Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = plug flow digesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 895 KB  
Article
Adding Digestive Enzymes to Anaerobic Co-Digestion of Cattle Manure and Industrial Corn Grain Waste
by Laís Medeiros Cintra, Roberta Passini, Luana Alves Akamine, Kedinna Dias de Sousa, Frank Freire Capuchinho, Sérgio Botelho de Oliveira and Silvia Robles Reis Duarte
Fermentation 2025, 11(12), 696; https://doi.org/10.3390/fermentation11120696 - 16 Dec 2025
Viewed by 416
Abstract
Brazil is one of the world’s largest producers of grains and cattle, activities that generate a large amount of organic waste, which has high potential for biogas and methane production. Cattle manure (CM) and industrial waste from corn processing are substrates with significant [...] Read more.
Brazil is one of the world’s largest producers of grains and cattle, activities that generate a large amount of organic waste, which has high potential for biogas and methane production. Cattle manure (CM) and industrial waste from corn processing are substrates with significant potential for biogas and methane generation, particularly through the process of anaerobic co-digestion (AcoD). This study aimed to assess the biogas and methane yield, as well as the stability of the AcoD process involving CM and corn grain residues (CG) derived from a grain processing agroindustry, in conjunction with the application of an enzyme complex. The experiment was conducted in plug-flow biodigesters, with a total volume of 28 L, under a semi-continuous feeding regime (OLR = 0.84 g vs. L d−1) at ambient temperature. The findings indicated increases in daily biogas and methane production for AcoD, without the addition of enzymes, of 52.1% and 44.4%, respectively, in comparison to CM mono-digestion. The incorporation of the enzyme complex did not yield beneficial effects, irrespective of the substrate composition. The utilization of enzymes in semi-continuous biodigesters to enhance methane yields necessitates further investigation to achieve favorable outcomes and validate its efficiency. Full article
Show Figures

Figure 1

8 pages, 1813 KB  
Article
How Scheduled Maintenance Affects Anaerobic Digester Supervision Through Modelling: A Practical Approach
by Andrés Donoso-Bravo, María Constanza Sadino-Riquelme, Martín Vicencio, Fernando Zorrilla, Bastián Valdebenito and Felipe Hansen
Methane 2024, 3(4), 561-568; https://doi.org/10.3390/methane3040031 - 23 Oct 2024
Viewed by 1739
Abstract
Anaerobic digestion plays a crucial role in the transition toward a circular economy. Incorporating system supervision through mathematical modelling can enhance control and resilience. This study aims to assess the impact of scheduled digester maintenance on the effectiveness of modelling as a tool [...] Read more.
Anaerobic digestion plays a crucial role in the transition toward a circular economy. Incorporating system supervision through mathematical modelling can enhance control and resilience. This study aims to assess the impact of scheduled digester maintenance on the effectiveness of modelling as a tool for monitoring and control. Data from a pilot-scale plug-flow digester were analyzed using an adapted ADM1 model. The maintenance involved halting the digester and removing sedimented solids. Model calibration indicated solid retention in the first two zones of the reactor, while the hydrolysis coefficient and biogas potential remained at 0.122 d−1 and 100.4 mL CH4/gVS, respectively. The average biogas production decreased from 156 to 109 mL/gVS pre- and post-maintenance. Simulations showed a decline in the model’s predictive accuracy after maintenance. To improve model fit, the initial conditions, solids retention, and kinetic parameters were adjusted. Optimal performance was achieved with khyd at 0.045 d−1 and B0 at 52.28 mL gVS−1, revealing an issue with the digester’s heating system. In conclusion, maintenance can significantly alter digester conditions, requiring model recalibration to maintain its effectiveness as a digital copilot for process supervision. Full article
Show Figures

Figure 1

16 pages, 2234 KB  
Article
Restoring the Stability of Long-Term Operated Thermophilic Anaerobic Digestion of Maize Straw by Supplying Trace Elements
by Bridget Ataa Fosua, Lijuan Ren, Wei Qiao, Jiahao Zhang, Yanning Gao, Xianli Fu, Dunyao Yu and Renjie Dong
Processes 2023, 11(12), 3440; https://doi.org/10.3390/pr11123440 - 16 Dec 2023
Viewed by 2445
Abstract
Maize straw has been widely used for the production of energy through anaerobic digestion, but biogas production can be hindered by a lack of trace elemental nutrients. To address this issue, a lab-scale anaerobic plug flow reactor was continuously operated at 55 °C [...] Read more.
Maize straw has been widely used for the production of energy through anaerobic digestion, but biogas production can be hindered by a lack of trace elemental nutrients. To address this issue, a lab-scale anaerobic plug flow reactor was continuously operated at 55 °C for 300 days, with a hydraulic retention time of 42 days and an organic loading rate of 2.1 g total solids/(L·day). Results from this study showed that between days 101 and 194, the methane yield slightly decreased from 0.26 ± 0.04 to 0.24 ± 0.03 L/g volatile solids (VS), but significant volatile fatty acid accumulation was observed by reaching up to 2759 ± 261 mg/L. After trace elements were added to the reactor, the methane yield increased to 0.30 ± 0.03 L/g VS, with 53% methane content. Around 62% of the total chemical oxygen demand and volatile solids were broken down into methane. Volatile fatty acid levels dropped and stabilized at around 210 ± 50 mg/L, indicating restored process stability. The addition of trace elements increased the abundance of Firmicutes and decreased Synergistetes in bacteria while simultaneously increasing the abundance of Methanosarcina in archaea. In conclusion, trace element supplementation was experimentally found to be necessary for stable thermophilic anaerobic digestion of maize straw. Full article
Show Figures

Figure 1

12 pages, 4114 KB  
Article
Methane Production from a Rendering Waste Covered Anaerobic Digester: Greenhouse Gas Reduction and Energy Production
by Nanh Lovanh, John Loughrin, Graciela Ruiz-Aguilar and Karamat Sistani
Energies 2023, 16(23), 7844; https://doi.org/10.3390/en16237844 - 29 Nov 2023
Cited by 3 | Viewed by 4264
Abstract
Livestock wastes can serve as the feedstock for biogas production (mainly methane) that could be used as an alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting the emissions generated from fossil fuels. In [...] Read more.
Livestock wastes can serve as the feedstock for biogas production (mainly methane) that could be used as an alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting the emissions generated from fossil fuels. In this study, an evaluation of methane production from anaerobic digesters utilizing different livestock residues (e.g., poultry rendering wastewater and dairy manure) was carried out. An anaerobic continuous flow system (15 million gallons, polyethylene-covered) subjected to natural conditions (i.e., high flow rate, seasonal temperatures, etc.) containing poultry rendering wastewater was set up to evaluate methane potential and energy production. A parallel pilot-scale plug-flow anaerobic digestion system (9 m3) was also set up to test different feedstocks and operating parameters. Biogas production was sampled and monitored by gas chromatography over several months of operation. The results showed that methane production increased as the temperature increased as well as depending on the type of feedstock utilized. The covered rendering wastewater lagoon achieved an upward of 80% (v/v) methane production. The rates of methane production were 0.0478 g per g of COD for the poultry rendering wastewater and 0.0141 g per g of COD for dairy manure as feedstock. Hence, a poultry processing plant with a rendering wastewater flow rate of about 4.5 million liters per day has the potential to capture about two million kilograms of methane for energy production per year from a waste retention pond, potentially reducing global warming potential by about 50,000 tons of CO2 equivalent annually. Full article
(This article belongs to the Collection Renewable and Sustainable Energy)
Show Figures

Figure 1

10 pages, 923 KB  
Article
Effects of Magnetite (Fe3O4) as an Electrical Conductor of Direct Interspecies Electron Transfer on Methane Production from Food Wastewater in a Plug Flow Reactor
by Sang-Yoon Kim, Gui-Seck Bae, Jun-Hyeong Lee, Young-Man Yoon and Chang-Hyun Kim
Processes 2023, 11(10), 3001; https://doi.org/10.3390/pr11103001 - 18 Oct 2023
Cited by 6 | Viewed by 2606
Abstract
This study was conducted in order to examine the impact of magnetite (Fe3O4), a conductive material capable of promoting direct interspecies electron transfer (DIET) among microorganisms, on the efficiency of anaerobic digestion in a plug flow reactor (PFR) using [...] Read more.
This study was conducted in order to examine the impact of magnetite (Fe3O4), a conductive material capable of promoting direct interspecies electron transfer (DIET) among microorganisms, on the efficiency of anaerobic digestion in a plug flow reactor (PFR) using food wastewater (FW) as the substrate. The effects of recovering and replenishing magnetite discharged along with the digestate during continuous operation of the PFR were also evaluated. A PFR with a total volume of 17 L was utilized as the reactor for anaerobic digestion. The inoculum was obtained from Icheon Biogas Research Facility, which operated with a mixture of pig slurry and FW in a 7:3 (w/w) ratio. FW was used as the substrate (volatile solids (VS) content of 85,865 mg-VS/L). The PFR was set for operation at 39 °C, and after a stabilization period of approximately 82 days, the hydraulic retention time (HRT) was set at 40 days. The study was conducted in three stages: stage 1 (83~122 days), stage 2 (123~162 days), and stage 3 (163~202 days). For the maintenance of an organic loading rate of 2.12 kg-VS/m3/d, 0.3 L/d of substrate was added every 24 h, and analysis of an equal amount of discharged digestate was performed. The experimental treatments included a control without the addition of magnetite after the stabilization period, treatment (T1) with addition of magnetite (20 mM in digestate) and subsequent recovery and replenishment of magnetite on the discharge of digestate, and treatment (T2) with addition of magnetite (20 mM) without the replenishment of magnetite. Analytical parameters included the characteristics of the discharged digestate (pH, NH4+-N, chemical oxygen demand (CODCr), total volatile fatty acids (TVFAs), and alkalinity), and methane production (Mp). During the period of operation of the PFR after the stabilization period, no significant differences in pH and NH4+-N, based on the recovery and replenishment of magnetite, were observed, and a stably functioning PFR was observed. However, in stage 2, due to the increased degradation of organic matter caused by DIET, the CODCr of T1 and T2 decreased by 9.42% compared with the control. In stage 3, the magnetite content in the reactor in T2 decreased by a maximum of 9.42% compared to T1. In stage 3, the Mp for T2 was similar to that of the control, with a maximum discharge of magnetite of 3.06%, and the Mp decreased by 5.40% compared to T1. Regarding the ratio of methanogens in the community, the results of an analysis of the digestate from stage 3 showed an increase in the community of acetotrophic methanogens, specifically Methanosarcina. The findings of this study confirm that DIET was effectively promoted by maintaining the concentration of 20 mM magnetite in the PFR while using FW as a substrate. Full article
(This article belongs to the Special Issue New Trends and Perspectives on Anaerobic Digestion)
Show Figures

Figure 1

23 pages, 2983 KB  
Article
Dynamic Simulation and Thermoeconomic Analysis of a Novel Hybrid Solar System for Biomethane Production by the Organic Fraction of Municipal Wastes
by Francesco Calise, Francesco Liberato Cappiello, Luca Cimmino, Marialuisa Napolitano and Maria Vicidomini
Energies 2023, 16(6), 2716; https://doi.org/10.3390/en16062716 - 14 Mar 2023
Cited by 8 | Viewed by 2798
Abstract
The anaerobic digestion of the organic fraction of municipal solid waste and the biogas production obtained from its stabilization are becoming an increasingly attractive solution, due to their beneficial effects on the environment. In this way, the waste is considered a resource allowing [...] Read more.
The anaerobic digestion of the organic fraction of municipal solid waste and the biogas production obtained from its stabilization are becoming an increasingly attractive solution, due to their beneficial effects on the environment. In this way, the waste is considered a resource allowing a reduction in the quantity of it going to landfills and the derived greenhouse gas emissions. Simultaneously, the upgrading process of biogas into biomethane can address the issues dealing with decarbonization of the transport. In this work, the production of biogas obtained from the organic fraction of municipal solid wastes in a plug flow reactor is analyzed. In order to steer the chemical reactions, the temperature of the process must be kept under control. A new simulation model, implemented in the MatLab® environment, is developed to predict the temperature field within the reactor, in order to assess how the temperature affects the growth and the decay of the main microbial species. A thermal model, based on two equilibrium equations, is implemented to describe the heat transfer between the digester and the environment and between the digester and the internal heat exchanger. A biological model, based on suitable differential equations, is also included for the calculation of the biological processes occurring in the reactor. The proposed anaerobic digestion model is derived by the combination of these two models, and it is able to simultaneously simulate both thermal and biological processes occurring within the reactor. In addition to the thermal energy demand, the plant requires huge amounts of electricity due to the presence of a biogas upgrading process, converting biogas into biomethane. Therefore, the in-house developed model is integrated into a TRNSYS environment, to perform a yearly dynamic simulation of the reactor in combination with other renewable technologies. In the developed system layout, the thermal energy required to control the temperature of the reactor is matched by a solar thermal source. The electrical demand is met by the means of a photovoltaic field. In this work, a detailed thermoeconomic analysis is also proposed to compare the environmental impact and economic feasibility of a biomethane production plant based on a plug flow reactor and fed by renewables. Several economic incentives are considered and compared to determine the optimal solution, both in terms of energy and economic savings. The plant is designed for the treatment of a waste flow rate equal to 626.4 kg/h, and the biomethane produced, approximately 850 tons/years, is injected into the national gas grid or supplied to gas stations. In the proposed plant, a solar field of an evacuated tube collector having a surface of approximately 200 m2 is able to satisfy 35% of the thermal energy demand while over 50% of the electric demand is met with a photovoltaic field of 400 m2. A promising payback time of approximately 5 years was estimated. Full article
Show Figures

Graphical abstract

17 pages, 1867 KB  
Article
Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition
by Elena Rossi, Isabella Pecorini, Giovanni Ferrara and Renato Iannelli
Energies 2022, 15(15), 5515; https://doi.org/10.3390/en15155515 - 29 Jul 2022
Cited by 16 | Viewed by 4870
Abstract
The aim of this work is to optimize biogas production from thermophilic dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by comparing various operational strategies to reduce ammonia inhibition. A pilot-scale plug flow reactor (PFR) operated semi-continuously for [...] Read more.
The aim of this work is to optimize biogas production from thermophilic dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by comparing various operational strategies to reduce ammonia inhibition. A pilot-scale plug flow reactor (PFR) operated semi-continuously for 170 days. Three scenarios with different feedstock, namely solely OFMSW, OFMSW supplemented with structural material, and OFMSW altered to have an optimal carbon-to-nitrogen (C/N) ratio, were tested. Specific biogas production (SGP), specific methane production (SMP), the biogas production rate (GPR), and bioenergy recovery were evaluated to assess the process performance. In addition, process stability was monitored to highlight process problems, and digestate was characterized for utilization as fertilizer. The OFMSW and the structural material revealed an unbalanced content of C and N. The ammonia concentration decreased when the optimal C/N ratio was tested and was reduced by 72% if compared with feeding solely OFMSW. In such conditions, optimal biogas production was obtained, operating with an organic loading rate (OLR) equal to 12.7 gVS/(L d). In particular, the SGP result was 361.27 ± 30.52 NLbiogas/kgVS, the GPR was 5.11 NLbiogas/(Lr d), and the potential energy recovery was 8.21 ± 0.9 MJ/kgVS. Nevertheless, the digestate showed an accumulation of heavy metals and low aerobic stability. Full article
Show Figures

Graphical abstract

15 pages, 2984 KB  
Article
Analysis of the Influence of Temperature on the Anaerobic Digestion Process in a Plug Flow Reactor
by Francesco Calise, Francesco Liberato Cappiello, Luca Cimmino, Marialuisa Napolitano and Maria Vicidomini
Thermo 2022, 2(2), 92-106; https://doi.org/10.3390/thermo2020009 - 10 Jun 2022
Cited by 6 | Viewed by 4228
Abstract
The production of biogas by means of the anaerobic digestion process is becoming increasingly attractive in the green economy context. When municipal organic waste is used to produce biogas, a further positive effect on urban waste disposal is obtained. Starting from the anaerobic [...] Read more.
The production of biogas by means of the anaerobic digestion process is becoming increasingly attractive in the green economy context. When municipal organic waste is used to produce biogas, a further positive effect on urban waste disposal is obtained. Starting from the anaerobic digestion model n.1, an accurate analysis of the temperature effects on the anaerobic digestion process in a plug flow reactor is performed. This paper aims at presenting a comprehensive and integrated one-dimensional biological and thermal model for a plug flow reactor. Partial differential equations with respect to time and space are considered to model the heat transfer between the reactor and the internal heat exchanger and between the reactor and the environment. In this scope, a suitable simulation code was developed in MATLAB and validated using the data available in literature. The results of the calculations show that temperature plays a crucial role in the anaerobic digestion process, since it strongly affects the kinetic rates of the microbial species and the methane production. The results obtained in terms of temperature fields and biogas production are compared with the ones available in literature, dealing with a continuously stirred tank reactor. The comparison is conducted considering that both reactors process a volumetric waste flow rate of 20 m3/d and have the same structural characteristics. The plug flow reactor resulted better performance with a produced biogas flow rate equal to 2300 Nm3/year. Full article
(This article belongs to the Special Issue Smart Energy Networks: Thermal Balancing and Managing Issues)
Show Figures

Figure 1

17 pages, 2971 KB  
Article
Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW
by Elena Rossi, Isabella Pecorini and Renato Iannelli
Sustainability 2022, 14(8), 4393; https://doi.org/10.3390/su14084393 - 7 Apr 2022
Cited by 37 | Viewed by 5923
Abstract
The aim of this study was to develop a multiple linear regression (MLR) model to predict the specific methane production (SMP) from dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). A data set from an experimental test on [...] Read more.
The aim of this study was to develop a multiple linear regression (MLR) model to predict the specific methane production (SMP) from dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). A data set from an experimental test on a pilot-scale plug-flow reactor (PFR) including 332 observations was used to build the model. Pearson′s correlation matrix and principal component analysis (PCA) examined the relationships between variables. Six parameters, namely total volatile solid (TVSin), organic loading rate (OLR), hydraulic retention time (HRT), C/N ratio, lignin content and total volatile fatty acids (VFAs), had a significant correlation with SMP. Based on these outcomes, a simple and three multiple linear regression models (MLRs) were developed and validated. The simple linear regression model did not properly describe the data (R2 = 0.3). In turn, the MLR including all factors showed the optimal fitting ability (R2 = 0.91). Finally, the MLR including four uncorrelated explanatory variables of feedstock characteristics and operating parameters (e.g., TVSin, OLR, C/N ratio, and lignin content), resulted in the best compromise in terms of number of explanatory variables, model fitting and predictive ability (R2 = 0.87). Full article
(This article belongs to the Special Issue Solid-Waste and Waste-Water Treatment Processes)
Show Figures

Figure 1

12 pages, 4045 KB  
Article
Comparative Metagenomics of Anaerobic Digester Communities Reveals Sulfidogenic and Methanogenic Microbial Subgroups in Conventional and Plug Flow Residential Septic Tank Systems
by James Naphtali, Alexander W. Y. Chan, Faizan Saleem, Enze Li, Jacob Devries and Herb E. Schellhorn
Processes 2022, 10(3), 436; https://doi.org/10.3390/pr10030436 - 22 Feb 2022
Cited by 10 | Viewed by 4401
Abstract
On-site wastewater treatment systems (OWTS) are primarily monitored using physiochemical factors, including chemical oxygen demand (COD) and residual total suspended solids (TSS), which are indirect measures of the microbial action during the anaerobic digestion process. Changes in anaerobic digester microbial communities can alter [...] Read more.
On-site wastewater treatment systems (OWTS) are primarily monitored using physiochemical factors, including chemical oxygen demand (COD) and residual total suspended solids (TSS), which are indirect measures of the microbial action during the anaerobic digestion process. Changes in anaerobic digester microbial communities can alter the digester performance, but this information cannot be directly obtained from traditional physicochemical indicators. The potential of metagenomic DNA sequencing as a tool for taxonomic and functional profiling of microbial communities was examined in both common conventional and plug flow-type anaerobic digesters (single-pass and recirculating). Compared to conventional digesters, plug flow-type digesters had higher relative levels of sulfate-reducing bacteria (Desulfovibrio spp.) and hydrogenotrophic methanogens (Methanospirillum spp.). In contrast, recirculating anaerobic digesters were enriched with denitrifier bacteria and hydrogenotrophic methanogens, and both were significantly correlated with physicochemical factors such as COD and TSS. Stratification of microbial communities was observed along the digester treatment process according to hydrolytic, acidogenic, acetogenic, and methanogenic subgroups. These results indicate that the high-throughput DNA sequencing may be useful as a monitoring tool to characterize the changes in bacterial communities and the functional profile due to differences in digester design in on-site systems. Full article
Show Figures

Graphical abstract

34 pages, 8723 KB  
Article
Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste in Plug-Flow Reactors: Focus on Bacterial Community Metabolic Pathways
by Elena Rossi, Simone Becarelli, Isabella Pecorini, Simona Di Gregorio and Renato Iannelli
Water 2022, 14(2), 195; https://doi.org/10.3390/w14020195 - 11 Jan 2022
Cited by 20 | Viewed by 5706
Abstract
The aim of this study is to investigate the performance of a pilot-scale plug-flow reactor (PFR) as a biorefinery system to recover chemicals (i.e., volatile fatty acids (VFAs)), and biogas during the dry thermophilic anaerobic digestion (AD) of the organic fraction of municipal [...] Read more.
The aim of this study is to investigate the performance of a pilot-scale plug-flow reactor (PFR) as a biorefinery system to recover chemicals (i.e., volatile fatty acids (VFAs)), and biogas during the dry thermophilic anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). The effects of the hydraulic retention time (HRT) on both outputs were studied, reducing the parameter from 22 to 16 days. In addition, VFA variation along the PFR was also evaluated to identify a section for a further valorization of VFA-rich digestate stream. A particular focus was dedicated for characterizing the community responsible for the production of VFAs during hydrolysis and acidogenesis. The VFA concentration reached 4421.8 mg/L in a section located before the end of the PFR when the HRT was set to 16 days. Meanwhile, biogas production achieved 145 NLbiogas/d, increasing 2.7 times when compared to the lowest HRT tested. Defluviitoga sp. was the most abundant bacterial genus, contributing to 72.7% of the overall bacterial population. The genus is responsible for the hydrolysis of complex polysaccharides at the inlet and outlet sections since a bimodal distribution of the genus was found. The central zone of the reactor was distinctly characterized by protein degradation, following the same trend of propionate production. Full article
Show Figures

Figure 1

14 pages, 1648 KB  
Article
Dry Mesophilic Anaerobic Digestion of Separately Collected Organic Fraction of Municipal Solid Waste: Two-Year Experience in an Industrial-Scale Plant
by Adolfo Le Pera, Miriam Sellaro, Massimo Migliori, Micaela Bianco and Giuseppe Zanardi
Processes 2021, 9(2), 213; https://doi.org/10.3390/pr9020213 - 24 Jan 2021
Cited by 24 | Viewed by 5231
Abstract
In this paper, performance analysis over two years’ operation of an industrial anaerobic digestion (AD) plant of a separately collected organic fraction of municipal solid waste is presented. The continuous plug-flow AD plant is still regularly operating and it has been fully operational [...] Read more.
In this paper, performance analysis over two years’ operation of an industrial anaerobic digestion (AD) plant of a separately collected organic fraction of municipal solid waste is presented. The continuous plug-flow AD plant is still regularly operating and it has been fully operational since September 2018. Since then, it has been supplied with 40,000 t/y of pretreated separately collected organic fraction of municipal solid waste from municipalities of the Calabria region in Southern Italy. The AD process is carried out in a mesophilic regime at 40 ± 0.5 °C, using a constant hydraulic retention time (HRT) of 22 days and a substrate with average total solids and average total volatile solids of 30.0% and 22.2%, respectively. In the last two years, the plant produced an average of 191 m3 and 860 m3 of biogas per tonne (t) of organic input material and of total volatile solids, respectively, with an average methane specific production of 508 m3/t (total volatile solids). The average CH4 percentage in the biogas was of 59.09%. The obtained results came out from the combination of high organic content of separately collected organic fraction of municipal solid waste, optimized pretreatment system and operating conditions adopted. Full article
(This article belongs to the Special Issue Current Trends in Anaerobic Digestion Processes)
Show Figures

Figure 1

17 pages, 4942 KB  
Article
Development of a Modified Plug-Flow Anaerobic Digester for Biogas Production from Animal Manures
by Daniel Gómez, Juan Luis Ramos-Suárez, Belén Fernández, Eduard Muñoz, Laura Tey, Maycoll Romero-Güiza and Felipe Hansen
Energies 2019, 12(13), 2628; https://doi.org/10.3390/en12132628 - 8 Jul 2019
Cited by 26 | Viewed by 10999
Abstract
Traditional plug-flow anaerobic reactors (PFRs) are characterized by lacking a mixing system and operating at high total solid concentrations, which limits their applicability for several kinds of manures. This paper studies the performance of a novel modified PFR for the treatment of pig [...] Read more.
Traditional plug-flow anaerobic reactors (PFRs) are characterized by lacking a mixing system and operating at high total solid concentrations, which limits their applicability for several kinds of manures. This paper studies the performance of a novel modified PFR for the treatment of pig manure, characterized by having an internal sludge mixing system by biogas recirculation in the range of 0.270–0.336 m3 m−3 h−1. The influence on the methane yield of four operating parameters (recirculation rate, hydraulic retention time, organic loading rate, and total solids) was evaluated by running four modified PFRs at the pilot scale in mesophilic conditions. While the previous biodegradability of organic matter by biochemical methane potential tests were between 31% and 47% with a methane yield between 125 and 184 LCH4 kgVS−1, the PFRs showed a suitable performance with organic matter degradation between 25% and 51% and a methane yield of up to 374 LCH4 kgVS−1. Operational problems such as solid stratification, foaming, or scum generation were avoided. Full article
(This article belongs to the Special Issue Biogas for Rural Areas)
Show Figures

Figure 1

14 pages, 771 KB  
Article
Rapid Biogas Production by Compact Multi-Layer Membrane Bioreactor: Efficiency of Synthetic Polymeric Membranes
by Supansa Youngsukkasem, Hamidreza Barghi, Sudip K. Rakshit and Mohammad J. Taherzadeh
Energies 2013, 6(12), 6211-6224; https://doi.org/10.3390/en6126211 - 28 Nov 2013
Cited by 18 | Viewed by 7877
Abstract
Entrapment of methane-producing microorganisms between semi-permeable synthetic membranes in a multi-layer membrane bioreactor (MMBR) was studied and compared to the digestion capacity of a free-cell digester, using a hydraulic retention time of one day and organic loading rates (OLR) of 3.08, 6.16, and [...] Read more.
Entrapment of methane-producing microorganisms between semi-permeable synthetic membranes in a multi-layer membrane bioreactor (MMBR) was studied and compared to the digestion capacity of a free-cell digester, using a hydraulic retention time of one day and organic loading rates (OLR) of 3.08, 6.16, and 8.16 g COD/L·day. The reactor was designed to retain bacterial cells with uprising plug flow through a narrow tunnel between membrane layers, in order to acquire maximal mass transfer in a compact bioreactor. Membranes of hydrophobic polyamide 46 (PA) and hydroxyethylated polyamide 46 (HPA) as well as a commercial membrane of polyvinylidene fluoride (PVDF) were examined. While the bacteria in the free-cell digester were washed out, the membrane bioreactor succeeded in retaining them. Cross-flow of the liquid through the membrane surface and diffusion of the substrate through the membranes, using no extra driving force, allowed the bacteria to receive nutrients and to produce biogas. However, the choice of membrane type was crucial. Synthesized hydrophobic PA membrane was not effective for this purpose, producing 50–121 mL biogas/day, while developed HPA membrane and the reference PVDF were able to transfer the nutrients and metabolites while retaining the cells, producing 1102–1633 and 1016–1960 mL biogas/day, respectively. Full article
(This article belongs to the Special Issue Biomass and Biofuels 2013)
Show Figures

Figure 1

32 pages, 398 KB  
Review
Household Biogas Digesters—A Review
by Karthik Rajendran, Solmaz Aslanzadeh and Mohammad J. Taherzadeh
Energies 2012, 5(8), 2911-2942; https://doi.org/10.3390/en5082911 - 8 Aug 2012
Cited by 293 | Viewed by 52441
Abstract
This review is a summary of different aspects of the design and operation of small-scale, household, biogas digesters. It covers different digester designs and materials used for construction, important operating parameters such as pH, temperature, substrate, and loading rate, applications of the biogas, [...] Read more.
This review is a summary of different aspects of the design and operation of small-scale, household, biogas digesters. It covers different digester designs and materials used for construction, important operating parameters such as pH, temperature, substrate, and loading rate, applications of the biogas, the government policies concerning the use of household digesters, and the social and environmental effects of the digesters. Biogas is a value-added product of anaerobic digestion of organic compounds. Biogas production depends on different factors including: pH, temperature, substrate, loading rate, hydraulic retention time (HRT), C/N ratio, and mixing. Household digesters are cheap, easy to handle, and reduce the amount of organic household waste. The size of these digesters varies between 1 and 150 m3. The common designs include fixed dome, floating drum, and plug flow type. Biogas and fertilizer obtained at the end of anaerobic digestion could be used for cooking, lighting, and electricity. Full article
Show Figures

Figure 1

Back to TopTop