Validation of an Open-Source Smartwatch for Continuous Monitoring of Physical Activity and Heart Rate in Adults
Abstract
:1. Introduction
2. Methods
2.1. Ethical Approval and Recruitment
2.2. Procedures
2.3. Data and Statistical Analysis
3. Results
3.1. In-Person Data Collection
3.2. Twenty-Four-Hour Free-Living Steps
3.3. Heart Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henriksen, A.; Mikalsen, M.H.; Woldaregay, A.Z.; Muzny, M.; Hartvigsen, G.; Hopstock, L.A.; Grimsgaard, S. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J. Med. Internet Res. 2018, 20, e110. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.; Jarrahi, M.H.; Fei, Y.; Karami, A.; Gafinowitz, N.; Byun, A.; Lu, X. Wearable Activity Trackers, Accuracy, Adoption, Acceptance and Health Impact: A Systematic Literature Review. J. Biomed. Inform. 2019, 93, 103153. [Google Scholar] [CrossRef]
- Miyakoshi, T.; Ito, Y.M. Assessing the Current Utilization Status of Wearable Devices in Clinical Research. Clin. Trials 2024, 21, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Getting Real with Wearable Data. Nat Biotechnol 2019, 37, 331. [CrossRef]
- Leung, W.; Case, L.; Sung, M.C.; Jung, J. A Meta-Analysis of Fitbit Devices: Same Company, Different Models, Different Validity Evidence. J. Med. Eng. Technol. 2022, 46, 102–115. [Google Scholar] [CrossRef]
- Cho, S.; Ensari, I.; Weng, C.; Kahn, M.G.; Natarajan, K. Factors Affecting the Quality of Person-Generated Wearable Device Data and Associated Challenges: Rapid Systematic Review. JMIR mHealth uHealth 2021, 9, e20738. [Google Scholar] [CrossRef]
- Sui, A.; Sui, W.; Liu, S.; Rhodes, R. Ethical Considerations for the Use of Consumer Wearables in Health Research. Digit. Health 2023, 9, 20552076231153740. [Google Scholar] [CrossRef]
- McKeon, J. 61M Fitbit, Apple Users Had Data Exposed in Wearable Device Data Breach. Health IT Security, 16 September 2021; p. 1. [Google Scholar]
- Janssen, M.; Brous, P.; Estevez, E.; Barbosa, L.S.; Janowski, T. Data Governance: Organizing Data for Trustworthy Artificial Intelligence. Gov. Inf. Q. 2020, 37, 101493. [Google Scholar] [CrossRef]
- Johnston, W.; Judice, P.B.; García, P.M.; Mühlen, J.M.; Skovgaard, E.L.; Stang, J.; Schumann, M.; Cheng, S.; Bloch, W.; Brønd, J.C.; et al. Recommendations for Determining the Validity of Consumer Wearable and Smartphone Step Count: Expert Statement and Checklist of the INTERLIVE Network. Br. J. Sports Med. 2021, 55, 780–793. [Google Scholar] [CrossRef]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR Interval Signal Quality of a Heart Rate Monitor and an ECG Holter at Rest and during Exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef]
- Fitzpatrick, T.B. The Validity and Practicality of Sun-Reactive Skin Types I Through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.K.; Robinson, J.K. Color Bar Tool for Skin Type Self-Identification: A Cross Sectional Study. J. Am. Acad. Dermatol. 2015, 73, 312–313.e1. [Google Scholar] [CrossRef] [PubMed]
- Ravanelli, N.; Lefebvre, K.; Mornas, A.; Gagnon, D. Evaluating Compliance with HeatSuite for Monitoring in Situ Physiological and Perceptual Responses and Personal Environmental Exposure. npj Digit. Med. 2025, 8, 223. [Google Scholar] [CrossRef]
- Williams, G. Bangle.Js App Loader 2024. Available online: https://banglejs.com/apps/ (accessed on 30 January 2025).
- Ravanelli, N.; Lin, W.; Richard, M.; Paquette, S.; Lefebvre, K.; Brough, A. Data and Code for Assessing the Agreement of the Bangle.Js2 during in-Lab and 24h Free-Living Conditions for Measuring Steps and Heart Rate. Open Sci. Framew. 2025. [Google Scholar] [CrossRef]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating Sources of Inaccuracy in Wearable Optical Heart Rate Sensors. npj Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Cadmus-Bertram, L.; Gangnon, R.; Wirkus, E.J.; Thraen-Borowski, K.M.; Gorzelitz-Liebhauser, J. The Accuracy of Heart Rate Monitoring by Some Wrist-Worn Activity Trackers. Ann. Intern. Med. 2017, 166, 610–612. [Google Scholar] [CrossRef]
- Cliff, N. Ordinal Methods for Behavioral Data Analysis; Psychology Press: New York, NY, USA, 2014; ISBN 978-1-315-80673-0. [Google Scholar]
- Wallen, M.P.; Gomersall, S.R.; Keating, S.E.; Wisløff, U.; Coombes, J.S. Accuracy of Heart Rate Watches: Implications for Weight Management. PLoS ONE 2016, 11, e0154420. [Google Scholar] [CrossRef]
- Consumer Technology Association Health and Fitness Technology Subcommittee. Physical Activity Monitoring for Fitness Wearables: Step Counting; Consumer Technology Association: Arlington, TX, USA, 2016. [Google Scholar]
- Moore, C.C.; McCullough, A.K.; Aguiar, E.J.; Ducharme, S.W.; Tudor-Locke, C. Toward Harmonized Treadmill-Based Validation of Step-Counting Wearable Technologies: A Scoping Review. J. Phys. Act. Health 2020, 17, 840–852. [Google Scholar] [CrossRef]
- Consumer Technology Association. Physical Activity Monitoring for Heart Rate—Real World Analysis (ANSI/CTA-2065.1); Consumer Technology Association: Arlington, TX, USA, 2023. [Google Scholar]
- Bassett, D.R.; Toth, L.P.; LaMunion, S.R.; Crouter, S.E. Step Counting: A Review of Measurement Considerations and Health-Related Applications. Sports Med. 2017, 47, 1303–1315. [Google Scholar] [CrossRef]
- Mora-Gonzalez, J.; Gould, Z.R.; Moore, C.C.; Aguiar, E.J.; Ducharme, S.W.; Schuna, J.M.; Barreira, T.V.; Staudenmayer, J.; McAvoy, C.R.; Boikova, M.; et al. A Catalog of Validity Indices for Step Counting Wearable Technologies during Treadmill Walking: The CADENCE-Adults Study. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 117. [Google Scholar] [CrossRef]
- Small, S.; Khalid, S.; Dhiman, P.; Chan, S.; Jackson, D.; Doherty, A.; Price, A. Impact of Reduced Sampling Rate on Accelerometer-Based Physical Activity Monitoring and Machine Learning Activity Classification. J. Meas. Phys. Behav. 2021, 4, 298–310. [Google Scholar] [CrossRef]
- Chow, H.-W.; Yang, C.-C. Accuracy of Optical Heart Rate Sensing Technology in Wearable Fitness Trackers for Young and Older Adults: Validation and Comparison Study. JMIR mHealth uHealth 2020, 8, e14707. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Elgendi, M.; Chen, Z.; Ward, R. An Optimal Filter for Short Photoplethysmogram Signals. Sci. Data 2018, 5, 180076. [Google Scholar] [CrossRef] [PubMed]
- Pollreisz, D.; TaheriNejad, N. Detection and Removal of Motion Artifacts in PPG Signals. Mob. Netw. Appl. 2022, 27, 728–738. [Google Scholar] [CrossRef]
- Van Laerhoven, K.; Hoelzemann, A.; Pahmeier, I.; Teti, A.; Gabrys, L. Validation of an Open-Source Ambulatory Assessment System in Support of Replicable Activity Studies. Ger. J. Exerc. Sport Res. 2022, 52, 262–272. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, W.; McDonough, D.J.; Zeng, N.; Lee, J.E. The Dilemma of Analyzing Physical Activity and Sedentary Behavior with Wrist Accelerometer Data: Challenges and Opportunities. J. Clin. Med. 2021, 10, 5951. [Google Scholar] [CrossRef]
- Yuan, H.; Chan, S.; Creagh, A.P.; Tong, C.; Acquah, A.; Clifton, D.A.; Doherty, A. Self-Supervised Learning for Human Activity Recognition Using 700,000 Person-Days of Wearable Data. npj Digit. Med. 2024, 7, 91. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef]
- Mühlen, J.M.; Stang, J.; Skovgaard, E.L.; Judice, P.B.; Molina-Garcia, P.; Johnston, W.; Sardinha, L.B.; Ortega, F.B.; Caulfield, B.; Bloch, W.; et al. Recommendations for Determining the Validity of Consumer Wearable Heart Rate Devices: Expert Statement and Checklist of the INTERLIVE Network. Br. J. Sports Med. 2021, 55, 767–779. [Google Scholar] [CrossRef]
- Koerber, D.; Khan, S.; Shamsheri, T.; Kirubarajan, A.; Mehta, S. Accuracy of Heart Rate Measurement with Wrist-Worn Wearable Devices in Various Skin Tones: A Systematic Review. J. Racial Ethn. Health Disparities 2023, 10, 2676–2684. [Google Scholar] [CrossRef]
Lab Validation (n = 23) | 24 h Step Counting (n = 47) | 24 h Heart Rate (n = 26) | |
---|---|---|---|
Male/Female | 15/8 | 25/22 | 12/14 |
Age (y) | 23.0 ± 3.6 | 26.7 ± 11.3 | 30.1 ± 14.2 |
Height (cm) | 178 ± 10 | 176 ± 9 | 174 ± 9 |
Weight (kg) | 80.6 ± 14.1 | 78.0 ± 12.9 | 75.9 ± 11.0 |
BMI | 25.5 ± 4.4 | 25.2 ± 3.7 | 24.9 ± 2.8 |
Fitzpatrick Skin Type | - | - | 2.8 ± 0.9 |
June Robinson Skin Tone | - | - | 1.5 ± 0.7 |
Condition | Device | MAE [95% CI] | MAPE [95% CI] | MdAPE [95% CI] | TE [95% CI] |
---|---|---|---|---|---|
2 mph | Bangle.js2 | 158 [134, 182] | 56.0 [47.4, 64.7] | 56.5 [35.9, 71.1] | 169 [145, 194] |
Fitbit Charge 5 | 17 [10, 24] | 6.0 [3.6, 8.4] | 4.8 [2.4, 6.4] | 24 [15, 33] | |
3 mph | Bangle.js2 | 62 [43, 82] | 14.3 [13.0, 24.0] | 14.3 [0.3, 23.3] | 79 [58, 100] |
Fitbit Charge 5 | 18 [9, 27] | 5.2 [2.7, 7.7] | 3.1 [1.2, 4.3] | 29 [18, 39] | |
4 mph | Bangle.js2 | 55 [35, 75] | 14.6 [9.2, 19.9] | 11.0 [4.9, 17.4] | 75 [53, 97] |
Fitbit Charge 5 | 13 [8, 19] | 3.6 [2.2, 4.9] | 2.1 [1.4, 4.0] | 19 [13, 25] | |
5 mph | Bangle.js2 | 25 [6, 45] | 6.1 [1.2, 11.1] | 0.8 [0.7, 2.0] | 56 [36, 75] |
Fitbit Charge 5 | 14 [8, 20] | 3.3 [1.7, 4.8] | 2.3 [1.2, 3.1] | 21 [13, 28] | |
Stair Climb | Bangle.js2 | 16 [10, 21] | 10.3 [6.5, 14.2] | 6.7 [4.7, 12.0] | 21 [15, 27] |
Fitbit Charge 5 | 7 [4, 9] | 4.6 [2.9, 6.2] | 3.3 [1.3, 6.7] | 9 [6, 13] |
Sample (n) | CCC [95% CI] | MAE [95% CI] | MAPE [95% CI] | MdAPE [95% CI] | TE [95% CI] | Bland–Altman Bias [LoA] | Cliff’s Delta | |
---|---|---|---|---|---|---|---|---|
Minute-by-minute steps | 68,873 | 0.90 [0.90, 0.90] | 3.5 [3.5,3.6] | - | - | 9.3 [9.3, 9.4] | 0.2 [−18.1, 18.5] | −0.014 |
Total 24 h steps | 49 | 0.96 [0.94, 0.96] | 1025.7 [810.2, 1241.2] | 11.0 [8.5, 13.5] | 8.0 [−11.4, 31.7] | 1282.3 [11.9, 12.1] | −531 [−2320, 1257] | - |
Sample (n) | CCC [95% CI] | MAE [95% CI] | MAPE [95% CI] | MdAPE [95%CI] | TE [95% CI] | Bland–Altman Bias [LoA] | Cliff’s Delta | |
---|---|---|---|---|---|---|---|---|
All observations (vs. Polar H10) | ||||||||
Bangle.js2 | 30,598 | 0.78 [0.78, 0.78] | 7.2 [7.1, 7.3] | 9.3 [9.2, 9.4] | 5.7 [5.5, 5.7] | 11.8 [11.7, 11.9] | −0.3 [−23.2, 22.5] | −0.006 |
Fitbit Charge 5 | 30,549 | 0.79 [0.79, 0.79] | 5.4 [5.3, 5.5] | 6.9 [6.8, 7.1] | 2.8 [2.8, 3.0] | 12.0 [11.9, 12.1] | −0.3 [−19.5, 18.8] | 0.010 |
Sedentary (e.g., 0 Steps, vs. Polar H10) | ||||||||
Bangle.js2 | 23,322 | 0.76 [0.76, 0.77] | 5.6 [5.5, 5.7] | 8.1 [7.9, 8.2] | 4.9 [4.8, 5.0] | 9.5 [9.4, 9.6] | −0.3 [−18.0, 18.6] | −0.013 |
Fitbit Charge 5 | 23,181 | 0.80 [0.80, 0.80] | 3.9 [3.8, 4.0] | 5.6 [5.4, 5.7] | 2.2 [2.1, 2.2] | 8.6 [8.5, 8.7] | −0.0 [−16.5, 16.4] | −0.007 |
Active (e.g., >0 Steps, vs. Polar H10) | ||||||||
Bangle.js2 | 7276 | 0.54 [0.53, 0.56] | 12.5 [12.2, 12.7] | 13.2 [12.9, 13.5] | 9.9 [9.7, 10.3] | 17.2 [16.8, 17.6] | −2.4 [−35.7, 30.8] | 0.039 |
Fitbit Charge 5 | 7242 | 0.77 [0.76, 0.78] | 8.6 [8.4, 8.9] | 9.7 [9.4, 9.9] | 6.1 [5.8, 6.2] | 13.0 [12.7, 13.3] | −1.4 [−25.0, 27.7] | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravanelli, N.; Lefebvre, K.; Brough, A.; Paquette, S.; Lin, W. Validation of an Open-Source Smartwatch for Continuous Monitoring of Physical Activity and Heart Rate in Adults. Sensors 2025, 25, 2926. https://doi.org/10.3390/s25092926
Ravanelli N, Lefebvre K, Brough A, Paquette S, Lin W. Validation of an Open-Source Smartwatch for Continuous Monitoring of Physical Activity and Heart Rate in Adults. Sensors. 2025; 25(9):2926. https://doi.org/10.3390/s25092926
Chicago/Turabian StyleRavanelli, Nicholas, KarLee Lefebvre, Amy Brough, Simon Paquette, and Wei Lin. 2025. "Validation of an Open-Source Smartwatch for Continuous Monitoring of Physical Activity and Heart Rate in Adults" Sensors 25, no. 9: 2926. https://doi.org/10.3390/s25092926
APA StyleRavanelli, N., Lefebvre, K., Brough, A., Paquette, S., & Lin, W. (2025). Validation of an Open-Source Smartwatch for Continuous Monitoring of Physical Activity and Heart Rate in Adults. Sensors, 25(9), 2926. https://doi.org/10.3390/s25092926