Ensuring rapid and efficient evacuation in high-density environments, such as stadiums, is critical for public safety during fire emergencies. Traditional fire alarm systems rely on reactive detection mechanisms, often resulting in delayed response times, increased panic, and overcrowding. This study introduces an AI-driven
[...] Read more.
Ensuring rapid and efficient evacuation in high-density environments, such as stadiums, is critical for public safety during fire emergencies. Traditional fire alarm systems rely on reactive detection mechanisms, often resulting in delayed response times, increased panic, and overcrowding. This study introduces an AI-driven predictive fire alarm and evacuation model that leverages machine learning algorithms and real-time environmental sensor data to anticipate fire hazards before ignition, improving emergency response efficiency. To detect early fire risk indicators, the system processes data from 62,630 sensor measurements across 15 ecological parameters, including temperature, humidity, total volatile organic compounds (TVOC), CO
2 levels, and particulate matter. A comparative analysis of six machine learning models—Logistic Regression, Support Vector Machines (SVM), Random Forest, and proposed EvacuNet—demonstrates that EvacuNet outperforms all other models, achieving an accuracy of 99.99%, precision of 1.00, recall of 1.00, and an AUC-ROC score close to 1.00. The predictive alarm system significantly reduces false alarm rates and enhances fire detection speed, allowing emergency responders to take preemptive action. Moreover, integrating AI-driven evacuation optimization minimizes bottlenecks and congestion, reduces evacuation times, and improves structured crowd movement. These findings underscore the necessity of intelligent fire detection systems in high-occupancy venues, demonstrating that AI-based predictive modeling can drastically improve fire response and evacuation efficiency. Future research should focus on integrating IoT-enabled emergency navigation, reinforcement learning algorithms, and real-time crowd management systems to further enhance predictive accuracy and minimize casualties. By adopting such advanced technologies, large-scale venues can significantly improve emergency preparedness, reduce evacuation delays, and enhance public safety.
Full article