Special Issue "Unraveling SARS-CoV-2 Pathogenesis: Development of Vaccines and Therapeutics for COVID-19"

A special issue of Vaccines (ISSN 2076-393X). This special issue belongs to the section "Vaccines against Infectious Diseases".

Deadline for manuscript submissions: 31 May 2021.

Special Issue Editor

Dr. Hatem A. Elshabrawy
Website
Guest Editor
Sam Houston State University, College of Osteopathic Medicine, Texas, USA
Interests: Development of antiviral small molecules and antibodies

Special Issue Information

Dear Colleagues,

Coronaviruses (CoVs) are RNA viruses that have become a major public health concern since the Severe Acute Respiratory Syndrome-CoV (SARS-CoV) outbreak in 2002. Currently, the world is concerned about the SARS-CoV-2, the causative agent of COVID-19, which was initially identified in the city of Wuhan, China in December 2019. Tens of thousands of cases and several thousand deaths have been reported in many countries. SARS-CoV-2 is highly contagious based on the number of infected cases to date. There is a need for development of vaccines and effective therapeutics that can control the current outbreak.

We are interested in manuscripts that focus on replication, viral life cycle, and pathogenesis of SARS-CoV-2. We are also interested in areas of identification of novel drug targets and the development of vaccines and therapeutics for COVID-19. We aim to publish a variety of manuscripts that represent different research studies that investigate unique aspects of viral pathogenesis and life cycle and identify/test different vaccines and antivirals for efficacy against SARS-CoV-2.  

Dr. Hatem A. Elshabrawy
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Vaccine
  • SARS-CoV-2
  • COVID-19
  • Antibodies
  • Antivirals

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessCommunication
Nucleocapsid and Spike Proteins of the Coronavirus SARS-CoV-2 Induce IL6 in Monocytes and Macrophages—Potential Implications for Cytokine Storm Syndrome
Vaccines 2021, 9(1), 54; https://doi.org/10.3390/vaccines9010054 (registering DOI) - 15 Jan 2021
Abstract
The pandemic of the new coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has led to the deaths of more than 1.5 million people worldwide. SARS-CoV-2 causes COVID-19, which exhibits wide variation in the course of disease in different people, ranging from asymptomatic [...] Read more.
The pandemic of the new coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has led to the deaths of more than 1.5 million people worldwide. SARS-CoV-2 causes COVID-19, which exhibits wide variation in the course of disease in different people, ranging from asymptomatic and mild courses to very severe courses that can result in respiratory failure and death. Despite the rapid progression of knowledge, we still do not know how individual cells of the immune system interact with the virus or its components, or how immune homeostasis becomes disrupted, leading to the rapid deterioration of a patient’s condition. In the present work, we show that SARS-CoV-2 proteins induce the expression and secretion of IL-6 by human monocytes and macrophages, the first line cells of antiviral immune responses. IL-6 may play a negative role in the course of COVID-19 by inhibiting Th1-dependent immunity and stimulating Th17 lymphocytes, thus leading to an increased probability of a cytokine storm. Full article
Open AccessArticle
Flattening the Curve of COVID-19 Vaccine Rejection—An International Overview
Vaccines 2021, 9(1), 44; https://doi.org/10.3390/vaccines9010044 - 13 Jan 2021
Abstract
Background: If globally implemented, a safe coronavirus disease 2019 (COVID-19) vaccination program will have broad clinical and socioeconomic benefits. However, individuals who anticipate that the coronavirus vaccine will bring life back to normality may be disappointed, due to the emerging antivaccination attitude within [...] Read more.
Background: If globally implemented, a safe coronavirus disease 2019 (COVID-19) vaccination program will have broad clinical and socioeconomic benefits. However, individuals who anticipate that the coronavirus vaccine will bring life back to normality may be disappointed, due to the emerging antivaccination attitude within the general population. Methods: We surveyed a sample of adult Polish citizens (n = 1066), and compared it with the data on international COVID-19 vaccine reluctance. Results: In 20 national surveys, the vaccine averseness for the anticipated COVID-19 vaccine varied from meager (2–6% China) to very high (43%, Czech Republic, and 44%, Turkey) and in most countries was much higher than regular vaccination reluctance, which varies between 3% (Egypt) and 55% (Russia). Conclusions: These results suggest that a 67% herd immunity may be possible only if mandatory preventive vaccination programs start early and are combined with coordinated education efforts supported by legislative power and social campaigns. Full article
Show Figures

Figure 1

Open AccessArticle
Impact of Recommended Maternal Vaccination Programs on the Clinical Presentation of SARS-CoV-2 Infection: A Prospective Observational Study
Vaccines 2021, 9(1), 31; https://doi.org/10.3390/vaccines9010031 - 08 Jan 2021
Abstract
The COVID-19 pandemic has raised questions about the possible cross immunity resulting from common vaccination programs and SARS-CoV-2 infection. Therefore, the Spanish Obstetric Emergency group performed a multicenter prospective study on the vaccination status of Influenza and Tdap (diphtheria, tetanus and pertussis vaccine [...] Read more.
The COVID-19 pandemic has raised questions about the possible cross immunity resulting from common vaccination programs and SARS-CoV-2 infection. Therefore, the Spanish Obstetric Emergency group performed a multicenter prospective study on the vaccination status of Influenza and Tdap (diphtheria, tetanus and pertussis vaccine boost administered in adulthood) in consecutive cases of SARS-CoV-2 infection in a pregnancy cohort, in order to assess its possible association with the clinical presentation and severity of symptoms of SARS-CoV-2 infection, as well as to determine the factors that may affect vaccination adherence. A total of 1150 SARS-CoV-2 positive pregnant women from 78 Spanish hospitals were analyzed: 183 had not received either vaccine, 23 had been vaccinated for Influenza only, 529 for Tdap only and 415 received both vaccines. No association was observed between the vaccination status and the clinical presentation of SARS-CoV-2 infection and/or the severity of symptoms. However, a lower adherence to the administration of both vaccines was observed in the Latin-American subgroup. Based on the results above, we reinforce the importance of maternal vaccination programs in the actual pandemic. Health education campaigns should be specially targeted to groups less likely to participate in these programs, as well as for a future SARS-CoV-2 vaccination campaign. Full article
Show Figures

Figure 1

Open AccessCommunication
COVID-19 Infection Detection and Prevention by SARS-CoV-2 Active Antigens: A Synthetic Vaccine Approach
Vaccines 2020, 8(4), 692; https://doi.org/10.3390/vaccines8040692 - 18 Nov 2020
Abstract
COVID-19, a global pandemic causing to date more than 50 million cases and more than a million deaths, has to be controlled. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was identified as the causative agent. Controversy about this virus origin and infectious mechanism [...] Read more.
COVID-19, a global pandemic causing to date more than 50 million cases and more than a million deaths, has to be controlled. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was identified as the causative agent. Controversy about this virus origin and infectious mechanism for adapting to humans remains a matter for discussion. Among all strategies for obtaining safe and potent vaccines, approaches based on attenuated-killed virus and non-replicating RNA viral vectors are demonstrating promising results. However, specificity of viral components targeted by human antibodies so far has not been demonstrated. A consistent strategy for obtaining functional-active antigens from SARS-CoV-2 specific ligands lead us to propose and test a number of synthetic components. From hundreds of starting sequences only fifteen fulfilled the design requirements and were produced as monomer and polymer forms and immuno-chemically tested. The design was based on worldwide representative reported virus genomes. A bioinformatics scheme by conventional methods and knowledge on MHC-I and II antigen processing mechanisms and HLA haplotype-restriction was performed including sensitive and resistant human populations to virus infection. Covid-19 patients’ sera reactivity for synthetic SARS-CoV-2-designed components have proven a high recognition of specific molecules, as well as some evidence for a long-lasting humoral immune response. Full article
Show Figures

Graphical abstract

Open AccessCommunication
SARS-CoV-2 Proteins Induce IFNG in Th1 Lymphocytes Generated from CD4+ Cells from Healthy, Unexposed Polish Donors
Vaccines 2020, 8(4), 673; https://doi.org/10.3390/vaccines8040673 - 12 Nov 2020
Abstract
The outbreak of the SARS-CoV-2 virus in December 2019 has caused the deaths of several hundred thousand people worldwide. Currently, the pathogenesis of COVID-19 is poorly understood. During the course of COVID-19 infection, many patients experience deterioration, which might be associated with systemic [...] Read more.
The outbreak of the SARS-CoV-2 virus in December 2019 has caused the deaths of several hundred thousand people worldwide. Currently, the pathogenesis of COVID-19 is poorly understood. During the course of COVID-19 infection, many patients experience deterioration, which might be associated with systemic inflammation and cytokine storm syndrome; however, other patients have mild symptoms or are asymptomatic. There are some suggestions that impaired cellular immunity through a reduction in Th1 response and IFNG (interferon gamma) expression, as well as cross-reactivity with common cold coronaviruses, might be involved in the differential COVID-19 course. Here, we show that CD4+ cells isolated from unexposed healthy donors that were differentiated towards the Th1 lineage in the presence of SARS-CoV-2 proteins exhibited induction of IFNG. Interestingly, the same cells induced to differentiate towards a Th17 lineage did not exhibit changes in IFNG expression or Th17-related cytokines. This suggests the cellular response to SARS-CoV-2 viral proteins is primarily associated with Th1 lymphocytes and may be dependent on past infections with common cold coronaviruses or vaccinations that induce unspecific cellular responses, e.g., BCG (Bacillus Calmette-Guérin). Thus, our results might explain the high variability in the course of COVID-19 among populations of different countries. Full article
Show Figures

Figure 1

Open AccessArticle
Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death
Vaccines 2020, 8(4), 559; https://doi.org/10.3390/vaccines8040559 - 24 Sep 2020
Cited by 2
Abstract
Various studies indicate that vaccination, especially with pneumococcal vaccines, protects against symptomatic cases of SARS-CoV-2 infection and death. This paper explores the possibility that pneumococcal vaccines in particular, but perhaps other vaccines as well, contain antigens that might be cross-reactive with SARS-CoV-2 antigens. [...] Read more.
Various studies indicate that vaccination, especially with pneumococcal vaccines, protects against symptomatic cases of SARS-CoV-2 infection and death. This paper explores the possibility that pneumococcal vaccines in particular, but perhaps other vaccines as well, contain antigens that might be cross-reactive with SARS-CoV-2 antigens. Comparison of the glycosylation structures of SARS-CoV-2 with the polysaccharide structures of pneumococcal vaccines yielded no obvious similarities. However, while pneumococcal vaccines are primarily composed of capsular polysaccharides, some are conjugated to cross-reacting material CRM197, a modified diphtheria toxin, and all contain about three percent protein contaminants, including the pneumococcal surface proteins PsaA, PspA and probably PspC. All of these proteins have very high degrees of similarity, using very stringent criteria, with several SARS-CoV-2 proteins including the spike protein, membrane protein and replicase 1a. CRM197 is also present in Haemophilus influenzae type b (Hib) and meningitis vaccines. Equivalent similarities were found at lower rates, or were completely absent, among the proteins in diphtheria, tetanus, pertussis, measles, mumps, rubella, and poliovirus vaccines. Notably, PspA and PspC are highly antigenic and new pneumococcal vaccines based on them are currently in human clinical trials so that their effectiveness against SARS-CoV-2 disease is easily testable. Full article
Show Figures

Figure 1

Open AccessArticle
Vaccine Design from the Ensemble of Surface Glycoprotein Epitopes of SARS-CoV-2: An Immunoinformatics Approach
Vaccines 2020, 8(3), 423; https://doi.org/10.3390/vaccines8030423 - 28 Jul 2020
Cited by 4
Abstract
The present study aimed to work out a peptide-based multi-epitope vaccine against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We predicted different B-cell and T-cell epitopes by using the Immune Epitopes Database (IEDB). Homology modeling of the construct was done using SWISS-MODEL [...] Read more.
The present study aimed to work out a peptide-based multi-epitope vaccine against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We predicted different B-cell and T-cell epitopes by using the Immune Epitopes Database (IEDB). Homology modeling of the construct was done using SWISS-MODEL and then docked with different toll-like-receptors (TLR4, TLR7, and TLR8) using PatchDock, HADDOCK, and FireDock, respectively. From the overlapped epitopes, we designed five vaccine constructs C1–C5. Based on antigenicity, allergenicity, solubility, different physiochemical properties, and molecular docking scores, we selected the vaccine construct 1 (C1) for further processing. Docking of C1 with TLR4, TLR7, and TLR8 showed striking interactions with global binding energy of −43.48, −65.88, and −60.24 Kcal/mol, respectively. The docked complex was further simulated, which revealed that both molecules remain stable with minimum RMSF. Activation of TLRs induces downstream pathways to produce pro-inflammatory cytokines against viruses and immune system simulation shows enhanced antibody production after the booster dose. In conclusion, C1 was the best vaccine candidate among all designed constructs to elicit an immune response SARS-CoV-2 and combat the coronavirus disease (COVID-19). Full article
Show Figures

Figure 1

Open AccessArticle
Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
Vaccines 2020, 8(3), 355; https://doi.org/10.3390/vaccines8030355 - 03 Jul 2020
Cited by 7
Abstract
Currently, there is limited knowledge about the immunological profiles of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We used computer-based immunoinformatic analysis and the newly resolved 3-dimensional (3D) structures of the SARS-CoV-2 S trimeric protein, together with analyses of the immunogenic profiles of [...] Read more.
Currently, there is limited knowledge about the immunological profiles of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We used computer-based immunoinformatic analysis and the newly resolved 3-dimensional (3D) structures of the SARS-CoV-2 S trimeric protein, together with analyses of the immunogenic profiles of SARS-CoV, to anticipate potential B-cell and T-cell epitopes of the SARS-CoV-2 S protein for vaccine design, particularly for peptide-driven vaccine design and serological diagnosis. Nine conserved linear B-cell epitopes and multiple discontinuous B-cell epitopes composed of 69 residues on the surface of the SARS-CoV-2 trimeric S protein were predicted to be highly antigenic. We found that the SARS-CoV-2 S protein has a different antigenic profile than that of the SARS-CoV S protein due to the variations in their primary and 3D structures. Importantly, SARS-CoV-2 may exploit an immune evasion mechanism through two point mutations in the critical and conserved linear neutralization epitope (overlap with fusion peptide) around a sparsely glycosylated area. These mutations lead to a significant decrease in the antigenicity of this epitope in the SARS-CoV-2 S protein. In addition, 62 T-cell epitopes in the SARS-CoV-2 S protein were predicted in our study. The structure-based immunoinformatic analysis for the SARS-CoV-2 S protein in this study may improve vaccine design, diagnosis, and immunotherapy against the pandemic of COVID-19. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview
COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response
Vaccines 2020, 8(4), 649; https://doi.org/10.3390/vaccines8040649 - 03 Nov 2020
Cited by 3
Abstract
With a death toll of over one million worldwide, the COVID-19 pandemic caused by SARS-CoV-2 has become the most devastating humanitarian catastrophe in recent decades. The fear of acquiring infection and spreading to vulnerable people has severely impacted society’s socio-economic status. To put [...] Read more.
With a death toll of over one million worldwide, the COVID-19 pandemic caused by SARS-CoV-2 has become the most devastating humanitarian catastrophe in recent decades. The fear of acquiring infection and spreading to vulnerable people has severely impacted society’s socio-economic status. To put an end to this growing number of infections and deaths as well as to switch from restricted to everyday living, an effective vaccine is desperately needed. As a result, enormous efforts have been made globally to develop numerous vaccine candidates in a matter of months. Currently, over 30 vaccine candidates are under assessment in clinical trials, with several undergoing preclinical studies. Here, we reviewed the major vaccine candidates based on the specific vaccine platform utilized to develop them. We also discussed the immune responses generated by these candidates in humans and preclinical models to determine vaccine safety, immunogenicity, and efficacy. Finally, immune responses induced in recovered COVID-19 patients and their possible vaccine development implications were also briefly reviewed. Full article
Show Figures

Figure 1

Open AccessReview
Current Clinical Trials Protocols and the Global Effort for Immunization against SARS-CoV-2
Vaccines 2020, 8(3), 474; https://doi.org/10.3390/vaccines8030474 - 25 Aug 2020
Cited by 2
Abstract
Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affecting millions of people globally. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ignited an unprecedented effort from the scientific community in the development of new vaccines [...] Read more.
Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affecting millions of people globally. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ignited an unprecedented effort from the scientific community in the development of new vaccines on different platforms due to the absence of a broad and effective treatment for COVID-19 or prevention strategy for SARS-CoV-2 dissemination. Based on 50 current studies selected from the main clinical trial databases, this systematic review summarizes the global race for vaccine development against COVID-19. For each study, the main intervention characteristics, the design used, and the local or global center partnerships created are highlighted. Most vaccine developments have taken place in Asia, using a viral vector method. Two purified inactivated SARS-CoV-2 vaccine candidates, an mRNA-based vaccine mRNA1273, and the chimpanzee adenoviral vaccine ChAdOx1 are currently in phase III clinical trials in the respective countries Brazil, the United Arab Emirates, the USA, and the United Kingdom. These vaccines are being developed based on a quickly formed network of collaboration. Full article
Show Figures

Figure 1

Open AccessReview
Vaccines against Coronaviruses: The State of the Art
Vaccines 2020, 8(2), 309; https://doi.org/10.3390/vaccines8020309 - 17 Jun 2020
Cited by 6
Abstract
The emerging epidemic caused by the new coronavirus SARS-CoV-2 represents the most important socio-health threat of the 21st century. The high contagiousness of the virus, the strong impact on the health system of the various countries and the absence to date of treatments [...] Read more.
The emerging epidemic caused by the new coronavirus SARS-CoV-2 represents the most important socio-health threat of the 21st century. The high contagiousness of the virus, the strong impact on the health system of the various countries and the absence to date of treatments able to improve the prognosis of the disease make the introduction of a vaccine indispensable, even though there are currently no approved human coronavirus vaccines. The aim of the study is to carry out a review of the medical literature concerning vaccine candidates for the main coronaviruses responsible for human epidemics, including recent advances in the development of a vaccine against COVID-19. This extensive review carried out on the vaccine candidates of the main epidemic coronaviruses of the past has shown that the studies in animal models suggest a high efficacy of potential vaccines in providing protection against viral challenges. Similar human studies have not yet been carried out, as the main trials are aimed at assessing mainly vaccine safety and immunogenicity. Whereas the severe acute respiratory syndrome (SARS-CoV) epidemic ended almost two decades ago and the Middle East respiratory syndrome (MERS-CoV) epidemic is now better controlled, as it is less contagious due to the high lethality of the virus, the current SARS-CoV-2 pandemic represents a problem that is certainly more compelling, which pushes us to accelerate the studies not only for the production of vaccines but also for innovative pharmacological treatments. SARS-CoV-2 vaccines might come too late to affect the first wave of this pandemic, but they might be useful if additional subsequent waves occur or in a post-pandemic perspective in which the virus continues to circulate as a seasonal virus. Full article

Other

Jump to: Research, Review

Open AccessPerspective
The Strange Case of BCG and COVID-19: The Verdict Is Still up in the Air
Vaccines 2020, 8(4), 612; https://doi.org/10.3390/vaccines8040612 - 16 Oct 2020
Cited by 1
Abstract
COVID-19, caused by a novel coronavirus, SARS-CoV-2, contributes significantly to the morbidity and mortality in humans worldwide. In the absence of specific vaccines or therapeutics available, COVID-19 cases are managed empirically with the passive immunity approach and repurposing of drugs used for other [...] Read more.
COVID-19, caused by a novel coronavirus, SARS-CoV-2, contributes significantly to the morbidity and mortality in humans worldwide. In the absence of specific vaccines or therapeutics available, COVID-19 cases are managed empirically with the passive immunity approach and repurposing of drugs used for other conditions. Recently, a concept that bacilli Calmette–Guerin (BCG) vaccination could confer protection against COVID-19 has emerged. The foundation for this widespread attention came from several recent articles, including the one by Miller et al. submitted to MedRxiv, a pre-print server. The authors of this article suggest that a correlation exists between countries with a prolonged national BCG vaccination program and the morbidity/mortality due to COVID-19. Further, clinical BCG vaccination trials are currently ongoing in the Netherlands, Australia, the UK, and Germany with the hope of reducing mortality due to COVID-19. Although BCG vaccination helps protect children against tuberculosis, experimental studies have shown that BCG can also elicit a non-specific immune response against viral and non-mycobacterial infections. Here, we summarize the pros and cons of BCG vaccination and critically analyze the evidence provided for the protective effect of BCG against COVID-19 and highlight the confounding factors in these studies. Full article
Open AccessBrief Report
Prospects of Replication-Deficient Adenovirus Based Vaccine Development against SARS-CoV-2
Vaccines 2020, 8(2), 293; https://doi.org/10.3390/vaccines8020293 - 10 Jun 2020
Cited by 3
Abstract
The current appearance of the new SARS coronavirus 2 (SARS-CoV-2) and it quickly spreading across the world poses a global health emergency. The serious outbreak position is affecting people worldwide and requires rapid measures to be taken by healthcare systems and governments. Vaccinations [...] Read more.
The current appearance of the new SARS coronavirus 2 (SARS-CoV-2) and it quickly spreading across the world poses a global health emergency. The serious outbreak position is affecting people worldwide and requires rapid measures to be taken by healthcare systems and governments. Vaccinations represent the most effective strategy to prevent the epidemic of the virus and to further reduce morbidity and mortality with long-lasting effects. Nevertheless, currently there are no licensed vaccines for the novel coronaviruses. Researchers and clinicians from all over the world are advancing the development of a vaccine against novel human SARS-CoV-2 using various approaches. Herein, we aim to present and discuss the progress and prospects in the field of vaccine research towards SARS-CoV-2 using adenovirus (AdV) replication deficient-based strategies, with a comprehension that may support research and combat this recent world health emergency. Full article
Show Figures

Figure 1

Open AccessBrief Report
A Novel Synonymous Mutation of SARS-CoV-2: Is This Possible to Affect Their Antigenicity and Immunogenicity?
Vaccines 2020, 8(2), 220; https://doi.org/10.3390/vaccines8020220 - 14 May 2020
Cited by 14
Abstract
The S glycoprotein of coronaviruses is important for viral entry and pathogenesis with most variable sequences. Therefore, we analyzed the S gene sequences of SARS-CoV-2 to better understand the antigenicity and immunogenicity of this virus in this study. In phylogenetic analysis, two subtypes [...] Read more.
The S glycoprotein of coronaviruses is important for viral entry and pathogenesis with most variable sequences. Therefore, we analyzed the S gene sequences of SARS-CoV-2 to better understand the antigenicity and immunogenicity of this virus in this study. In phylogenetic analysis, two subtypes (SARS-CoV-2a and -b) were confirmed within SARS-CoV-2 strains. These two subtypes were divided by a novel synonymous mutation of D614G. This may play a crucial role in the evolution of SARS-CoV-2 to evade the host immune system. The region containing this mutation point was confirmed as a B-cell epitope located in the S1 domain, and SARS-CoV-2b strains exhibited severe reduced antigenic indexes compared to SARS-CoV-2a in this area. This may allow these two subtypes to have different antigenicity. If the two subtypes have different serological characteristics, a vaccine for both subtypes will be more effective to prevent COVID-19. Thus, further study is urgently required to confirm the antigenicity of these two subtypes. Full article
Show Figures

Figure 1

Back to TopTop