Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles
Abstract
:1. Introduction
2. Principles and Methods
2.1. T-L Model
2.2. Modified T-L Model
2.3. Modified T-L Model Effect
2.4. Improved Compensation Flight Circle
- 1. The aircraft begins at a level flight attitude and sequentially performs pitch (±5°) and roll (±10°) maneuvers on each leg of the flight path.
- 2. The flight path consists of two overlapping quadrilaterals, forming an octagonal trajectory. The first quadrilateral is flown clockwise, followed by the second in a rhombic configuration.
- 1. Compensation for Yaw Effects: Although yaw maneuvers are removed, the eight-sided flight path incorporates seven turns, effectively simulating yaw-induced magnetic interference and compensating for its absence in the calibration process.
- 2. Enhanced Safety for Large UAVs: By eliminating high-risk yaw maneuvers, the proposed scheme reduces the likelihood of structural damage or displacement of tail-mounted equipment, such as optical pump magnetometers and triaxial fluxgate sensors.
- 3. Optimized Flight Efficiency: The removal of yaw maneuvers shortens the flight distance for each leg. Additionally, the overlapping quadrilateral design minimizes the overall flight area, reducing the impact of geomagnetic gradient variations on the compensation process.
3. Experiments and Results
3.1. Compensation Flight Experiments
3.2. Result Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shabani, A.; Ziaii, M.; Monfared, M.S.; Shirazy, A.; Shirazi, A. Multi-Dimensional Data Fusion for Mineral Prospectivity Mapping (MPM) Using Fuzzy-AHP Decision-Making Method, Kodegan-Basiran Region, East Iran. Minerals 2022, 12, 1629. [Google Scholar] [CrossRef]
- Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of Remote Sensing, Magnetometric, and Geological Data to Identify Polymetallic Mineral Potential Zones in Chakchak Region, Yazd, Iran. Remote Sens. 2022, 14, 6018. [Google Scholar] [CrossRef]
- Porras, D.; Carrasco, J.; Carrasco, P.; Alfageme, S.; Gonzalez-Aguilera, D.; Lopez Guijarro, R. Drone Magnetometry in Mining Research. An Application in the Study of Triassic Cu–Co–Ni Mineralizations in the Estancias Mountain Range, Almería (Spain). Drones 2021, 5, 151. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. High-resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets. Geophys. Prospect. 2020, 68, 334–349. [Google Scholar] [CrossRef]
- Jirigalatu, J.; Krishna, V.; da Silva, E.L.S.; Døssing, A. Experiments on magnetic interference for a portable airborne magnetometry system using a hybrid unmanned aerial vehicle (UAV). Geosci. Instrum. Methods Data Syst. Discuss. 2021, 10, 25–34. [Google Scholar] [CrossRef]
- Qiao, Z.; Ma, G.; Zhou, W.; Yu, P.; Zhou, S.; Wang, T.; Tang, S.; Dai, W.; Meng, Z.; Zhang, Z. Research on the comprehensive compensation of aeromagnetic system error of multi-rotor UAV. Chin. J. Geophys. 2020, 63, 4604–4612. [Google Scholar]
- Chen, L.; Wu, P.; Zhu, W.; Feng, Y.; Fang, G. A novel strategy for improving the aeromagnetic compensation performance of helicopters. Sensors 2018, 18, 1846. [Google Scholar] [CrossRef]
- Tolles, W.; Lawson, J. Magnetic Compensation of MAD Equipped Aircraft; Airborne Instruments Lab, Inc.: Mineola, NY, USA, 1950; p. 201. [Google Scholar]
- Bickel, S.H. Error Analysis of an Algorithm for Magnetic Compensation of Aircraft. IEEE Trans. Aerosp. Electron. 1979, AES-15, 620–626. [Google Scholar] [CrossRef]
- Leliak, P. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft. IRE Trans. Aerosp. Navig. Electr. 1961, 3, 95–105. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Liao, S.; Li, T.; Li, Z. Aeromagnetic Compensation Method Based on Recursive Least Square and Elastic Weight Consolidation. Appl. Geophys. 2024, 16, 1–12. [Google Scholar] [CrossRef]
- Zhang, C.; Du, C.; Peng, X.; Guo, H. A Modified Aeromagnetic Compensation Method Robust to the Motion State of Aviation Platform Part. IEEE Sens. J. 2023, 23, 12702–12710. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, X.; Kong, D.; Du, C.; Peng, X.; Guo, H.; Xia, M. Enhanced Aeromagnetic Compensation Models for Magnetic Anomaly Target Detection. IEEE Trans. Geosci. Remote Sens 2024, 62, 1001813. [Google Scholar] [CrossRef]
- Ge, J.; Wang, W.; Dong, H.; Liu, H.; Zhang, X.; Luo, W.; Zhang, H.; Zhu, J. Modeling and reduction of the gradient effect of a magnetic sensor for an aeromagnetic compensator. Rev. Sci. Instrum. 2021, 92, 024502. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Sun, B.; Guan, B.; Ouyang, M.; Qin, X. Application of an improved calibration flight scheme in aeromagnetic interference compensation. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024255. [Google Scholar] [CrossRef]
- Yuan, Z.; Jing, S.; Du, C.; Xia, M. Modified Tolley-Lawson Model for Elimination of Magnetic Interference by Aeromagnetic Platform. In Proceedings of the 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 11–13 October 2021; pp. 260–262. [Google Scholar]
- Mu, Y.; Chen, L.; Xiao, Y. Small Signal Magnetic Compensation Method for UAV-Borne Vector Magnetometer System. IEEE Trans. Instrum. Meas. 2023, 72, 1004107. [Google Scholar] [CrossRef]
- Hardwick, C.D. Important design considerations for inboard airborne magnetic gradiometers. Geophysics 1984, 49, 2004–2018. [Google Scholar] [CrossRef]
- Dou, Z.; Han, Q.; Niu, X.; Peng, X.; Guo, H. An aeromagnetic compensation coefficient-estimating method robust to geomagnetic gradient. IEEE Geosci. Remote Sens. Lett. 2016, 13, 611–615. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Q.; Zheng, Y.; Qu, X.; Wu, F.; Fang, G. An Improved Aeromagnetic Compensation Method Robust to Geomagnetic Gradient. Appl. Sci. 2022, 12, 1490. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Z.; Zhang, Q.; Huang, B.; Pan, M.; Hu, J.; Guan, F.; Chen, Z.; Ding, Q.; Qiu, X.; et al. An Online Evolutionary Aeromagnetic Compensation Method Using Woodbury Equation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7502505. [Google Scholar] [CrossRef]
- Qiao, Z.; Yuan, P.; Wang, L.; Zhang, Z.H.; Huang, Y.-S.; Zhang, J.-J.; Li, L.-L.; Zhang, Z.-Y.; Wu, B.; Lin, Q. Research on aeromagnetic compensation of a multi-rotor UAV based on robust principal component analysis. J. Appl. Geophys. 2022, 206, 104791. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, C.; Su, Z. An Aeromagnetic Compensation Algorithm Based on Radial Basis Function Artificial Neural Network. Appl. Sci. 2022, 13, 136. [Google Scholar] [CrossRef]
Method | Uncompensated (std) | Compensated (std) | IR |
---|---|---|---|
T-L | 0.1131 (nT) | 0.0229 (nT) | 4.9408 |
Improved T-L | 0.1131 (nT) | 0.0184 (nT) | 6.1467 |
Flight | Uncompensated (std) | Compensated (std) | IR |
---|---|---|---|
A | 0.2912 (nT) | 0.0404 (nT) | 7.3173 |
B | 0.3264 (nT) | 0.0415 (nT) | 7.8634 |
Compensation Target | Uncompensated (std) | Compensated (std) | IR |
---|---|---|---|
A → B | 0.2912 (nT) | 0.0436 (nT) | 6.6789 |
B → A | 0.3264 (nT) | 0.0465 (nT) | 7.0194 |
Flight | Compensated Object | Uncompensated (std) | Compensated (std) | IR |
---|---|---|---|---|
A | Flight C | 0.1605 (nT) | 0.0385 (nT) | 4.1688 |
Flight D | 0.0529 (nT) | 0.0246 (nT) | 2.1504 | |
B | Flight C | 0.1605 (nT) | 0.0398 (nT) | 4.0428 |
Flight D | 0.0529 (nT) | 0.0256 (nT) | 2.0664 |
Compensation Target | Uncompensated (std) | Compensated (std) | IR |
---|---|---|---|
A → C | 0.1605 (nT) | 0.0696 (nT) | 2.3060 |
A → D | 0.0529 (nT) | 0.0302 (nT) | 1.7517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Ye, L.; Ding, C.; Chi, C.; Liu, C.; Cheng, P. Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles. Sensors 2025, 25, 2954. https://doi.org/10.3390/s25092954
Yu Z, Ye L, Ding C, Chi C, Liu C, Cheng P. Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles. Sensors. 2025; 25(9):2954. https://doi.org/10.3390/s25092954
Chicago/Turabian StyleYu, Zhentao, Liwei Ye, Can Ding, Cheng Chi, Cong Liu, and Pu Cheng. 2025. "Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles" Sensors 25, no. 9: 2954. https://doi.org/10.3390/s25092954
APA StyleYu, Z., Ye, L., Ding, C., Chi, C., Liu, C., & Cheng, P. (2025). Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles. Sensors, 25(9), 2954. https://doi.org/10.3390/s25092954