.3

4. Discussion

The average values of precipitation and surface temperature shown here (Figures 2 and 3)
were a clear example that, on certain occasions, they could lead us to a wrong idea about
the typical behavior of a region, since the bimodal behavior of midsummer drought clearly
prevailed in three of the four sub-regions (instead of the monsoon type shown for the entire
sub-basin), which is also a typical rainfall pattern for Central and Southern Mexico [15].

Urban effects in the climate of some large Central Mexico cities, such as Mexico
City [72–75] and others [76,77], have been reported. An increasing trend in the total pre-
cipitation and in the frequency of intense rain showers of Mexico City compared to the
suburban areas was reported for the period of 1941–1985 [72]. Even though it was not
the main purpose here to study urban effects on climate, the higher values of total mean
precipitation in the northern part of the middle east zone (Cuernavaca metropolitan area)
compared to those in the middle west zone (rural) (Figure 2) might be another manifestation
of the so-called rain-island effect in a tropical city. Three key factors were initially pro-
posed in [78] as possible causes for urban-induced changes in precipitation: (i) mechanical
turbulence resulting from increased surface roughness; (ii) the addition of sensible heat
from the urban warm air; and (iii) the anthropogenic condensation nuclei floating in the
urban air. On the other hand, [73] describes the climatology of the near-surface urban heat
island of Mexico City. The author mentions that the less-frequent daytime heat islands may
have been caused by differences in evaporative cooling from the wet surface during the
wet season. In addition, he showed that the average urban/rural thermal contrasts were
positive throughout the year, varying from 5 ◦C in the middle of the dry season to 1–3 ◦C
during the wet season. The results here do not present an analysis of the heat-island effect,
but reveal that the thermal gradient in the northern part of the mideast zone was larger
than in the midwest zone (Figure 2). As we know, the heat-island effect is favored by the
change in land use in large cities, and the population of Mexico went from 25.8 million in-
habitants (42.6% urban, 57.4% rural) in 1950 to 119.5 million inhabitants in 2015 (77% urban,
23% rural) [79].

The results of the SU and Tnn temperature indices analyzed here were consistent with
the study in [48], which found a clear warming trend for the period of 1961–2003 in areas
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close to the study region. However, the Txx analysis did not corroborate this result, since
we found a slightly negative and nonsignificant trend for the Apatlaco region.

On the other hand, [80] reported an analysis of various temperature and precipitation
indices for 14 urban stations in Mexico. The station of this study that was closest to the
Apatlaco River sub-basin was Milpa Alta, south of Mexico City and very close to the north
of Apatlaco. The authors of [80] mentioned that the behavior of the indices, particularly
those related to surface temperature, was radically different from those found in the rest
of the country. They attributed the negative trends in several of the temperature indices
in Mexico City to the increase in air pollution and the continuous emissions from the
Popocatépetl volcano. The results found here for the Apatlaco sub-basin contrasted with
those found in [80]. On the one hand, the slightly negative but not significant Txx slope
reported here for the Apatlaco sub-basin was consistent with the results from the Mexico
City stations reported in [80], although that study reported a high statistical significance.
However, for Tnn and SU, [80] reported negative trends, contrary to the positive and
significant trends found here for the Apatlaco sub-basin.

For precipitation, [48,81] reported nonsignificant negative trends for areas close to the
study region, which differed somewhat from the positive but nonsignificant trend found
here. Although the Apatlaco results were consistent with the positive trend found for Milpa
Alta in the study in [80], the difference was that they found a high statistical significance of
the slope.

The present results showed an inverse relationship between NAO and r20 (Table 2).
The NAO negative phase reinforced strong precipitation for our study region. This result
agreed with some precipitation patterns found in North America [82,83]. The AMO influ-
ence during its positive phase supported an increment in SU, Txx, PcpT, and r20. Similar
results were found in [84] for the temperature and precipitation of Central America and
Southeast Mexico, where AMO was pointed out as a low-frequency teleconnection; this was
associated with the tropical Pacific-originated atmospheric variability [85]. The influence
of the AMO was quite significant for the extreme maximum temperatures in most of the
Mexican territory; for example, in the case of the state of Zacatecas [86], in the north center
of the country, the behavior in the temporal evolution, as well as the correlation values,
were quite similar to those obtained for the Apatlaco sub-basin.

The results shown here supported that the AMO positive phase produced an increment
in the temperature and precipitation. On the other hand, the relationship of PDO and
ENSO with precipitation was not detected in the present study, contrary to the results
reported in [27]; these oscillations had a higher frequency compared to the AMO oscillation.
This no-signal (on the PDO and ENSO) was attributed to the local factors’ influences on
the temperature and precipitation [83,87]. The above suggests that the homogenization
process improved the data quality and allowed the influence of local factors on the climate
variables to be found.

The results presented here for this small region in Central Mexico basically contra-
dicted the argument in [21], which stated that the AMO probably lost much of its influence
in Central Mexico at the beginning of the 20th century, nor did they agree with the supposed
difficulty in detecting AMO due to the influence of PDO/ENSO [30,31].
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