Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Domain
2.2. Quality Control Analysis and Homogenization of Climate Data
2.3. Calculation of the ETCCDI Indices
- a.
- SU. Summer days.
- b.
- Txx. Extreme maximum temperature.
- c.
- Tnn. Extreme minimum temperature.
- d.
- PcpT. Total precipitation.
- e.
- r20 mm. Days with rain greater than 20 mm.
2.4. Trend Analysis of the ETCCDI Indices and Serial Correlation
2.5. Calculation of the Pearson Correlations between ETCCDI Indices and Climate Oscillation Indices, and Their Statistical Significance
3. Results
3.1. Homogenization and Climatology of the Apatlaco River Sub-Basin
3.2. Climate Indices
3.3. Climate Oscillations and ETCCDI Indices
3.3.1. Climate Oscillations
3.3.2. Correlations between Climate Oscillations and ETCCDI Indices
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, H.; Wei, Y.; Zhang, Q.; Liu, X.; Huang, J.; Feng, T.; Zhang, M. Multi-model assessment of global temperature variability on different time scales. Int. J. Climatol. 2020, 40, 273–291. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T.P. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 2010, 79, 2715–2726. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006, 33, L17706. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, Y.; Xie, S. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Fyfe, J.C.; Xie, S.P.; Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 2015, 5, 555–559. [Google Scholar] [CrossRef]
- Folland, C.K.; Parker, D.E.; Palmer, T.N. Sahel rainfall and worldwide sea temperatures 1901–85. Nature 1986, 320, 602–607. [Google Scholar] [CrossRef]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dynam. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N. Causes of the 2011–14 California drought. J. Clim. 2015, 28, 6997–7024. [Google Scholar] [CrossRef]
- Metcalfe, S.E. Historical data and climatic change in Mexico: A review. Geogr. J. 1987, 153, 211–222. [Google Scholar] [CrossRef]
- Waliser, D.E.; Gautier, C. A satellite-derived climatology of the ITCZ. J. Clim. 1993, 6, 2162–2174. [Google Scholar] [CrossRef]
- Cavazos, T.; Hastenrath, S. Convection and rainfall over Mexico and their modulation by the Southern Oscillation. Int. J. Climatol. 1990, 10, 377–386. [Google Scholar] [CrossRef]
- Dilley, M. Synoptic controls on precipitation in the Valley of Oaxaca, Mexico. Int. J. Climatol. 1996, 16, 1019–1031. [Google Scholar] [CrossRef]
- Pavia, E.G.; Graef, F. The recent rainfall climatology of the Mediterranean Californias. J. Clim. 2002, 15, 2697–2701. [Google Scholar] [CrossRef]
- Magaña, V.O.; Vázquez, J.L.; Pérez, J.L.; Pérez, J.B. Impact of El Niño on precipitation in Mexico. Geofís. Int. 2003, 42, 313–330. [Google Scholar]
- Andrade-Velázquez, M.; Medrano-Pérez, R. Precipitation patterns in Usumacinta and Grijalva basins (southern Mexico) under a changing climate. Rev. Bio Cienc. 2020, 7, e905. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Medrano-Pérez, R. Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sci. Res. J. 2021, 25, 69–84. [Google Scholar] [CrossRef]
- Maloney, E.D.; Hartmann, D.L. Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science 2000, 287, 2002–2004. [Google Scholar] [CrossRef] [PubMed]
- Aiyyer, A.; Molinari, J. MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci. 2008, 65, 2691–2704. [Google Scholar] [CrossRef] [Green Version]
- Camargo, S.J.; Wheeler, M.C.; Sobel, A.H. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci. 2009, 66, 3061–3074. [Google Scholar] [CrossRef]
- Park, J.; Byrne, R.; Böhnel, H. The combined influence of Pacific decadal oscillation and Atlantic multidecadal oscillation on central México since the early 1600s. Earth Planet. Sc. Lett. 2017, 464, 1–9. [Google Scholar] [CrossRef]
- Goodrich, G.B. Influence of the Pacific decadal oscillation on winter precipitation and drought during years of neutral ENSO in the western United States. Weather Forecast. 2007, 22, 116–124. [Google Scholar] [CrossRef]
- Arriaga-Ramírez, S.; Cavazos, T. Regional trends of daily precipitation indices in northwest Mexico and southwest United States. J. Geophys. Res.-Atmos. 2010, 115, D14111. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Weather Rev. 1986, 114, 2352–2362. [Google Scholar] [CrossRef] [Green Version]
- Portis, D.H.; Walsh, J.E.; El Hamly, M.; Lamb, P.J. Seasonality of the North Atlantic oscillation. J. Clim. 2001, 14, 2069–2078. [Google Scholar] [CrossRef]
- Englehart, P.J.; Douglas, A.V. Characterizing regional-scale variations in monthly and seasonal surface air temperature over Mexico. Int. J. Climatol. 2004, 24, 1897–1909. [Google Scholar] [CrossRef]
- Stahle, D.W.; Burnette, D.J.; Diaz, J.V.; Heim, R.R.; Fye, F.K.; Paredes, J.C.; Soto, R.A.; Cleaveland, M.K. Pacific and Atlantic influences on Mesoamerican climate over the past millennium. Clim. Dynam. 2012, 39, 1431–1446. [Google Scholar] [CrossRef]
- Douglas, A.V.; Englehart, P.J. Warm season rainfall in eastern Mexico: Interannual variability of tropical cyclone and non-tropical cyclone rainfall as modulated by ENSO and the AMO. In Proceedings of the 26th Annual Climate Diagnostics and Prediction Workshop, La Jolla, CA, USA, 23–27 October 2001; US Department of Commerce, NOAA: Washington, DC, USA, 2002. [Google Scholar]
- Méndez, M.; Magaña, V. Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Clim. 2010, 23, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C.; Schemm, J.K.E.; Yoo, S.H. Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Clim. 2009, 22, 5962–5982. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Feng, S. AMO-and ENSO-driven summertime circulation and precipitation variations in North America. J. Clim. 2012, 25, 6477–6495. [Google Scholar] [CrossRef] [Green Version]
- Expert Team on Climate Information for Decision-Making. Available online: https://community.wmo.int/governance/commission-membership/commission-weather-climate-water-and-related-environmental-service-applications-sercom/commission-services-officers/sercom-management-group/standing-committee-climate-services/expert-team-climate-information-decision (accessed on 13 January 2022).
- Peterson, T.C.; Manton, M.J. Monitoring changes in climate extremes: A tale of international collaboration. Bull. Am. Meteorol. Soc. 2008, 89, 1266–1271. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Donat, M.G.; Fyfe, J.C.; Zwiers, F.W. Observed and simulated temperature extremes during the recent warming hiatus. Environ. Res. Lett. 2014, 9, 64023. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dynam. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, L.; Chen, D.; Xu, J.; Zhang, H. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. Int. J. Climatol. 2018, 38, 1285–1297. [Google Scholar] [CrossRef]
- Hui, P.; Tang, J.; Wang, S.; Niu, X.; Zong, P.; Dong, X. Climate change projections over China using regional climate models forced by two CMIP5 global models. Part I: Evaluation of historical simulations. Int. J. Climatol. 2018, 38, e57–e77. [Google Scholar] [CrossRef]
- Hui, P.; Tang, J.; Wang, S.; Niu, X.; Zong, P.; Dong, X. Climate change projections over China using regional climate models forced by two CMIP5 global models. Part II: Projections of future climate. Int. J. Climatol. 2018, 38, e78–e94. [Google Scholar] [CrossRef]
- Sui, Y.; Lang, X.; Jiang, D. Projected signals in climate extremes over China associated with a 2 °C global warming under two RCP scenarios Int. J. Climatol. 2018, 38, e678–e697. [Google Scholar] [CrossRef]
- Lutz, A.F.; ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 2016, 36, 3988–4005. [Google Scholar] [CrossRef] [Green Version]
- Panda, D.K.; Panigrahi, P.; Mohanty, S.; Mohanty, R.K.; Sethi, R.R. The 20th century transitions in basic and extreme monsoon rainfall indices in India: Comparison of the ETCCDI indices. Atmos. Res. 2016, 181, 220–235. [Google Scholar] [CrossRef]
- Gallego, M.C.; Trigo, R.M.; Vaquero, J.M.; Brunet, M.; García, J.A.; Sigró, J.; Valente, M.A. Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. J. Geophys. Res.-Atmos. 2011, 116, D02109. [Google Scholar] [CrossRef]
- van den Besselaar, E.J.M.; Klein Tank, A.M.G.; Buishand, T.A. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Filahi, S.; Tramblay, Y.; Mouhir, L.; Diaconescu, E.P. Projected changes in temperature and precipitation indices in Morocco from high-resolution regional climate models. Int. J. Climatol. 2017, 37, 4846–4863. [Google Scholar] [CrossRef]
- Barry, A.A.; Caesar, J.; Klein Tank, A.M.G.; Aguilar, E.; McSweeney, C.; Cyrille, A.M.; Nikiema, M.P.; Narcisse, K.B.; Sima, F.; Stafford, G.; et al. West Africa climate extremes and climate change indices. Int. J. Climatol. 2018, 38, e921–e938. [Google Scholar] [CrossRef]
- Athar, H. Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. Int. J. Climatol. 2014, 34, 1561–1574. [Google Scholar] [CrossRef]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res.-Atmos. 2005, 110, D23107. [Google Scholar] [CrossRef]
- Peterson, T.C.; Zhang, X.; Brunet-India, M.; Vázquez-Aguirre, J.L. Changes in North American extremes derived from daily weather data. J. Geophys. Res.-Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Montero-Martínez, M.J.; Santana-Sepúlveda, J.S.; Pérez-Ortiz, N.I.; Pita-Díaz, Ó.; Castillo-Liñan, S. Comparing climate change indices between a northern (arid) and a southern (humid) basin in Mexico during the last decades. Adv. Sci Res. 2018, 15, 231–237. [Google Scholar] [CrossRef]
- Pita-Díaz, O.; Ortega-Gaucin, D. Analysis of Anomalies and Trends of Climate Change Indices in Zacatecas, Mexico. Climate 2020, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Gómez, R.; Muro-Hernández, L.J.; Flowers-Cano, R.S. Assessment of extreme precipitation through climate change indices in Zacatecas, Mexico. Theor. Appl. Climatol. 2020, 141, 1541–1557. [Google Scholar] [CrossRef]
- Astudillo, C.; Peña, A.; Suárez, M.A.; Aguilar, E.; Bravo, J.A. Caracterización de la cuenca del Río Apatlaco. In Impacto del Cambio Climático para la Gestión Integral de la Cuenca Hidrológica del Río Apatlaco; Soares, D., Peña, A., Eds.; IMTA: Jiutepec, México, 2018; pp. 57–107. [Google Scholar]
- Guijarro, J.A. Homogenization of Climatic Series with Climatol; Versión 3.1.1; Agencia Estatal de Meteorología (AEMET): D.T. en Islas Baleares, España; Available online: https://www.researchgate.net/profile/Jose_Guijarro/publication/325203476_Homogenization_of_climatic_series_with_Climatol/links/5afda3fea6fdcc3a5a90bd5b/Homogenization-of-climatic-series-with-Climatol.pdf (accessed on 13 January 2022).
- Paulhus, J.H.L.; Kohler, M.A. Interpolation of missing precipitation records. Mon. Weather Rev. 1952, 80, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Alexandersson, H. A homogeneity test applied to precipitation data. Int. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) User Guide; Climate Research Branch Environment Canada: Downsview, ON, Canada, 2004. Available online: http://etccdi.pacificclimate.org/RClimDex/RClimDexUserManual.doc (accessed on 13 January 2022).
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Lehmann, E.L.; D’Abrera, H.J. Nonparametrics Statistical Methods Based on Ranks; Holden-Day: San Francisco, CA, USA, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fonseca, D.; Calvalho, M.J.; Marta-Almeida, M.; Melo-Goncalves, P.; Rocha, A. Recent trends of extreme temperature indices for the Iberian Peninsula. Phys. Chem. Earth Pt. A/B/C 2016, 94, 66–76. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; Muthiah, K.; Sridhar, V. Long-term homogeneity, trend, and change-point analysis of rainfall in the arid district of Ananthapuramu, Andhra Pradesh State. India. Water 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Navarra, A. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability-Applications of Statistical Techniques; Springer: Berlin/Heidelberg, Germany, 1995; pp. 11–26. [Google Scholar]
- Kulkarni, A.; von Storch, H. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Zeitschrift 1995, 4, 82–85. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hamed, K.H. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J. Hydrol. 2009, 368, 143–155. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Lau, K.M.; Bua, W. Mechanisms of monsoon-Southern Oscillation coupling: Insights from GCM experiments. Clim. Dynam. 1998, 14, 759–779. [Google Scholar] [CrossRef]
- Brown, D.P.; Comrie, A.C. A winter precipitation ‘dipole’ in the western United States associated with multidecadal ENSO variability. Geophys. Res. Lett. 2004, 31, L09203. [Google Scholar] [CrossRef] [Green Version]
- Jáuregui, E.; Romales, E. Urban effects on convective precipitation in Mexico City. Atmos. Environ. 1996, 30, 3383–3389. [Google Scholar] [CrossRef]
- Jauregui, E. Heat island development in Mexico City. Atmos. Environ. 1997, 31, 3821–3831. [Google Scholar] [CrossRef]
- Jáuregui, E. The heat spells of Mexico City. Invest. Geog. 2009, 70, 71–76. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-46112009000300005&lng=es&nrm=iso (accessed on 13 January 2022).
- Cui, Y.Y.; De Foy, B. Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteorol. Clim. 2012, 51, 855–868. [Google Scholar] [CrossRef]
- Jauregui, E.; Godinez, L.; Cruz, F. Aspects of heat-island development in Guadalajara, Mexico. Atmos. Environ. B-Urb. 1992, 26, 391–396. [Google Scholar] [CrossRef]
- Jáuregui, E. Possible impact of urbanization on the thermal climate of some large cities in México. Atmósfera 2005, 18, 249–252. [Google Scholar]
- Chandler, T. The Climate of London; Hutchinson: London, UK, 1965. [Google Scholar]
- INEGI. Población. Available online: https://www.inegi.org.mx/temas/estructura/ (accessed on 13 January 2022).
- García-Cueto, O.R.; Santillán-Soto, N.; López-Velázquez, E.; Reyes-López, J.; Cruz-Sotelo, S.; Ojeda-Benítez, S. Trends of climate change indices in some Mexican cities from 1980 to 2010. Theor. Appl. Climatol. 2019, 137, 775–790. [Google Scholar] [CrossRef]
- Mateos, E.; Santana, J.S.; Montero-Martínez, M.J.; Deeb, A.; Grunwaldt, A. Possible climate change evidence in ten Mexican watersheds. Phys. Chem. Earth Pt A/B/C 2016, 91, 10–19. [Google Scholar] [CrossRef]
- Zhang, W.; Mei, X.; Geng, X.; Turner, A.G.; Jin, F. A nonstationary ENSO–NAO relationship due to AMO modulation, J. Climate 2019, 32, 33–43. [Google Scholar] [CrossRef]
- Myoung, B.; Kim, S.H.; Kim, J.; Kafatos, M.C. On the Relationship between the North Atlantic Oscillation and Early Warm Season Temperatures in the Southwestern United States. J. Clim. 2015, 28, 5683–5698. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R.; Montero-Martínez, M.J.; Alcudia-Aguilar, A. Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Appl. Sci. 2021, 11, 8284. [Google Scholar] [CrossRef]
- Lin, P.; Yu, Z.; Lü, J.; Ding, M.; Hu, A.; Liu, H. Two regimes of Atlantic multidecadal oscillation: Cross-basin dependent or Atlantic-intrinsic. Sci. Bull. 2019, 64, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Pita-Díaz, O. Variabilidad de Temperatura y Precipitación en el Estado de Zacatecas y su Posible Relación con Oscilaciones de Baja Frecuencia. In Proceedings of the 10° Congreso Nacional en Investigación en Cambio Climático y 2° Congreso Latino de Investigación en Cambio Climático, Mexico City, Mexico, 19 October 2020; Available online: https://www.facebook.com/PINCCDELAUNAM/videos/382234066289676 (accessed on 13 January 2022).
- Alfaro, E.J.; Gershunov, A.; Cayan, D. Prediction of Summer Maximum and Minimum Temperature over the Central and Western United States: The Roles of Soil Moisture and Sea Surface Temperature. J. Clim. 2006, 19, 1407–1421. [Google Scholar] [CrossRef]
Trend | MK | SS | SRC | PWMK | TFPWMK | BCPW | MMKH | MMKY | ||
---|---|---|---|---|---|---|---|---|---|---|
SU | 0.499 | 0.268 | 0.758 | 0.357 | SC | 0.135 | 0.442 | 0.094 | 0.266 | 0.266 |
Txx | −0.002 | 0.090 | 0.014 | 0.084 | SC | 0.150 | 0.264 | 0.145 | 0.090 | 0.090 |
Tnn | 0.019 | 0.111 | 0.010 | 0.160 | ||||||
PcpT | 0.812 | 0.125 | 1.966 | 0.161 | ||||||
r20 | 0.024 | 0.087 | 0.035 | 0.125 |
SUB-BASIN ALL | ||||||||||
SU | Txx | PcpT | r20 | |||||||
AMO | 0.79 | 0.74 | 0.34 | 0.39 | ||||||
NAO | −0.29 | |||||||||
SUB-BASIN HG | SUB-BASIN LW | |||||||||
SU | Txx | PcpT | r20 | SU | Txx | PcpT | r20 | |||
AMO | 0.69 | 0.3 | 0.37 | AMO | 0.77 | 0.73 | 0.35 | 0.41 | ||
NAO | −0.3 | NAO | −0.3 | −0.27 | ||||||
PDO | −0.32 | |||||||||
SUB-BASIN MW | SUB-BASIN ME | |||||||||
SU | Txx | PcpT | r20 | SU | Txx | PcpT | r20 | |||
AMO | 0.74 | 0.68 | 0.36 | 0.29 | AMO | 0.77 | 0.69 | 0.33 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Martínez, M.J.; Pita-Díaz, O.; Andrade-Velázquez, M. Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico. Atmosphere 2022, 13, 339. https://doi.org/10.3390/atmos13020339
Montero-Martínez MJ, Pita-Díaz O, Andrade-Velázquez M. Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico. Atmosphere. 2022; 13(2):339. https://doi.org/10.3390/atmos13020339
Chicago/Turabian StyleMontero-Martínez, Martín José, Oscar Pita-Díaz, and Mercedes Andrade-Velázquez. 2022. "Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico" Atmosphere 13, no. 2: 339. https://doi.org/10.3390/atmos13020339
APA StyleMontero-Martínez, M. J., Pita-Díaz, O., & Andrade-Velázquez, M. (2022). Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico. Atmosphere, 13(2), 339. https://doi.org/10.3390/atmos13020339