Amateur Observers Witness the Return of Venus’ Cloud Discontinuity
Abstract
:1. Introduction
2. Observations and Methods
2.1. Venus Images Taken with Ground-Based Telescopes
2.2. Venus Images Taken with JAXA’s Akatsuki
3. Results and Discussion
3.1. CD during November–December 2019
3.2. CD during January–April 2020
3.3. Long-Term Evolution
3.4. The Cloud Tops during the CD Events of March 2020
3.5. Thermal Emission from the Upper Clouds during the CD Events of March 2020
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | Cloud Discontinuity |
CMOS | Complementary Metal–Oxide Semiconductor |
FWFE | Following Wave-Front Edge |
NIR | Near-Infrared |
UV | Ultraviolet |
References
- Titov, D.V.; Ignatiev, N.I.; McGouldrick, K.; Wilquet, V.; Wilson, C.F. Clouds and Hazes of Venus. Space Sci. Rev. 2018, 214, 126. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lavega, A.; Lebonnois, S.; Imamura, T.; Read, P.; Luz, D. The Atmospheric Dynamics of Venus. Space Sci. Rev. 2017, 212, 1541–1616. [Google Scholar] [CrossRef]
- Wright, W.H. Photographs of Venus made by Infra-red and by Violet Light. Publ. Astron. Soc. Pac. 1927, 39, 220. [Google Scholar] [CrossRef]
- Ross, F.E. Photographs of Venus. Astrophys. J. 1928, 68, 57. [Google Scholar] [CrossRef]
- Pérez-Hoyos, S.; Sánchez-Lavega, A.; García-Muñoz, A.; Irwin, P.G.J.; Peralta, J.; Holsclaw, G.; McClintock, W.M.; Sanz-Requena, J.F. Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations. J. Geophys. Res. (Planets) 2018, 123, 145–162. [Google Scholar] [CrossRef] [Green Version]
- Peralta, J.; Iwagami, N.; Sánchez-Lavega, A.; Lee, Y.J.; Hueso, R.; Narita, M.; Imamura, T.; Miles, P.; Wesley, A.; Kardasis, E.; et al. Morphology and Dynamics of Venus’s Middle Clouds With Akatsuki/IR1. Geophys. Res. Lett. 2019, 46, 2399–2407. [Google Scholar] [CrossRef] [Green Version]
- Limaye, S.S.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Satoh, T.; Sato, T.M.; Nakamura, M.; Taguchi, M.; Fukuhara, T.; Imamura, T.; et al. Venus looks different at different wavelengths: Morphology from Akatsuki multispectral images. Earth Planets Space 2018, 70, 38. [Google Scholar] [CrossRef] [Green Version]
- McGouldrick, K.; Momary, T.W.; Baines, K.H.; Grinspoon, D.H. Quantification of middle and lower cloud variability and mesoscale dynamics from Venus Express/VIRTIS observations at 1.74 μm. Icarus 2012, 217, 615–628. [Google Scholar] [CrossRef]
- Peralta, J.; Navarro, T.; Vun, C.W.; Sánchez-Lavega, A.; McGouldrick, K.; Horinouchi, T.; Imamura, T.; Hueso, R.; Boyd, J.P.; Schubert, G.; et al. A Long-Lived Sharp Disruption on the Lower Clouds of Venus. Geophys. Res. Lett. 2020, 47, e87221. [Google Scholar] [CrossRef]
- Horinouchi, T.; Kouyama, T.; Lee, Y.J.; Murakami, S.Y.; Ogohara, K.; Takagi, M.; Imamura, T.; Nakajima, K.; Peralta, J.; Yamazaki, A.; et al. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki. Earth Planets Space 2018, 70, 10. [Google Scholar] [CrossRef]
- Peralta, J.; Sánchez-Lavega, A.; López-Valverde, M.A.; Luz, D.; Machado, P. Venus’s major cloud feature as an equatorially trapped wave distorted by the wind. Geophys. Res. Lett. 2015, 42, 705–711. [Google Scholar] [CrossRef]
- Fukuhara, T.; Futaguchi, M.; Hashimoto, G.L.; Horinouchi, T.; Imamura, T.; Iwagaimi, N.; Kouyama, T.; Murakami, S.Y.; Nakamura, M.; Ogohara, K.; et al. Large stationary gravity wave in the atmosphere of Venus. Nat. Geosci. 2017, 10, 85–88. [Google Scholar] [CrossRef]
- Horinouchi, T.; Hayashi, Y.Y.; Watanabe, S.; Yamada, M.; Yamazaki, A.; Kouyama, T.; Taguchi, M.; Fukuhara, T.; Takagi, M.; Ogohara, K.; et al. How waves and turbulence maintain the super-rotation of Venus’ atmosphere. Science 2020, 368, 405–409. [Google Scholar] [CrossRef] [PubMed]
- McGouldrick, K.; Peralta, J.; Barstow, J.K.; Tsang, C.C.C. Using VIRTIS on Venus Express to Constrain the Properties of the Giant Dark Cloud Observed in Images of Venus by IR2 on Akatsuki. Planet. Sci. J. 2021, 2, 153. [Google Scholar] [CrossRef]
- Schubert, G. General circulation and the dynamical state of the Venus atmosphere. In Venus; Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I., Eds.; University of Arizona Press: Tucson, AZ, USA, 1983; pp. 681–765. [Google Scholar]
- Iwagami, N.; Sakanoi, T.; Hashimoto, G.L.; Sawai, K.; Ohtsuki, S.; Takagi, S.; Uemizu, K.; Ueno, M.; Kameda, S.; Murakami, S.Y.; et al. Initial products of Akatsuki 1-μm camera. Earth Planets Space 2018, 70, 6. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Imamura, T.; Ishii, N.; Abe, T.; Kawakatsu, Y.; Hirose, C.; Satoh, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; et al. AKATSUKI returns to Venus. Earth Planets Space 2016, 68, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sato, T. A Brief History of ALPO-Japan. J. Assoc. Lunar Planet. Obs. Stroll. Astron. 2018, 60, 20–21. [Google Scholar]
- Sánchez-Lavega, A.; Peralta, J.; Gomez-Forrellad, J.M.; Hueso, R.; Pérez-Hoyos, S.; Mendikoa, I.; Rojas, J.F.; Horinouchi, T.; Lee, Y.J.; Watanabe, S. Venus Cloud Morphology and Motions from Ground-based Images at the Time of the Akatsuki Orbit Insertion. Astrophys. J. Lett. 2016, 833, L7. [Google Scholar] [CrossRef] [Green Version]
- Farsiu, S.; Robinson, M.D.; Elad, M.; Milanfar, P. Fast and Robust Multiframe Super Resolution. IEEE Trans. Image Process. 2004, 13, 1327–1344. [Google Scholar] [CrossRef]
- Law, N.M.; Mackay, C.D.; Baldwin, J.E. Lucky imaging: High angular resolution imaging in the visible from the ground. Astron. Astrophys. 2006, 446, 739–745. [Google Scholar] [CrossRef]
- Berrevoets, C.; DeClerq, B.; George, T.; Makolkin, D.; Maxson, P.; Pilz, B.; Presnyakov, P.; Roel, E.; Weiller, S. RegiStax: Alignment, stacking and processing of images. arXiv 2012, arXiv:1206.001. [Google Scholar]
- Kardasis, E.; Rogers, J.H.; Orton, G.; Delcroix, M.; Christou, A.; Foulkes, M.; Yanamandra-Fisher, P.; Jacquesson, M.; Maravelias, G. The need for professional-amateur collaboration in studies of Jupiter and Saturn. J. Br. Astron. Assoc. 2016, 126, 29–39. [Google Scholar]
- Hahn, G.; Jacquesson, M. WinJUPOS-Database for Object Positions on Planets and the Sun. Available online: http://jupos.privat.t-online.de (accessed on 15 February 2021).
- Murakami, S.; Yamamoto, Y.; McGouldrick, K.; Hashimoto, G.L.; Yamada, M.; Yamazaki, A.; Sato, T.M.; Hirata, N.; Ohtsuki, S.; Kameda, S.; et al. Venus Climate Orbiter Akatsuki Dataset Collection. In JAXA Data Archives and Transmission System; Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency: Tokyo, Japan, 2019. [Google Scholar] [CrossRef]
- Imai, M.; Kouyama, T.; Takahashi, Y.; Yamazaki, A.; Watanabe, S.; Yamada, M.; Imamura, T.; Satoh, T.; Nakamura, M.; Murakami, S.Y.; et al. Planetary-Scale Variations in Winds and UV Brightness at the Venusian Cloud Top: Periodicity and Temporal Evolution. J. Geophys. Res. Planets 2019, 124, 2635–2659. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JE006065 (accessed on 15 February 2021).
- Kouyama, T.; Imamura, T.; Taguchi, M.; Fukuhara, T.; Sato, T.M.; Yamazaki, A.; Futaguchi, M.; Murakami, S.; Hashimoto, G.L.; Ueno, M.; et al. Topographical and Local Time Dependence of Large Stationary Gravity Waves Observed at the Cloud Top of Venus. Geophys. Res. Lett. 2017, 44, 12098–12105. [Google Scholar] [CrossRef] [Green Version]
- Peralta, J.; Hueso, R.; Sánchez-Lavega, A.; Lee, Y.J.; Muñoz, A.G.; Kouyama, T.; Sagawa, H.; Sato, T.M.; Piccioni, G.; Tellmann, S.; et al. Stationary waves and slowly moving features in the night upper clouds of Venus. Nat. Astron. 2017, 1, 0187. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, T.; Taguchi, M.; Imamura, T.; Nakamura, M.; Ueno, M.; Suzuki, M.; Iwagami, N.; Sato, M.; Mitsuyama, K.; Hashimoto, G.L.; et al. LIR: Longwave Infrared Camera onboard the Venus orbiter Akatsuki. Earth Planets Space 2011, 63, 1009–1018. [Google Scholar] [CrossRef]
- Yamazaki, A.; Yamada, M.; Lee, Y.J.; Watanabe, S.; Horinouchi, T.; Murakami, S.; Kouyama, T.; Ogohara, K.; Imamura, T.; Sato, T.M.; et al. Ultraviolet imager on Venus orbiter Akatsuki and its initial results. Earth Planets Space 2018, 70, 23. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, M.; Fukuhara, T.; Imamura, T.; Nakamura, M.; Iwagami, N.; Ueno, M.; Suzuki, M.; Hashimoto, G.L.; Mitsuyama, K. Longwave Infrared Camera onboard the Venus Climate Orbiter. Adv. Space Res. 2007, 40, 861–868. [Google Scholar] [CrossRef]
- Murakami, S.; Yamada, M.; Yamazaki, A.; McGouldrick, K.; Yamamoto, Y. Venus Climate Orbiter Akatsuki UVI Calibrated Data v1.0; VCO-V-UVI-3-CDR-V1.0, NASA Planetary Data System. 2017. Available online: https://darts.isas.jaxa.jp/doi/vco/vco-00003.html (accessed on 15 February 2021).
- Murakami, S.; Ogohara, K.; Takagi, M.; Kashimura, H.; Yamada, M.; Kouyama, T.; Horinouchi, T.; Imamura, T. Venus Climate Orbiter Akatsuki UVI Longitude-Latitude Map Data v1.0; JAXA Data Archives and Transmission System. 2018. Available online: https://darts.isas.jaxa.jp/doi/vco/vco-00016.html (accessed on 15 February 2021). [CrossRef]
- Murakami, S.; Yamada, M.; Yamazaki, A.; McGouldrick, K.; Yamamoto, Y. Venus Climate Orbiter Akatsuki LIR Calibrated Data v1.0; VCO-V-LIR-3-CDR-V1.0, NASA Planetary Data System. 2017. Available online: https://darts.isas.jaxa.jp/doi/vco/vco-00012.html (accessed on 15 February 2021). [CrossRef]
- Murakami, S.; Ogohara, K.; Takagi, M.; Kashimura, H.; Yamada, M.; Kouyama, T.; Horinouchi, T.; Imamura, T. Venus Climate Orbiter Akatsuki LIR Longitude-Latitude Map Data v1.0; JAXA Data Archives and Transmission System. 2018. Available online: https://darts.isas.jaxa.jp/doi/vco/vco-00019.html (accessed on 15 February 2021). [CrossRef]
- Lee, Y.J.; Yamazaki, A.; Imamura, T.; Yamada, M.; Watanabe, S.; Sato, T.M.; Ogohara, K.; Hashimoto, G.L.; Murakami, S. Scattering Properties of the Venusian Clouds Observed by the UV Imager on board Akatsuki. Astron. J. 2017, 154, 44. [Google Scholar] [CrossRef]
- Gonçalves, R.; Machado, P.; Widemann, T.; Peralta, J.; Watanabe, S.; Yamazaki, A.; Satoh, T.; Takagi, M.; Ogohara, K.; Lee, Y.J.; et al. Venus’ cloud top wind study: Coordinated Akatsuki/UVI with cloud tracking and TNG/HARPS-N with Doppler velocimetry observations. Icarus 2020, 335, 113418. [Google Scholar] [CrossRef]
- Peralta, J.; Muto, K.; Hueso, R.; Horinouchi, T.; Sánchez-Lavega, A.; Murakami, S.Y.; Machado, P.; Young, E.F.; Lee, Y.J.; Kouyama, T.; et al. Nightside Winds at the Lower Clouds of Venus with Akatsuki/IR2: Longitudinal, local time and decadal variations from comparison with previous measurements. Astrophys. J. Suppl. Ser. 2018, 239, 17. [Google Scholar] [CrossRef] [Green Version]
- Peralta, J.; Sánchez-Lavega, A.; Horinouchi, T.; McGouldrick, K.; Garate-Lopez, I.; Young, E.F.; Bullock, M.A.; Lee, Y.J.; Imamura, T.; Satoh, T.; et al. New cloud morphologies discovered on the Venus’s night during Akatsuki. Icarus 2019, 333, 177–182. [Google Scholar] [CrossRef]
- Heale, C.J.; Snively, J.B. Gravity wave propagation through a vertically and horizontally inhomogeneous background wind. J. Geophys. Res. 2015, 120, 5931–5950. [Google Scholar] [CrossRef] [Green Version]
- Boyer, C.; Camichel, H. Observations photographiques de la planète Vénus. Ann. D’Astrophysique 1961, 24, 531. [Google Scholar]
- Belton, M.J.S.; Smith, G.R.; Schubert, G.; del Genio, A.D. Cloud patterns, waves and convection in the Venus atmosphere. J. Atmos. Sci. 1976, 33, 1394–1417. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B.; del Genio, A.D.; Limaye, S.S.; Travis, L.D. Cloud morphology and motions from Pioneer Venus images. J. Geophys. Res. 1980, 85, 8107–8128. [Google Scholar] [CrossRef]
- Kouyama, T.; Imamura, T.; Nakamura, M.; Satoh, T.; Futaana, Y. Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planet. Space Sci. 2012, 60, 207–216. [Google Scholar] [CrossRef]
- Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, J.B.; Rages, K.A.; Morrison, D.; Klaasen, K.P.; Pilcher, C.B. Images from Galileo of the Venus cloud deck. Science 1991, 253, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Navarro, T.; Schubert, G.; Lebonnois, S. Atmospheric mountain wave generation on Venus and its influence on the solid planet’s rotation rate. Nat. Geosci. 2018, 11, 487–491. [Google Scholar] [CrossRef]
- Kitahara, T.; Imamura, T.; Sato, T.M.; Yamazaki, A.; Lee, Y.J.; Yamada, M.; Watanabe, S.; Taguchi, M.; Fukuhara, T.; Kouyama, T.; et al. Stationary Features at the Cloud Top of Venus Observed by Ultraviolet Imager Onboard Akatsuki. J. Geophys. Res. (Planets) 2019, 124, 1266–1281. [Google Scholar] [CrossRef] [Green Version]
- Lefèvre, M.; Spiga, A.; Lebonnois, S. Mesoscale modeling of Venus’ bow-shape waves. Icarus 2020, 335, 113376. [Google Scholar] [CrossRef]
- Wood, B.E.; Hess, P.; Lustig-Yaeger, J.; Gallagher, B.; Korwan, D.; Rich, N.; Stenborg, G.; Thernisien, A.; Qadri, S.N.; Santiago, F.; et al. Parker Solar Probe Imaging of the Night Side of Venus. Geophys. Res. Lett. 2022, 49, e96302. [Google Scholar] [CrossRef]
Date and Time (UT) | Venus Phase Angle | Telescope Diameter | Best Spatial Resolution | Effective Transmission | Integration Time | Observer | Country |
---|---|---|---|---|---|---|---|
(YYYY-MM-DDThh:mm.m) | (deg) | (m) | (km) | (nm) | (s) | ||
2019-11-14T07:22.7 | 33.3 | 0.41 (N) | 589 | 750–1020 | 180 | Anthony Wesley | Australia |
2019-11-17T07:34.9 | 34.3 | 0.41 (N) | 589 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-18T07:53.2 | 34.6 | 0.41 (N) | 583 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-19T07:50.3 | 35.0 | 0.41 (N) | 583 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-20T07:50.5 | 35.3 | 0.41 (N) | 583 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-22T07:53.6 | 36.0 | 0.41 (N) | 578 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-23T08:13.9 | 36.3 | 0.41 (N) | 578 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-23T15:00.6 | 36.3 | 0.35 (S) | 663 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2019-11-24T08:07.9 | 36.7 | 0.41 (N) | 573 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-27T14:19.0 | 37.7 | 0.35 (S) | 652 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2019-11-29T07:58.2 | 38.4 | 0.41 (N) | 568 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-11-30T08:06.5 | 38.7 | 0.41 (N) | 563 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-12-01T14:41.0 | 39.1 | 0.35 (S) | 646 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2019-12-02T08:09.8 | 39.4 | 0.41 (N) | 558 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-12-03T15:20.0 | 39.7 | 0.35 (S) | 641 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2019-12-04T08:13.4 | 40.1 | 0.41 (N) | 558 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-12-05T08:02.4 | 40.4 | 0.41 (N) | 554 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-12-06T08:48.0 | 40.8 | 0.35 (S) | 635 | 850–1020 | 180 | Niall MacNeill | Australia |
2019-12-07T14:55.0 | 41.1 | 0.35 (S) | 630 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2019-12-08T15:29.0 | 41.5 | 0.35 (S) | 630 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2019-12-18T08:09.0 | 45.0 | 0.41 (N) | 527 | 1000–1020 | 180 | Anthony Wesley | Australia |
2019-12-18T15:23.0 | 45.0 | 0.35 (S) | 604 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-01-11T11:34.0 | 53.7 | 0.50 (D) | 393 | 807–1050 | 249 | Tiziano Olivetti | Thailand |
2020-01-11T14:51.0 | 53.7 | 0.35 (S) | 547 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-01-29T11:42.2 | 60.8 | 0.50 (D) | 356 | 807–1050 | 315 | Tiziano Olivetti | Thailand |
2020-02-01T11:27.6 | 62.0 | 0.50 (D) | 352 | 807–1050 | 415 | Tiziano Olivetti | Thailand |
2020-02-01T15:51.0 | 62.0 | 0.35 (S) | 490 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-02-05T11:38.2 | 63.7 | 0.50 (D) | 343 | 807–1050 | 415 | Tiziano Olivetti | Thailand |
2020-02-16T07:55.0 | 68.6 | 0.41 (N) | 387 | 1000–1020 | 180 | Anthony Wesley | Australia |
2020-02-24T17:27.0 | 72.3 | 0.35 (S) | 419 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-02-24T18:48.5 | 72.3 | 0.35 (S) | 419 | 807–1050 | 380 | Paulo Casquinha | Portugal |
2020-02-28T17:41.7 | 74.2 | 0.28 (S) | 509 | 742–1050 | 240 | Antonio Gallardo | Spain |
2020-03-07T15:59.0 | 78.3 | 0.35 (S) | 377 | 850–1020 | 160 | Raimondo Sedrani | Italy |
2020-03-08T11:37.0 | 78.9 | 0.50 (D) | 269 | 807–1050 | na | Tiziano Olivetti | Thailand |
2020-03-09T11:32.0 | 79.4 | 0.50 (D) | 266 | 807–1050 | na | Tiziano Olivetti | Thailand |
2020-03-10T16:57.0 | 79.9 | 0.35 (S) | 367 | 850–1020 | 160 | Raimondo Sedrani | Italy |
2020-03-11T16:44.8 | 80.5 | 0.35 (S) | 366 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-03-11T17:09.1 | 80.5 | 0.35 (S) | 366 | 1000–1050 | 300 | Luigi Morrone | Italy |
2020-03-11T16:30.0 | 80.5 | 0.35 (S) | 366 | 807–1050 | 60 | Joaquin Camarena | Spain |
2020-03-12T15:59.0 | 81.0 | 0.35 (S) | 360 | 807–1050 | 60 | Joaquin Camarena | Spain |
2020-03-13T11:22.0 | 81.6 | 0.50 (D) | 256 | 807–1050 | 482 | Tiziano Olivetti | Thailand |
2020-03-14T16:25.0 | 82.1 | 0.35 (S) | 354 | 807–1050 | 60 | Joaquin Camarena | Spain |
2020-03-15T15:10.0 | 82.7 | 0.40 (D) | 314 | 950–1050 | 180 | Yaroslav Naryzhniy | Ukraine |
2020-03-16T15:00.0 | 83.3 | 0.40 (D) | 313 | 950–1050 | 180 | Yaroslav Naryzhniy | Ukraine |
2020-03-16T16:01.0 | 83.3 | 0.28 (S) | 438 | 685–1050 | 1000 | Giovanni Calapai | Italy |
2020-03-16T16:54.4 | 83.3 | 0.35 (S) | 349 | 1000–1050 | 300 | Luigi Morrone | Italy |
2020-03-21T11:34.4 | 86.2 | 0.50 (D) | 237 | 807–1050 | 301 | Tiziano Olivetti | Thailand |
2020-03-21T17:35.0 | 86.2 | 0.25 (K) | 330 | 830–1020 | 205 | Dzmitry Kananovich | Estonia |
2020-03-21T17:10.2 | 86.2 | 0.35 (S) | 330 | 850–1020 | 160 | Raimondo Sedrani | Italy |
2020-03-21T17:35.0 | 86.2 | 0.35 (S) | 330 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-03-26T15:20.0 | 89.3 | 0.40 (D) | 281 | 950–1050 | 180 | Yaroslav Naryzhniy | Ukraine |
2020-03-26T17:01.6 | 89.3 | 0.28 (S) | 394 | 742–1050 | 240 | Antonio Gallardo | Spain |
2020-03-31T16:15.0 | 92.6 | 0.40 (D) | 266 | 950–1050 | 180 | Yaroslav Naryzhniy | Ukraine |
2020-03-31T17:04.0 | 92.6 | 0.35 (S) | 296 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-04-05T16:40.0 | 96.1 | 0.40 (D) | 250 | 950–1050 | 180 | Yaroslav Naryzhniy | Ukraine |
2020-04-10T16:18.0 | 99.9 | 0.35 (S) | 261 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-04-10T17:00.1 | 99.9 | 0.35 (S) | 261 | 1000–1050 | 300 | Luigi Morrone | Italy |
2020-04-20T11:31.7 | 108.5 | 0.50 (D) | 187 | 807–1050 | 247 | Tiziano Olivetti | Thailand |
2020-04-25T17:27.0 | 113.4 | 0.35 (S) | 211 | 884–900 | 300 | Emmanuel Kardasis | Greece |
2020-03-08T11:37.6 | 78.9 | 0.50 (D) | – | 320–380 | 1029 | Tiziano Olivetti | Thailand |
2020-03-09T11:39.7 | 79.4 | 0.50 (D) | – | 320–380 | 804 | Tiziano Olivetti | Thailand |
2020-03-10T17:04.0 | 79.9 | 0.35 (S) | – | 320–380 | 300 | Emmanuel Kardasis | Greece |
2020-03-11T16:55.0 | 80.5 | 0.35 (S) | – | 320–380 | 300 | Emmanuel Kardasis | Greece |
2020-03-13T11:31.3 | 81.6 | 0.50 (D) | – | 320–380 | 569 | Tiziano Olivetti | Thailand |
2020-03-14T16:32.2 | 82.1 | 0.25 (M) | – | 320–380 | 500 | Christian Viladrich | France |
2020-03-15T15:10.0 | 82.7 | 0.40 (D) | – | 350–410 | 180 | Yaroslav Naryzhniy | Ukraine |
2020-03-16T15:00.0 | 83.3 | 0.40 (D) | – | 350–410 | 180 | Yaroslav Naryzhniy | Ukraine |
Date and Time (UT) | Date and Time (UT) | Orientation | Max. Latitude | Max. Length | Width at | Rotation | Zonal |
---|---|---|---|---|---|---|---|
(1st obs.) | (2nd obs.) | Range | Equator | Period | Speed | ||
(YYYY-MM-DDThh:mm) | (YYYY-MM-DDThh:mm) | (Degrees) | (Degrees) | () | () | (Terrestrial Days) | (m· s) |
2019-11-23T08:14 * | 2019-11-23T15:51 | 124 | 20 N–9 S | 3.3 | 0.6 | 4.1 ± 0.9 | 105 ± 19 |
2019-11-23T15:51 | 2019-12-03T15:20 * | 97 | 26 N–28 S | 5.7 | 0.6 | 5.06 ± 0.01 | 84.9 ± 0.1 |
2019-12-03T15:20 | 2019-12-08T15:29 * | 39 | 14 N– 17 S | 5.1 | 1.1 | 5.06 ± 0.01 | 84.9 ± 0.1 |
2019-12-18T08:09 * | 2019-12-18T15:23 | 77 | 27 N–28 S | 5.9 | 0.6 | 4.2 ± 0.2 | 104 ± 5 |
2020-01-11T11:34 * | 2020-01-11T14:51 | 137 | 12 N–14 S | 3.7 | 0.5 | 4.3 ± 0.8 | 100 ± 16 |
2020-02-01T11:27 | 2020-02-01T15:51 * | 39 | 19 N–25 S | 6.5 | 0.6 | 4.0 ± 0.4 | 108 ± 9 |
2020-02-16T07:55 * | – | 84 | 13 N–25 S | 4.0 | 0.3 | – | – |
2020-02-24T17:27 | 2020-02-24T18:36 * | 85 | 28 N–28 S | 6.1 | 0.5 | 3.5 ± 0.9 | 125 ± 26 |
2020-02-24T18:36 | 2020-02-28T17:41 * | 66 | 15 N–13 S | 3.3 | 0.6 | 4.18 ± 0.02 | 103.4 ± 0.5 |
2020-02-28T17:41 | 2020-03-11T16:45 * | 100 | 25 N–30 S | 5.9 | 0.5 | 6.00 ± 0.01 | 71.6 ± 0.1 |
2020-03-11T16:45 | 2020-03-16T15:00 * | 95 | 23 N–36 S | 6.3 | 0.7 | 5.14 ± 0.02 | 83.9 ± 0.3 |
2020-03-16T15:00 | 2020-03-21T17:35 * | 88 | 27 N–32 S | 6.3 | 0.5 | 5.10 ± 0.01 | 84.5 ± 0.2 |
2020-03-21T11:34 | 2020-03-21T17:35 | – | – | – | – | 5.09 ± 0.08 | 84.7 ± 1.3 |
2020-03-21T17:35 | 2020-03-26T15:20 * | 94 | 13 N–33 S | 5.0 | 0.4 | 5.10 ± 0.02 | 84.6 ± 0.4 |
2020-03-26T15:20 | 2020-03-31T17:04 * | 99 | 20 N–29 S | 5.2 | 1.0 | 5.15 ± 0.03 | 83.6 ± 0.5 |
2020-03-31T17:04 | 2020-04-05T16:40 * | 90 | 31 N–25 S | 6.0 | 0.5 | 4.91 ± 0.03 | 87.8 ± 0.5 |
2020-04-05T16:40 | 2020-04-10T16:12 * | 93 | 31 N–29 S | 6.5 | 0.6 | 5.09 ± 0.01 | 84.7 ± 0.2 |
2020-04-10T16:12 | 2020-04-20T11:32 * | 80 | 10 N–20 S | 3.3 | 0.3 | 5.05 ± 0.01 | 85.4 ± 0.1 |
AVERAGE | 88 | 20.8 N–21.5 S | 5.2 | 0.6 | 4.8 ± 0.2 | 92.1 ± 4.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kardasis, E.; Peralta, J.; Maravelias, G.; Imai, M.; Wesley, A.; Olivetti, T.; Naryzhniy, Y.; Morrone, L.; Gallardo, A.; Calapai, G.; et al. Amateur Observers Witness the Return of Venus’ Cloud Discontinuity. Atmosphere 2022, 13, 348. https://doi.org/10.3390/atmos13020348
Kardasis E, Peralta J, Maravelias G, Imai M, Wesley A, Olivetti T, Naryzhniy Y, Morrone L, Gallardo A, Calapai G, et al. Amateur Observers Witness the Return of Venus’ Cloud Discontinuity. Atmosphere. 2022; 13(2):348. https://doi.org/10.3390/atmos13020348
Chicago/Turabian StyleKardasis, Emmanuel (Manos), Javier Peralta, Grigoris Maravelias, Masataka Imai, Anthony Wesley, Tiziano Olivetti, Yaroslav Naryzhniy, Luigi Morrone, Antonio Gallardo, Giovanni Calapai, and et al. 2022. "Amateur Observers Witness the Return of Venus’ Cloud Discontinuity" Atmosphere 13, no. 2: 348. https://doi.org/10.3390/atmos13020348
APA StyleKardasis, E., Peralta, J., Maravelias, G., Imai, M., Wesley, A., Olivetti, T., Naryzhniy, Y., Morrone, L., Gallardo, A., Calapai, G., Camarena, J., Casquinha, P., Kananovich, D., MacNeill, N., Viladrich, C., & Takoudi, A. (2022). Amateur Observers Witness the Return of Venus’ Cloud Discontinuity. Atmosphere, 13(2), 348. https://doi.org/10.3390/atmos13020348