Terahertz Frequency-Modulated Continuous-Wave Inspection of an Ancient Enamel Plate
Abstract
:1. Introduction
2. Materials and Methods
3. Experiment
4. Results
4.1. Reflection: 100–300 GHz
4.2. Transmission 100–300 GHz
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fukunaga, K.; Ogawa, Y.; Hayashi, S.; Hosako, I. Terahertz spectroscopy for art conservation. IEICE Electron. Express 2007, 4, 258–263. [Google Scholar] [CrossRef]
- Koch, M.; Mittleman, D.M.; Ornik, J.; Castro-Camus, E. Terahertz time-domain spectroscopy. Nat. Rev. Methods Prim. 2023, 3, 48. [Google Scholar] [CrossRef]
- Fukunaga, K.; Hosako, I. Innovative non-invasive analysis techniques for cultural heritage using terahertz technology. Comptes Rendus Phys. 2010, 11, 519–526. [Google Scholar] [CrossRef]
- Kleist, E.M.; Dandolo, C.L.K.; Guillet, J.-P.; Mounaix, P.; Korter, T.M. Terahertz Spectroscopy and Quantum Mechanical Simulations of Crystalline Copper-Containing Historical Pigments. J. Phys. Chem. A 2019, 123, 1225–1232. [Google Scholar] [CrossRef]
- Dong, J.; Locquet, A.; Melis, M.; Citrin, D.S. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry. Sci. Rep. 2017, 7, 15098. [Google Scholar] [CrossRef]
- Dong, J.; Wu, X.; Locquet, A.; Citrin, D.S. Terahertz Superresolution Stratigraphic Characterization of Multilayered Structures Using Sparse Deconvolution. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 260–267. [Google Scholar] [CrossRef]
- Niijima, S.; Taniguchi, H.; Murate, K.; Kawase, K. Terahertz Spectroscopy Applied to Estimation of Firing Temperatures of Ancient Ceramics. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 300–306. [Google Scholar] [CrossRef]
- Krügener, K.; Schwerdtfeger, M.; Busch, S.F.; Soltani, A.; Castro-Camus, E.; Koch, M.; Viöl, W. Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology. Sci. Rep. 2015, 5, 14842. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kwon, W.S.; Kim, K.-S.; Kim, S. Nondestructive evaluation of multilayered paint films in ambient atmosphere using terahertz reflection spectroscopy. NDT E Int. 2016, 80, 71–76. [Google Scholar] [CrossRef]
- Cassar, Q.; Chopard, A.; Fauquet, F.; Guillet, J.-P.; Pan, M.; Perraud, J.-B.; Mounaix, P. Iterative Tree Algorithm to Evaluate Terahertz Signal Contribution of Specific Optical Paths within Multi-Layered Materials. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 684–694. [Google Scholar] [CrossRef]
- Bessou, M.; Chassagne, B.; Caumes, J.-P.; Pradère, C.; Maire, P.; Tondusson, M.; Abraham, E. Three-dimensional terahertz computed tomography of human bones. Appl. Opt. 2012, 51, 6738–6744. [Google Scholar] [CrossRef] [PubMed]
- Sanjuan, F.; Fauquet, F.; Fasentieux, B.; Mounaix, P.; Guillet, J.-P. Feasibility of Using a 300 GHz Radar to Detect Fractures and Lithological Changes in Rocks. Remote Sens. 2023, 15, 2605. [Google Scholar] [CrossRef]
- Hu, W.; Xu, Z.; Jiang, H.; Liu, Q.; Yao, Z.; Tan, Z.; Ligthart, L.P. Image restoration algorithm for terahertz FMCW radar imaging. Appl. Opt. 2023, 62, 5399–5408. [Google Scholar] [CrossRef]
- Öhrström, L.; Fischer, B.M.; Bitzer, A.; Wallauer, J.; Walther, M.; Rühli, F. Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat. Anat. Rec. 2015, 298, 1135–1143. [Google Scholar] [CrossRef]
- Zhang, H.; Sfarra, S.; Saluja, K.; Peeters, J.; Fleuret, J.; Duan, Y.; Fernandes, H.; Avdelidis, N.; Ibarra-Castanedo, C.; Maldague, X. Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography. J. Nondestruct. Eval. 2017, 36, 34. [Google Scholar] [CrossRef]
- Catapano, I.; Affinito, A.; Guerriero, L.; Bisceglia, B.; Soldovieri, F. Majolica imaging with THz waves: Preliminary results. Appl. Phys. A 2016, 122, 533. [Google Scholar] [CrossRef]
- Hložek, M.; Trojek, T.; Komoróczy, B.; Prokeš, R. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF. Radiat. Phys. Chem. 2017, 137, 243–247. [Google Scholar] [CrossRef]
- Fauquet, F.; Galluzzi, F.; Taday, P.F.; Chapoulie, R.; Mounier, A.; Ben Amara, A.; Mounaix, P. Terahertz time-domain spectro-imaging and hyperspectral imagery to investigate a historical Longwy glazed ceramic. Sci. Rep. 2024, 14, 19248. [Google Scholar] [CrossRef]
- Carré, B.; Chopard, A.; Guillet, J.-P.; Fauquet, F.; Mounaix, P.; Gellie, P. Terahertz Nondestructive Testing with Ultra-Wideband FMCW Radar. Sensors 2022, 23, 187. [Google Scholar] [CrossRef]
- Guillet, J.P.; Recur, B.; Balacey, H.; Sleiman, J.B.; Darracq, F.; Lewis, D.; Mounaix, P. Low-frequency noise effect on terahertz tomography using thermal detectors. Appl. Opt. 2015, 54, 6758–6762. [Google Scholar] [CrossRef]
- Mikerov, M.; Shrestha, R.; van Dommelen, P.; Mittleman, D.M.; Koch, M. Analysis of ancient ceramics using terahertz imaging and photogrammetry. Opt. Express 2020, 28, 22255–22263. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; Zhang, W.; Song, J.; Wang, Z.; Jin, Y.; Nandi, A.K.; Chen, Y.; Liang, X. Three-dimensional reconstruction method for layered structures based on a frequency modulated continuous wave terahertz radar. Opt. Express 2024, 32, 27303–27316. [Google Scholar] [CrossRef] [PubMed]
- 2piLabs GmbH. Available online: https://www.2pi-labs.com/en/radar-sensor-products/industrial-radar/ (accessed on 1 January 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauquet, F.; Galluzzi, F.; Chapoulie, R.; Mounier, A.; Ben Amara, A.; Mounaix, P. Terahertz Frequency-Modulated Continuous-Wave Inspection of an Ancient Enamel Plate. Sensors 2025, 25, 2928. https://doi.org/10.3390/s25092928
Fauquet F, Galluzzi F, Chapoulie R, Mounier A, Ben Amara A, Mounaix P. Terahertz Frequency-Modulated Continuous-Wave Inspection of an Ancient Enamel Plate. Sensors. 2025; 25(9):2928. https://doi.org/10.3390/s25092928
Chicago/Turabian StyleFauquet, Frédéric, Francesca Galluzzi, Rémy Chapoulie, Aurélie Mounier, Ayed Ben Amara, and Patrick Mounaix. 2025. "Terahertz Frequency-Modulated Continuous-Wave Inspection of an Ancient Enamel Plate" Sensors 25, no. 9: 2928. https://doi.org/10.3390/s25092928
APA StyleFauquet, F., Galluzzi, F., Chapoulie, R., Mounier, A., Ben Amara, A., & Mounaix, P. (2025). Terahertz Frequency-Modulated Continuous-Wave Inspection of an Ancient Enamel Plate. Sensors, 25(9), 2928. https://doi.org/10.3390/s25092928