- Article
Automatic Identification and Segmentation of Diffuse Aurora from Untrimmed All-Sky Auroral Videos
- Qian Wang,
- Peiqi Hao and
- Han Pan
Diffuse aurora is a widespread and long-lasting auroral emission that plays an important role in diagnosing magnetosphere-ionosphere coupling and magnetospheric plasma transport. Despite its scientific significance, diffuse aurora remains challenging to identify automatically in all-sky imager (ASI) observations due to its weak optical intensity, indistinct boundaries, and gradual temporal evolution. These characteristics, together with frequent cloud contamination, limit the effectiveness of conventional keogram-based or morphology-driven detection approaches and hinder large-scale statistical analyses based on long-term optical datasets. In this study, we propose an automated framework for the identification and temporal segmentation of diffuse aurora from untrimmed all-sky auroral videos. The framework consists of a frame-level coarse identification module that combines weak morphological information with inter-frame temporal dynamics to detect candidate diffuse-auroral intervals, and a snippet-level segmentation module that dynamically aggregates temporal information to capture the characteristic gradual onset-plateau-decay evolution of diffuse aurora. Bidirectional temporal modeling is employed to improve boundary localization, while an adaptive mixture-of-experts mechanism reduces redundant temporal variations and enhances discriminative features relevant to diffuse emission. The proposed method is evaluated using multi-year 557.7 nm ASI observations acquired at the Arctic Yellow River Station. Quantitative experiments demonstrate state-of-the-art performance, achieving 96.3% frame-wise accuracy and an Edit score of 87.7%. Case studies show that the method effectively distinguishes diffuse aurora from cloud-induced pseudo-diffuse structures and accurately resolves gradual transition boundaries that are ambiguous in keograms. Based on the automated identification results, statistical distributions of diffuse aurora occurrence, duration, and diurnal variation are derived from continuous observations spanning 2003–2009. The proposed framework enables robust and fully automated processing of large-scale all-sky auroral images, providing a practical tool for remote sensing-based auroral monitoring and supporting objective statistical studies of diffuse aurora and related magnetospheric processes.
25 January 2026









