Next Issue
Volume 14, April
Previous Issue
Volume 14, February
 
 

Mar. Drugs, Volume 14, Issue 3 (March 2016) – 19 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1671 KiB  
Review
Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts
by María L. Parages, José A. Gutiérrez-Barranquero, F. Jerry Reen, Alan D.W. Dobson and Fergal O’Gara
Mar. Drugs 2016, 14(3), 62; https://doi.org/10.3390/md14030062 - 21 Mar 2016
Cited by 23 | Viewed by 9424
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the [...] Read more.
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts. Full article
Show Figures

Graphical abstract

2045 KiB  
Article
Preparation and Antitumor Activity of CS5931, A Novel Polypeptide from Sea Squirt Ciona Savignyi
by Xiaoshuang Chen, Huanli Xu, Bo Li, Feng Wang, Xiaoliang Chen, Dexin Kong and Xiukun Lin
Mar. Drugs 2016, 14(3), 47; https://doi.org/10.3390/md14030047 - 21 Mar 2016
Cited by 7 | Viewed by 5560
Abstract
CS5931 is a novel anticancer agent isolated from the sea squirt Ciona savignyi. However, its content in the species is very low, and developing a novel approach for production of the polypeptide is promising. In the present study, we expressed and purified [...] Read more.
CS5931 is a novel anticancer agent isolated from the sea squirt Ciona savignyi. However, its content in the species is very low, and developing a novel approach for production of the polypeptide is promising. In the present study, we expressed and purified the polypeptide from E. coli, and the fermentation conditions were studied using response surface methodology. The yield of CS5931 was increased from 2.0 to 7.5 mg/L. The denaturing and renaturation conditions were also studied. Using the optimized renaturation condition, the anticancer activity of refolding CS5931 was increased significantly; the value of IC50 was decreased from 23.2 to 11.6 μM. In vivo study using xenograft nude mice bearing HCT116 cancer cells revealed that CS5931 was able to inhibit the growth of tumor significantly. The study provides a useful approach for obtaining enough amount of CS5931 for further study. This study is also important for developing the polypeptide as a novel anticancer agent. Full article
Show Figures

Graphical abstract

1744 KiB  
Article
Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases
by Kenneth G. Collins, Gerald F. Fitzgerald, Catherine Stanton and R. Paul Ross
Mar. Drugs 2016, 14(3), 60; https://doi.org/10.3390/md14030060 - 18 Mar 2016
Cited by 119 | Viewed by 13207
Abstract
Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, [...] Read more.
Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a “westernised lifestyle” characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs) such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus. Full article
Show Figures

Graphical abstract

1725 KiB  
Article
Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates
by Aiko Hayashi, Andrew Crombie, Ernest Lacey, Anthony J. Richardson, Daniel Vuong, Andrew M. Piggott and Gustaaf Hallegraeff
Mar. Drugs 2016, 14(3), 59; https://doi.org/10.3390/md14030059 - 16 Mar 2016
Cited by 25 | Viewed by 8687
Abstract
Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton [...] Read more.
Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef. Full article
Show Figures

Graphical abstract

7670 KiB  
Review
Marine Natural Products from New Caledonia—A Review
by Sofia-Eléna Motuhi, Mohamed Mehiri, Claude Elisabeth Payri, Stéphane La Barre and Stéphane Bach
Mar. Drugs 2016, 14(3), 58; https://doi.org/10.3390/md14030058 - 16 Mar 2016
Cited by 28 | Viewed by 15979
Abstract
Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species [...] Read more.
Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs. Full article
Show Figures

Graphical abstract

3016 KiB  
Article
Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds
by Hassan Y. Ebrahim and Khalid A. El Sayed
Mar. Drugs 2016, 14(3), 57; https://doi.org/10.3390/md14030057 - 11 Mar 2016
Cited by 12 | Viewed by 7095
Abstract
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis [...] Read more.
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly’s Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds. Full article
(This article belongs to the Special Issue Drug Design Based on Marine Natural Product Scaffolds)
Show Figures

Graphical abstract

3136 KiB  
Article
Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways
by Tingting Yan, Yan Zhao, Xia Zhang and Xiaotong Lin
Mar. Drugs 2016, 14(3), 56; https://doi.org/10.3390/md14030056 - 10 Mar 2016
Cited by 48 | Viewed by 9089
Abstract
Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive [...] Read more.
Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. Full article
Show Figures

Graphical abstract

1620 KiB  
Article
Pseudopterosin A: Protection of Synaptic Function and Potential as a Neuromodulatory Agent
by Stacee Lee Caplan, Bo Zheng, Ken Dawson-Scully, Catherine A. White and Lyndon M. West
Mar. Drugs 2016, 14(3), 55; https://doi.org/10.3390/md14030055 - 10 Mar 2016
Cited by 18 | Viewed by 9467
Abstract
Natural products have provided an invaluable source of inspiration in the drug discovery pipeline. The oceans are a vast source of biological and chemical diversity. Recently, this untapped resource has been gaining attention in the search for novel structures and development of new [...] Read more.
Natural products have provided an invaluable source of inspiration in the drug discovery pipeline. The oceans are a vast source of biological and chemical diversity. Recently, this untapped resource has been gaining attention in the search for novel structures and development of new classes of therapeutic agents. Pseudopterosins are group of marine diterpene glycosides that possess an array of potent biological activities in several therapeutic areas. Few studies have examined pseudopterosin effects during cellular stress and, to our knowledge, no studies have explored their ability to protect synaptic function. The present study probes pseudopterosin A (PsA) for its neuromodulatory properties during oxidative stress using the fruit fly, Drosophila melanogaster. We demonstrate that oxidative stress rapidly reduces neuronal activity, resulting in the loss of neurotransmission at a well-characterized invertebrate synapse. PsA mitigates this effect and promotes functional tolerance during oxidative stress by prolonging synaptic transmission in a mechanism that differs from scavenging activity. Furthermore, the distribution of PsA within mammalian biological tissues following single intravenous injection was investigated using a validated bioanalytical method. Comparable exposure of PsA in the mouse brain and plasma indicated good distribution of PsA in the brain, suggesting its potential as a novel neuromodulatory agent. Full article
(This article belongs to the Special Issue Marine Compounds and Their Application in Neurological Disorders)
Show Figures

Graphical abstract

2122 KiB  
Article
Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds
by Marion Navarri, Camille Jégou, Laurence Meslet-Cladière, Benjamin Brillet, Georges Barbier, Gaëtan Burgaud and Yannick Fleury
Mar. Drugs 2016, 14(3), 50; https://doi.org/10.3390/md14030050 - 10 Mar 2016
Cited by 22 | Viewed by 7541
Abstract
The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core [...] Read more.
The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites. Full article
Show Figures

Graphical abstract

985 KiB  
Article
Comparison of Protein Phosphatase Inhibition Assay with LC-MS/MS for Diagnosis of Microcystin Toxicosis in Veterinary Cases
by Caroline E. Moore, Jeanette Juan, Yanping Lin, Cynthia L. Gaskill and Birgit Puschner
Mar. Drugs 2016, 14(3), 54; https://doi.org/10.3390/md14030054 - 9 Mar 2016
Cited by 22 | Viewed by 6651
Abstract
Microcystins are acute hepatotoxins of increasing global concern in drinking and recreational waters and are a major health risk to humans and animals. Produced by cyanobacteria, microcystins inhibit serine/threonine protein phosphatase 1 (PP1). A cost-effective PP1 assay using p-nitrophenyl phosphate was developed [...] Read more.
Microcystins are acute hepatotoxins of increasing global concern in drinking and recreational waters and are a major health risk to humans and animals. Produced by cyanobacteria, microcystins inhibit serine/threonine protein phosphatase 1 (PP1). A cost-effective PP1 assay using p-nitrophenyl phosphate was developed to quickly assess water and rumen content samples. Significant inhibition was determined via a linear model, which compared increasing volumes of sample to the log-transformed ratio of the exposed rate over the control rate of PP1 activity. To test the usefulness of this model in diagnostic case investigations, samples from two veterinary cases were tested. In August 2013 fifteen cattle died around two ponds in Kentucky. While one pond and three tested rumen contents had significant PP1 inhibition and detectable levels of microcystin-LR, the other pond did not. In August 2013, a dog became fatally ill after swimming in Clear Lake, California. Lake water samples collected one and four weeks after the dog presented with clinical signs inhibited PP1 activity. Subsequent analysis using liquid chromatography-mass spectrometry (LC-MS/MS) detected microcystin congeners -LR, -LA, -RR and -LF but not -YR. These diagnostic investigations illustrate the advantages of using functional assays in combination with LC-MS/MS. Full article
(This article belongs to the Special Issue Compounds from Cyanobacteria)
Show Figures

Graphical abstract

926 KiB  
Article
Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum
by Mary L. Hamilton, Stephen Powers, Johnathan A. Napier and Olga Sayanova
Mar. Drugs 2016, 14(3), 53; https://doi.org/10.3390/md14030053 - 9 Mar 2016
Cited by 80 | Viewed by 8939
Abstract
We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from [...] Read more.
We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions. Full article
(This article belongs to the Special Issue Marine Fatty Acids-2016)
Show Figures

Graphical abstract

1447 KiB  
Review
Antimicrobial Action of Compounds from Marine Seaweed
by María José Pérez, Elena Falqué and Herminia Domínguez
Mar. Drugs 2016, 14(3), 52; https://doi.org/10.3390/md14030052 - 9 Mar 2016
Cited by 434 | Viewed by 28902
Abstract
Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control [...] Read more.
Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. Full article
(This article belongs to the Special Issue Antibacterial Marine Pharmacology)
Show Figures

Graphical abstract

891 KiB  
Article
Nigrodiquinone A, a Hydroanthraquinone Dimer Containing a Rare C-9–C-7′ Linkage from a Zoanthid-Derived Nigrospora sp. Fungus
by Wei-Feng Xu, Xue-Mei Hou, Kai-Lin Yang, Fei Cao, Rui-Yun Yang, Chang-Yun Wang and Chang-Lun Shao
Mar. Drugs 2016, 14(3), 51; https://doi.org/10.3390/md14030051 - 9 Mar 2016
Cited by 13 | Viewed by 5255
Abstract
One new hydroanthraquinone dimer with a rare C-9–C-7′ linkage, nigrodiquinone A (1), and four known anthraquinone monomers 2–5, were isolated from a fungus Nigrospora sp. obtained from the zoanthid Palythoa haddoni collected in the South China Sea. The structure of 1 was established [...] Read more.
One new hydroanthraquinone dimer with a rare C-9–C-7′ linkage, nigrodiquinone A (1), and four known anthraquinone monomers 2–5, were isolated from a fungus Nigrospora sp. obtained from the zoanthid Palythoa haddoni collected in the South China Sea. The structure of 1 was established through extensive NMR spectroscopy, and the absolute configuration was elucidated by comparing computed electronic circular dichroism (ECD) and optical rotations (OR) with experimental results. All the compounds were evaluated for antiviral activity, and 1 was also evaluated for antibacterial activity. Compound 4 displayed mild antiviral activity against coxsackie virus (Cox-B3) with the IC50 value of 93.7 μM, and 5 showed an IC50 value of 74.0 μM against respiratory syncytial virus (RSV). Full article
Show Figures

Graphical abstract

1955 KiB  
Review
Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach
by Elisabete Maciel, Miguel Costa Leal, Ana Isabel Lillebø, Pedro Domingues, Maria Rosário Domingues and Ricardo Calado
Mar. Drugs 2016, 14(3), 49; https://doi.org/10.3390/md14030049 - 8 Mar 2016
Cited by 51 | Viewed by 12610
Abstract
The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes), which have been used in the food and pharmaceutical industry. [...] Read more.
The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes), which have been used in the food and pharmaceutical industry. However, the biochemistry and biological activities of many of these macrophytes (namely macroalgae and halophytes, including seagrasses) are still far from being fully explored. Most popular bioactive components include polysaccharides, peptides, phenolics and fatty acids (FAs). Polar lipids (glycolipids, phospholipids and betaine lipids) are emerging as novel value-added bioactive phytochemicals, rich in n-3 FA, with high nutritional value and health beneficial effects for the prevention of chronic diseases. Polar lipids account various combinations of polar groups, fatty acyl chains and backbone structures. The polar lipidome of macrophytes is remarkably diverse, and its screening represents a significant analytical challenge. Modern research platforms, particularly mass spectrometry (MS)-based lipidomic approaches, have been recently used to address this challenge and are here reviewed. The application of lipidomics to address lipid composition of marine macrophytes will contribute to the stimulation of further research on this group and foster the exploration of novel applications. Full article
Show Figures

Graphical abstract

272 KiB  
Review
Antimicrobials from Cnidarians. A New Perspective for Anti-Infective Therapy?
by Gian Luigi Mariottini and Irwin Darren Grice
Mar. Drugs 2016, 14(3), 48; https://doi.org/10.3390/md14030048 - 8 Mar 2016
Cited by 36 | Viewed by 7926
Abstract
The ability of microbes to counter the scientific and therapeutic advancements achieved during the second half of the twentieth century to provide effective disease treatments is currently a significant challenge for researchers in biology and medicine. The discovery of antibiotics, and the subsequent [...] Read more.
The ability of microbes to counter the scientific and therapeutic advancements achieved during the second half of the twentieth century to provide effective disease treatments is currently a significant challenge for researchers in biology and medicine. The discovery of antibiotics, and the subsequent development of synthetic antimicrobial compounds, altered our therapeutic approach towards infectious diseases, and improved the quality and length of life for humans and other organisms. The current alarming rise in cases of antibiotic-resistance has forced biomedical researchers to explore new ways to recognize and/or produce new antimicrobials or to find other approaches for existing therapeutics. Aquatic organisms are known to be a source of compounds having the potential to play a role in fighting the battle against pathogenic microbes. In this connection, cnidarians occupy a pre-eminent role. Over the past few decades several studies have explored the antimicrobial/antibiotic properties of cnidarian extracts with the aim of isolating compounds possessing useful therapeutic features. This paper aims to review the existing data on this subject, taking into account the possible utilization of identified compounds. Full article
Show Figures

Graphical abstract

1830 KiB  
Article
Eutypenoids A–C: Novel Pimarane Diterpenoids from the Arctic Fungus Eutypella sp. D-1
by Liu-Qiang Zhang, Xiao-Chong Chen, Zhao-Qiang Chen, Gui-Min Wang, Shi-Guo Zhu, Yi-Fu Yang, Kai-Xian Chen, Xiao-Yu Liu and Yi-Ming Li
Mar. Drugs 2016, 14(3), 44; https://doi.org/10.3390/md14030044 - 7 Mar 2016
Cited by 25 | Viewed by 5728
Abstract
Eutypenoids A–C (13), pimarane diterpenoid alkaloid and two ring A rearranged pimarane diterpenoids, were isolated from the culture of Eutypella sp. D-1 obtained from high-latitude soil of the Arctic. Their structures, including absolute configurations, were authenticated on the basis [...] Read more.
Eutypenoids A–C (13), pimarane diterpenoid alkaloid and two ring A rearranged pimarane diterpenoids, were isolated from the culture of Eutypella sp. D-1 obtained from high-latitude soil of the Arctic. Their structures, including absolute configurations, were authenticated on the basis of the mass spectroscopy (MS), nuclear magnetic resonance (NMR), X-ray crystallography, and electronic circular dichroism (ECD) analysis. The immunosuppressive effects of eutypenoids A–C (13) were studied using a ConA-induced splenocyte proliferation model, which suggested that 2 exhibited potent immunosuppressive activities. Full article
Show Figures

Graphical abstract

1812 KiB  
Article
Chinese Marine Materia Medica Resources: Status and Potential
by Xiu-Mei Fu, Meng-Qi Zhang, Chang-Lun Shao, Guo-Qiang Li, Hong Bai, Gui-Lin Dai, Qian-Wen Chen, Wei Kong, Xian-Jun Fu and Chang-Yun Wang
Mar. Drugs 2016, 14(3), 46; https://doi.org/10.3390/md14030046 - 3 Mar 2016
Cited by 39 | Viewed by 12533
Abstract
Chinese marine materia medica (CMMM) is a vital part of traditional Chinese medicine (TCM). Compared with terrestrial TCM, CMMM, derived from specific marine habitats, possesses peculiar chemical components with unique structures reflecting as potent pharmacological activities, distinct drug properties and functions. Nowadays, CMMM [...] Read more.
Chinese marine materia medica (CMMM) is a vital part of traditional Chinese medicine (TCM). Compared with terrestrial TCM, CMMM, derived from specific marine habitats, possesses peculiar chemical components with unique structures reflecting as potent pharmacological activities, distinct drug properties and functions. Nowadays, CMMM appears to be especially effective in treating such difficult diseases as cancers, diabetes, cardio-cerebrovascular diseases, immunodeficiency diseases and senile dementia, and therefore has become an important medicinal resource for the research and development of new drugs. In recent years, such development has attracted wide attention in the field of medicine. In this study, the CMMM resources in China were systematically investigated and evaluated. It was found that the historic experiences of Chinese people using CMMM have continuously accumulated over a period of more than 3600 years, and that the achievements of the research on modern CMMM are especially outstanding. By June 2015, 725 kinds of CMMMs from Chinese coastal sea areas have been identified and recorded, covering 1552 organisms and minerals. More than 3100 traditional prescriptions containing CMMMs have been imparted and inherited. However, the number of CMMMs is less than the 8188 terrestrial TCMs, from more than 12,100 medicinal terrestrial plants, animals and minerals. In the future, the research and development of CMMM should focus on the channel entries (TCM drug properties), compatibility, effective ingredients, acting mechanisms, drug metabolism and quality standard. This study reveals the high potential of CMMM development. Full article
Show Figures

Graphical abstract

1587 KiB  
Article
A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction
by Elisabeth J. Faassen, Maria G. Antoniou, Wendy Beekman-Lukassen, Lucie Blahova, Ekaterina Chernova, Christophoros Christophoridis, Audrey Combes, Christine Edwards, Jutta Fastner, Joop Harmsen, Anastasia Hiskia, Leopold L. Ilag, Triantafyllos Kaloudis, Srdjan Lopicic, Miquel Lürling, Hanna Mazur-Marzec, Jussi Meriluoto, Cristina Porojan, Yehudit Viner-Mozzini and Nadezda Zguna
Mar. Drugs 2016, 14(3), 45; https://doi.org/10.3390/md14030045 - 29 Feb 2016
Cited by 51 | Viewed by 10469
Abstract
Exposure to β-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of [...] Read more.
Exposure to β-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%–32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis. Full article
(This article belongs to the Special Issue Marine Neurotoxins)
Show Figures

Graphical abstract

2264 KiB  
Review
Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications
by Ludmylla Cunha and Ana Grenha
Mar. Drugs 2016, 14(3), 42; https://doi.org/10.3390/md14030042 - 25 Feb 2016
Cited by 436 | Viewed by 21313
Abstract
In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan [...] Read more.
In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop