Special Issue "Remote Sensing for Precision Nitrogen Management"

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing in Agriculture and Vegetation".

Deadline for manuscript submissions: 31 December 2019.

Special Issue Editors

Dr. Yuxin Miao
E-Mail Website
Guest Editor
Precision Agriculture Center, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
Tel. 612-963-1556
Interests: precision agriculture; remote sensing-based precision nitrogen management; combining crop growth modeling and remote sensing for precision crop management; food security and sustainable development
Dr. Raj Khosla
E-Mail Website
Guest Editor
Department of Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO 80523, USA
Interests: precision agriculture; management zone; precision nitrogen management
Dr. David J. Mulla
E-Mail Website
Guest Editor
Precision Agriculture Center, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
Interests: precision agriculture; geospatial modeling and analysis; remote sensing; precision conservation

Special Issue Information

Dear Colleagues,

Nitrogen is the most widely used macro nutrient in the world. Agriculture is a major source of N2O emissions in the biosphere. Precision nitrogen management is an important area of advanced nutrient management as well as precision agriculture for solving problems in food and environmental security for sustainable agricultural and social development. Precision nitrogen management aims to match nitrogen supply with crop N demand in both space and time to ensure high crop yield while increasing N use efficiency and protecting the environment. It is a research area that involves management zone delineation, proximal and remote sensing, crop growth modeling, spatial statistics, variable rate technology, agronomy, soil science, meteorology, plant nutrition and greenhouse gas emission mitigation, etc.

Remote sensing is one of the key supporting technologies for precision agriculture, and advances of proximal and remote sensing technologies have greatly contributed to the development of precision nitrogen management. To help readers keep up with the progresses on the applications of proximal canopy sensors, UAV-based remote sensing, aerial remote sensing and satellite remote sensing in precision nitrogen management of cereal crops, vegetables and fruit trees, etc., we would like to invite you to submit research and review papers on the following topics:

  • Proximal and remote sensing-based non-destructive diagnosis of crop nitrogen status
  • Proximal and remote sensing-based in-season variable rate nitrogen recommendation algorithms and precision management strategies
  • Remote sensing-based site-specific management zone delineation and evaluation for precision nitrogen management
  • Simultaneous diagnosis of crop nitrogen stress and other stress factors (other nutrients, water, disease, insect damage, etc.)
  • Combining remote sensing and crop growth modeling for precision nitrogen management
  • Data fusion of sensing and other related data for precision nitrogen management
  • Integration of sensing technology-based precision nitrogen management with other high yield crop management technologies
  • Evaluation of sensing technology-based precision nitrogen and crop management strategies using field experiments and on-farm trials
  • New sensing technologies for precision nitrogen management

Dr. Yuxin Miao
Dr. Raj Khosla
Dr. David J. Mulla
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Precision nitrogen management
  • Active canopy sensing
  • UAV remote sensing
  • Aerial and satellite remote sensing
  • In-season nitrogen status diagnosis
  • In-season site-specific nitrogen management
  • Nitrogen use efficiency
  • Crop growth modeling
  • Food security
  • Sustainable development
  • Precision agriculture
  • Management zone

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Estimating Nitrogen from Structural Crop Traits at Field Scale—A Novel Approach Versus Spectral Vegetation Indices
Remote Sens. 2019, 11(17), 2066; https://doi.org/10.3390/rs11172066 - 03 Sep 2019
Abstract
A sufficient nitrogen (N) supply is mandatory for healthy crop growth, but negative consequences of N losses into the environment are known. Hence, deeply understanding and monitoring crop growth for an optimized N management is advisable. In this context, remote sensing facilitates the [...] Read more.
A sufficient nitrogen (N) supply is mandatory for healthy crop growth, but negative consequences of N losses into the environment are known. Hence, deeply understanding and monitoring crop growth for an optimized N management is advisable. In this context, remote sensing facilitates the capturing of crop traits. While several studies on estimating biomass from spectral and structural data can be found, N is so far only estimated from spectral features. It is well known that N is negatively related to dry biomass, which, in turn, can be estimated from crop height. Based on this indirect link, the present study aims at estimating N concentration at field scale in a two-step model: first, using crop height to estimate biomass, and second, using the modeled biomass to estimate N concentration. For comparison, N concentration was estimated from spectral data. The data was captured on a spring barley field experiment in two growing seasons. Crop surface height was measured with a terrestrial laser scanner, seven vegetation indices were calculated from field spectrometer measurements, and dry biomass and N concentration were destructively sampled. In the validation, better results were obtained with the models based on structural data (R2 < 0.85) than on spectral data (R2 < 0.70). A brief look at the N concentration of different plant organs showed stronger dependencies on structural data (R2: 0.40–0.81) than on spectral data (R2: 0.18–0.68). Overall, this first study shows the potential of crop-specific across‑season two-step models based on structural data for estimating crop N concentration at field scale. The validity of the models for in-season estimations requires further research. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages
Remote Sens. 2019, 11(16), 1847; https://doi.org/10.3390/rs11161847 - 08 Aug 2019
Abstract
Precision nitrogen (N) management requires an accurate and timely in-season assessment of crop N status. The proximal fluorescence sensor Multiplex®3 is a promising tool for monitoring crop N status. It performs a non-destructive estimation of plant chlorophyll, flavonol, and anthocyanin contents, [...] Read more.
Precision nitrogen (N) management requires an accurate and timely in-season assessment of crop N status. The proximal fluorescence sensor Multiplex®3 is a promising tool for monitoring crop N status. It performs a non-destructive estimation of plant chlorophyll, flavonol, and anthocyanin contents, which are related to plant N status. The objective of this study was to evaluate the potential of proximal fluorescence sensing for N status estimation at different growth stages for rice in cold regions. In 2012 and 2013, paddy rice field experiments with five N supply rates and two varieties were conducted in northeast China. Field samples and fluorescence data were collected in the leaf scale (LS), on-the-go (OG), and above the canopy (AC) modes using Multiplex®3 at the panicle initiation (PI), stem elongation (SE), and heading (HE) stages. The relationships between the Multiplex indices or normalized N sufficient indices (NSI) and five N status indicators (above-ground biomass (AGB), leaf N concentration (LNC), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI)) were evaluated. Results showed that Multiplex measurements taken using the OG mode were more sensitive to rice N status than those made in the other two modes in this study. Most of the measured fluorescence indices, especially the N balance index (NBI), simple fluorescence ratios (SFR), blue–green to far-red fluorescence ratio (BRR_FRF), and flavonol (FLAV) were highly sensitive to N status. Strong relationships between these fluorescence indices and N indicators, especially the LNC, PNC, and NNI were revealed, with coefficients of determination (R2) ranging from 0.40 to 0.78. The N diagnostic results indicated that the normalized N sufficiency index based on NBI under red illumination (NBI_RNSI) and FLAV achieved the highest diagnostic accuracy rate (90%) at the SE and HE stages, respectively, while NBI_RNSI showed the highest diagnostic consistency across growth stages. The study concluded that the Multiplex sensor could be used to reliably estimate N nutritional status for rice in cold regions, especially for the estimation of LNC, PNC, and NNI. The normalized N sufficiency indices based on the Multiplex indices could further improve the accuracy of N nutrition diagnosis by reducing the influences of inter-annual variations and different varieties, as compared with the original Multiplex indices. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Figure 1

Open AccessArticle
Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data
Remote Sens. 2019, 11(15), 1837; https://doi.org/10.3390/rs11151837 - 06 Aug 2019
Abstract
Mid-season nitrogen (N) application in rice crops can maximize yield and profitability. This requires accurate and efficient methods of determining rice N uptake in order to prescribe optimal N amounts for topdressing. This study aims to determine the accuracy of using remotely sensed [...] Read more.
Mid-season nitrogen (N) application in rice crops can maximize yield and profitability. This requires accurate and efficient methods of determining rice N uptake in order to prescribe optimal N amounts for topdressing. This study aims to determine the accuracy of using remotely sensed multispectral data from satellites to predict N uptake of rice at the panicle initiation (PI) growth stage, with a view to providing optimum variable-rate N topdressing prescriptions without needing physical sampling. Field experiments over 4 years, 4–6 N rates, 4 varieties and 2 sites were conducted, with at least 3 replicates of each plot. One WorldView satellite image for each year was acquired, close to the date of PI. Numerous single- and multi-variable models were investigated. Among single-variable models, the square of the NDRE vegetation index was shown to be a good predictor of N uptake (R 2 = 0.75, RMSE = 22.8 kg/ha for data pooled from all years and experiments). For multi-variable models, Lasso regularization was used to ensure an interpretable and compact model was chosen and to avoid over fitting. Combinations of remotely sensed reflectances and spectral indexes as well as variety, climate and management data as input variables for model training achieved R 2 < 0.9 and RMSE < 15 kg/ha for the pooled data set. The ability of remotely sensed data to predict N uptake in new seasons where no physical sample data has yet been obtained was tested. A methodology to extract models that generalize well to new seasons was developed, avoiding model overfitting. Lasso regularization selected four or less input variables, and yielded R 2 of better than 0.67 and RMSE better than 27.4 kg/ha over four test seasons that weren’t used to train the models. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Evaluation of Leaf N Concentration in Winter Wheat Based on Discrete Wavelet Transform Analysis
Remote Sens. 2019, 11(11), 1331; https://doi.org/10.3390/rs11111331 - 03 Jun 2019
Abstract
Leaf nitrogen concentration (LNC) is an important indicator for accurate diagnosis and quantitative evaluation of plant growth status. The objective was to apply a discrete wavelet transform (DWT) analysis in winter wheat for the estimation of LNC based on visible and near-infrared (400–1350 [...] Read more.
Leaf nitrogen concentration (LNC) is an important indicator for accurate diagnosis and quantitative evaluation of plant growth status. The objective was to apply a discrete wavelet transform (DWT) analysis in winter wheat for the estimation of LNC based on visible and near-infrared (400–1350 nm) canopy reflectance spectra. In this paper, in situ LNC data and ground-based hyperspectral canopy reflectance was measured over three years at different sites during the tillering, jointing, booting and filling stages of winter wheat. The DWT analysis was conducted on canopy original spectrum, log-transformed spectrum, first derivative spectrum and continuum removal spectrum, respectively, to obtain approximation coefficients, detail coefficients and energy values to characterize canopy spectra. The quantitative relationships between LNC and characteristic parameters were investigated and compared with models established by sensitive band reflectance and typical spectral indices. The results showed combining log-transformed spectrum and a sym8 wavelet function with partial least squares regression (PLS) based on the approximation coefficients at decomposition level 4 most accurately predicted LNC. This approach could explain 11% more variability in LNC than the best spectral index mSR705 alone, and was more stable in estimating LNC than models based on random forest regression (RF). The results indicated that narrowband reflectance spectroscopy (450–1350 nm) combined with DWT analysis and PLS regression was a promising method for rapid and nondestructive estimation of LNC for winter wheat across a range in growth stages. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Crop Sensor-Based In-Season Nitrogen Management of Wheat with Manure Application
Remote Sens. 2019, 11(9), 1094; https://doi.org/10.3390/rs11091094 - 08 May 2019
Cited by 1
Abstract
It is difficult to predict the crop-available nitrogen (N) from farmyard manures applied to soil. The aim of this study was to assess the usefulness of the proximal sensors, Yara N-TesterTM and RapidScan CS-45, for diagnosing the N nutritional status of wheat [...] Read more.
It is difficult to predict the crop-available nitrogen (N) from farmyard manures applied to soil. The aim of this study was to assess the usefulness of the proximal sensors, Yara N-TesterTM and RapidScan CS-45, for diagnosing the N nutritional status of wheat after the application of manures at sowing. Three annual field trials were established (2014–2015, 2015–2016 and 2016–2017) with three types of fertilizer treatments: dairy slurry (40 t ha−1 before sowing), sheep manure (40 t ha−1 before sowing) and conventional treatment (40 kg N ha−1 at tillering). For each treatment, five different mineral N fertilization doses were applied at stem elongation: 0, 40, 80, 120, and 160 kg N ha−1. The proximal sensing tools were used at stem elongation before the application of mineral N. Normalized values of the proximal sensing look promising for adjusting mineral N application rates at stem elongation. For dairy slurry, when either proximal sensor readings were 60–65% of the reference plants with non-limiting N, the optimum N rate for maximizing yield was 118–128 kg N ha−1. When the readings were 85–90%, the optimum N rate dropped to 100–110 kg N ha−1 for both dairy slurry and conventional treatments. It was difficult to find a clear relationship between sensor readings and yield for sheep manure treatments. Measurements taken with RapidScan C-45 were less time consuming and better represent the spatial variation, as they are taken on the plant canopy. Routine measurements throughout the growing season are particularly needed in climates with variable rainfall. The application of 40 kg N ha−1 at the end of winter is necessary to ensure an optimal N status from the beginning of wheat crop development. These research findings could be used in applicator-mounted sensors to make variable-rate N applications. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content
Remote Sens. 2019, 11(8), 974; https://doi.org/10.3390/rs11080974 - 23 Apr 2019
Abstract
Leaf chlorophyll content (LCC) provides valuable information about the nutrition and photosynthesis statuses of crops. Vegetation index-based methods have been widely used in crop management studies for the non-destructive estimation of LCC using remote sensing technology. However, many published vegetation indices are sensitive [...] Read more.
Leaf chlorophyll content (LCC) provides valuable information about the nutrition and photosynthesis statuses of crops. Vegetation index-based methods have been widely used in crop management studies for the non-destructive estimation of LCC using remote sensing technology. However, many published vegetation indices are sensitive to crop canopy structure, especially the leaf area index (LAI), when crop canopy spectra are used. Herein, to address this issue, we propose four new spectral indices (The red-edge-chlorophyll absorption index (RECAI), the red-edge-chlorophyll absorption index/optimized soil-adjusted vegetation index (RECAI/OSAVI), the red-edge-chlorophyll absorption index/ the triangular vegetation index (RECAI/TVI), and the red-edge-chlorophyll absorption index/the modified triangular vegetation index(RECAI/MTVI2)) and evaluate their performance for LCC retrieval by comparing their results with those of eight published spectral indices that are commonly used to estimate LCC. A total of 456 winter wheat canopy spectral data corresponding to physiological parameters in a wide range of species, growth stages, stress treatments, and growing seasons were collected. Five regression models (linear, power, exponential, polynomial, and logarithmic) were built to estimate LCC in this study. The results indicated that the newly proposed integrated RECAI/TVI exhibited the highest LCC predictive accuracy among all indices, where R2 values increased by more than 13.09% and RMSE values reduced by more than 6.22%. While this index exhibited the best association with LCC (0.708** ≤ r ≤ 0.819**) among all indices, RECAI/TVI exhibited no significant relationship with LAI (0.029 ≤ r ≤ 0.167), making it largely insensitive to LAI changes. In terms of the effects of different field management measures, the LCC predictive accuracy by RECAI/TVI can be influenced by erective winter wheat varieties, low N fertilizer application density, no water application, and early sowing dates. In general, the newly developed integrated RECAI/TVI was sensitive to winter wheat LCC with a reduction in the influence of LAI. This index has strong potential for monitoring winter wheat nitrogen status and precision nitrogen management. However, further studies are required to test this index with more diverse datasets and different crops. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Figure 1

Open AccessArticle
Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages
Remote Sens. 2019, 11(4), 387; https://doi.org/10.3390/rs11040387 - 14 Feb 2019
Cited by 6
Abstract
Predicting the grain yield during early to mid-growth stages is important for initial diagnosis of rice and quantitative regulation of topdressing. In this study, we conducted four experiments using different nitrogen (N) application rates (0–400 kg N∙ha−1) in three Japonica rice [...] Read more.
Predicting the grain yield during early to mid-growth stages is important for initial diagnosis of rice and quantitative regulation of topdressing. In this study, we conducted four experiments using different nitrogen (N) application rates (0–400 kg N∙ha−1) in three Japonica rice cultivars (Wuyunjing24, Ningjing4, and Lianjing7) grown in Jiangsu province, Eastern China, from 2015–2016. Spectral reflectance data were collected multiple times during early to mid-growth stages using an active mounted sensor (RapidScan CS-45, Holland Scientific Inc., Lincoln, NE, USA). Data were then used to calculate optimal vegetation indexes (normalized difference red edge, NDRE; normalized difference vegetation index, NDVI; ratio vegetation index, RVI; red-edge ratio vegetation index, RERVI), which were used to develop a dynamic change model and in-season grain yield prediction model. The NDRE index was more stable than other indexes (NDVI, RVI, RERVI), showing less standard deviation at the same N fertilizer rate. The R2 of the relationships between leaf area index (LAI), plant nitrogen accumulation (PNA), and NDRE also increased compared to other indexes. These findings suggest that NDRE is suitable for analysis of paddy rice N nutrition. According to real-time series changes in NDRE, the resulting dynamic model followed a sigmoid curve, with a coefficient of determination (R2) >0.9 and relative root-mean-square error <5%. Moreover, the feature platform value (saturation value, SV) of the NDRE-based model accurately predicted the differences between treatments and the final grain yield levels. R2 values of the relationship between SV and yield were >0.7. For every 0.1 increase in SV, grain yield increased by 3608.1 kg·ha−1. Overall, our new dynamic model effectively predicted grain yield at stem elongation and booting stages, providing real-time crop N nutrition data for management of N fertilizer topdressing in rice production. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle
Remote Sens. 2018, 10(12), 2026; https://doi.org/10.3390/rs10122026 - 13 Dec 2018
Cited by 5
Abstract
Unmanned aerial vehicle (UAV)-based remote sensing (RS) possesses the significant advantage of being able to efficiently collect images for precision agricultural applications. Although numerous methods have been proposed to monitor crop nitrogen (N) status in recent decades, just how to utilize an appropriate [...] Read more.
Unmanned aerial vehicle (UAV)-based remote sensing (RS) possesses the significant advantage of being able to efficiently collect images for precision agricultural applications. Although numerous methods have been proposed to monitor crop nitrogen (N) status in recent decades, just how to utilize an appropriate modeling algorithm to estimate crop leaf N content (LNC) remains poorly understood, especially based on UAV multispectral imagery. A comparative assessment of different modeling algorithms (i.e., simple and non-parametric modeling algorithms alongside the physical model retrieval method) for winter wheat LNC estimation is presented in this study. Experiments were conducted over two consecutive years and involved different winter wheat varieties, N rates, and planting densities. A five-band multispectral camera (i.e., 490 nm, 550 nm, 671 nm, 700 nm, and 800 nm) was mounted on a UAV to acquire canopy images across five critical growth stages. The results of this study showed that the best-performing vegetation index (VI) was the modified renormalized difference VI (RDVI), which had a determination coefficient (R2) of 0.73 and a root mean square error (RMSE) of 0.38. This method was also characterized by a high processing speed (0.03 s) for model calibration and validation. Among the 13 non-parametric modeling algorithms evaluated here, the random forest (RF) approach performed best, characterized by R2 and RMSE values of 0.79 and 0.33, respectively. This method also had the advantage of full optical spectrum utilization and enabled flexible, non-linear fitting with a fast processing speed (2.3 s). Compared to the other two methods assessed here, the use of a look up table (LUT)-based radiative transfer model (RTM) remained challenging with regard to LNC estimation because of low prediction accuracy (i.e., an R2 value of 0.62 and an RMSE value of 0.46) and slow processing speed. The RF approach is a fast and accurate technique for N estimation based on UAV multispectral imagery. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Remote Estimation of Nitrogen Vertical Distribution by Consideration of Maize Geometry Characteristics
Remote Sens. 2018, 10(12), 1995; https://doi.org/10.3390/rs10121995 - 09 Dec 2018
Abstract
The vertical leaf nitrogen (N) distribution in the crop canopy is considered to be an important adaptive response of crop growth and production. Remote sensing has been widely applied for the determination of a crop’s N status. Some studies have also focused on [...] Read more.
The vertical leaf nitrogen (N) distribution in the crop canopy is considered to be an important adaptive response of crop growth and production. Remote sensing has been widely applied for the determination of a crop’s N status. Some studies have also focused on estimating the vertical leaf N distribution in the crop canopy, but these analyses have rarely considered the plant geometry and its influences on the remote estimation of the N vertical distribution in the crop canopy. In this study, field experiments with three types of maize (Zea mays L.) plant geometry (i.e., horizontal type, intermediate type, and upright type) were conducted to demonstrate how the maize plant geometry influences the remote estimation of N distribution in the vertical canopy (i.e., upper layer, middle layer, and bottom layer) at different growth stages. The results revealed that there were significant differences among the three maize plant geometry types in terms of canopy architecture, vertical distribution of leaf N density (LND, g m−2), and the LND estimates in the leaves of different layers based on canopy hyperspectral reflectance measurements. The upright leaf variety had the highest correlation between the lower-layer LND (R2 = 0.52) and the best simple ratio (SR) index (736, 812), and this index performed well for estimating the upper (R2 = 0.50) and middle (R2 = 0.60) layer LND. However, for the intermediate leaf variety, only 25% of the variation in the lower-layer LND was explained by the best SR index (721, 935). The horizontal leaf variety showed little spectral sensitivity to the lower-layer LND. In addition, the growth stages also affected the remote detection of the lower leaf N status of the canopy, because the canopy reflectance was dominated by the biomass before the 12th leaf stage and by the plant N after this stage. Therefore, we can conclude that a more accurate estimation of the N vertical distribution in the canopy is obtained by canopy hyperspectral reflectance when the maize plants have more upright leaves. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Figure 1

Open AccessArticle
Agronomic and Economic Potential of Vegetation Indices for Rice N Recommendations under Organic and Mineral Fertilization in Mediterranean Regions
Remote Sens. 2018, 10(12), 1908; https://doi.org/10.3390/rs10121908 - 29 Nov 2018
Cited by 1
Abstract
Rice (Oryza sativa L.) farmers in Mediterranean regions usually apply organic or mineral fertilizers before seeding that are supplemented with mineral nitrogen (N) later in the season. In general, the midseason N is applied without consideration of the actual crop N status, [...] Read more.
Rice (Oryza sativa L.) farmers in Mediterranean regions usually apply organic or mineral fertilizers before seeding that are supplemented with mineral nitrogen (N) later in the season. In general, the midseason N is applied without consideration of the actual crop N status, which may lead to over-fertilization and associated environmental problems. Thus, the purpose of this study was to design and evaluate a N recommendation approach using aerial images for Mediterranean paddy rice systems. A two-year rice field experiment was established in northeastern Spain, with different rates of pig slurry (PS) and mineral N fertilizer. Multispectral aerial images were taken at the rice booting stage, and several vegetation indices (VIs) were calculated. The VIs showed strong relationships with yield and the relations significantly differed between the PS and mineral fertilization treatments. The strongest relations with yield were obtained with gMCARINIR, proposed in this study, (R2 = 0.67), GNDVI (R2 = 0.64) and MCARINIR (R2 = 0.64), indicating the importance of including the green band information. The N recommendation approach generated using the VIs information showed a high success (87.5%) in the preliminary evaluation. The economic and environmental analysis showed that this approach provides a useful tool when compared to the usual farmer practices. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Remote Sensing of Leaf and Canopy Nitrogen Status in Winter Wheat (Triticum aestivum L.) Based on N-PROSAIL Model
Remote Sens. 2018, 10(9), 1463; https://doi.org/10.3390/rs10091463 - 13 Sep 2018
Cited by 3
Abstract
Plant nitrogen (N) information has widely been estimated through empirical techniques using hyperspectral data. However, the physical model inversion approach on N spectral response has seldom developed and remains a challenge. In this study, an N-PROSAIL model based on the N-based PROSPECT model [...] Read more.
Plant nitrogen (N) information has widely been estimated through empirical techniques using hyperspectral data. However, the physical model inversion approach on N spectral response has seldom developed and remains a challenge. In this study, an N-PROSAIL model based on the N-based PROSPECT model and the SAIL model canopy model was constructed and used for retrieving crop N status both at leaf and canopy scales. The results show that the third parameter (3rd-par) retrieving strategy (leaf area index (LAI) and leaf N density (LND) optimized where other parameters in the N-PROSAIL model are set at different values at each growth stage) exhibited the highest accuracy for LAI and LND estimation, which resulted in R2 and RMSE values of 0.80 and 0.69, and 0.46 and 21.18 µg·cm−2, respectively. It also showed good results with R2 and RMSE values of 0.75 and 0.38% for leaf N concentration (LNC) and 0.82 and 0.95 g·m−2 for canopy N density (CND), respectively. The N-PROSAIL model retrieving method performed better than the vegetation index regression model (LNC: RMSE = 0.48 − 0.64%; CND: RMSE = 1.26 − 1.78 g·m−2). This study indicates the potential of using the N-PROSAIL model for crop N diagnosis on leaf and canopy scales in wheat. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Analyzing the Effect of Fluorescence Characteristics on Leaf Nitrogen Concentration Estimation
Remote Sens. 2018, 10(9), 1402; https://doi.org/10.3390/rs10091402 - 03 Sep 2018
Cited by 3
Abstract
Leaf nitrogen concentration (LNC) is a significant indicator of crops growth status, which is related to crop yield and photosynthetic efficiency. Laser-induced fluorescence is a promising technology for LNC estimation and has been widely used in remote sensing. The accuracy of LNC monitoring [...] Read more.
Leaf nitrogen concentration (LNC) is a significant indicator of crops growth status, which is related to crop yield and photosynthetic efficiency. Laser-induced fluorescence is a promising technology for LNC estimation and has been widely used in remote sensing. The accuracy of LNC monitoring relies greatly on the selection of fluorescence characteristics and the number of fluorescence characteristics. It would be useful to analyze the performance of fluorescence intensity and ratio characteristics at different wavelengths for LNC estimation. In this study, the fluorescence spectra of paddy rice excited by different excitation light wavelengths (355 nm, 460 nm, and 556 nm) were acquired. The performance of the fluorescence intensity and fluorescence ratio of each band were analyzed in detail based on back-propagation neural network (BPNN) for LNC estimation. At 355 nm and 460 nm excitation wavelengths, the fluorescence characteristics related to LNC were mainly located in the far-red region, and at 556 nm excitation wavelength, the red region being an optimal band. Additionally, the effect of the number of fluorescence characteristics on the accuracy of LNC estimation was analyzed by using principal component analysis combined with BPNN. Results demonstrate that at least two fluorescence spectral features should be selected in the red and far-red regions to estimate LNC and efficiently improve the accuracy of LNC estimation. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Difference and Potential of the Upward and Downward Sun-Induced Chlorophyll Fluorescence on Detecting Leaf Nitrogen Concentration in Wheat
Remote Sens. 2018, 10(8), 1315; https://doi.org/10.3390/rs10081315 - 20 Aug 2018
Cited by 1
Abstract
Precise detection of leaf nitrogen concentration (LNC) is helpful for nutrient diagnosis and fertilization guidance in farm crops. Numerous researchers have estimated LNC with techniques based on reflectance spectra or active chlorophyll fluorescence, which have limitations of low accuracy or small scale in [...] Read more.
Precise detection of leaf nitrogen concentration (LNC) is helpful for nutrient diagnosis and fertilization guidance in farm crops. Numerous researchers have estimated LNC with techniques based on reflectance spectra or active chlorophyll fluorescence, which have limitations of low accuracy or small scale in the field. Given the correlation between chlorophyll and nitrogen contents, the response of sun-induced chlorophyll fluorescence (SIF) to chlorophyll (Chl) content reported in a few papers suggests the feasibility of quantifying LNC using SIF. Few studies have investigated the difference and power of the upward and downward SIF components on monitoring LNC in winter wheat. We conducted two field experiments to evaluate the capacity of SIF to monitor the LNC of winter wheat during the entire growth season and compare the differences of the upward and downward SIF for LNC detection. A FluoWat leaf clip coupled with a ASD spectrometer was used to measure the upward and downward SIF under sunlight. It was found that three (↓FY687, ↑FY687/↑FY739, and ↓FY687/↓FY739) out of the six SIF yield (FY) indices examined were significantly correlated to the LNC (R2 = 0.6, 0.51, 0.75, respectively). The downward SIF yield indices exhibited better performance than the upward FY indices in monitoring the LNC with the ↓FY687/↓FY739 being the best FY index. Moreover, the LNC models based on the three SIF yield indices are insensitive to the chlorophyll content and the leaf mass per area (LMA). These findings suggest the downward SIF should not be neglected for monitoring crop LNC at the leaf scale, although it is more difficult to measure with current instruments. The downward SIF could play an increasingly important role in understanding of the SIF emission for LNC detection at different scales. These results could provide a solid foundation for elucidating the mechanism of SIF for LNC estimation at the canopy scale. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Integrating Airborne Hyperspectral, Topographic, and Soil Data for Estimating Pasture Quality Using Recursive Feature Elimination with Random Forest Regression
Remote Sens. 2018, 10(7), 1117; https://doi.org/10.3390/rs10071117 - 13 Jul 2018
Cited by 10
Abstract
Accurate and efficient monitoring of pasture quality on hill country farm systems is crucial for pasture management and optimizing production. Hyperspectral imaging is a promising tool for mapping a wide range of biophysical and biochemical properties of vegetation from leaf to canopy scale. [...] Read more.
Accurate and efficient monitoring of pasture quality on hill country farm systems is crucial for pasture management and optimizing production. Hyperspectral imaging is a promising tool for mapping a wide range of biophysical and biochemical properties of vegetation from leaf to canopy scale. In this study, the potential of high spatial resolution and airborne hyperspectral imaging for predicting crude protein (CP) and metabolizable energy (ME) in heterogeneous hill country farm was investigated. Regression models were developed between measured pasture quality values and hyperspectral data using random forest regression (RF). The results proved that pasture quality could be predicted with hyperspectral data alone; however, accuracy was improved after combining the hyperspectral data with environmental data (elevation, slope angle, slope aspect, and soil type) where the prediction accuracy for CP was R2CV (cross-validated coefficient of determination) = 0.70, RMSECV (cross-validated root mean square error) = 2.06%, RPDCV (cross-validated ratio to prediction deviation) = 1.82 and ME: R2CV = 0.75, RMSECV = 0.65 MJ/kg DM, RPDCV = 2.11. Interestingly, the accuracy was further out-performed by considering important hyperspectral and environmental variables using RF combined with recursive feature elimination (RFE) (CP: R2CV = 0.80, RMSECV = 1.68%, RPDCV = 2.23; ME: R2CV = 0.78, RMSECV = 0.61 MJ/kg DM, RPDCV = 2.19). Similar performance trends were noticed with validation data. Utilizing the best model, spatial pasture quality maps were created across the farm. Overall, this study showed the potential of airborne hyperspectral data for producing accurate pasture quality maps, which will help farm managers to optimize decisions to improve environmental and economic benefits. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Open AccessArticle
Evaluation of RGB, Color-Infrared and Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice
Remote Sens. 2018, 10(6), 824; https://doi.org/10.3390/rs10060824 - 25 May 2018
Cited by 10
Abstract
Unmanned aerial system (UAS)-based remote sensing is one promising technique for precision crop management, but few studies have reported the applications of such systems on nitrogen (N) estimation with multiple sensors in rice (Oryza sativa L.). This study aims to evaluate three [...] Read more.
Unmanned aerial system (UAS)-based remote sensing is one promising technique for precision crop management, but few studies have reported the applications of such systems on nitrogen (N) estimation with multiple sensors in rice (Oryza sativa L.). This study aims to evaluate three sensors (RGB, color-infrared (CIR) and multispectral (MS) cameras) onboard UAS for the estimation of N status at individual stages and their combination with the field data collected from a two-year rice experiment. The experiments were conducted in 2015 and 2016, involving different N rates, planting densities and rice cultivars, with three replicates. An Oktokopter UAS was used to acquire aerial photography at early growth stages (from tillering to booting) and field samplings were taken at a near date. Two color indices (normalized excess green index (NExG), and normalized green red difference index (NGRDI)), two near infrared vegetation indices (green normalized difference vegetation index (GNDVI), and enhanced NDVI (ENDVI)) and two red edge vegetation indices (red edge chlorophyll index (CIred edge), and DATT) were used to evaluate the capability of these three sensors in estimating leaf nitrogen accumulation (LNA) and plant nitrogen accumulation (PNA) in rice. The results demonstrated that the red edge vegetation indices derived from MS images produced the highest estimation accuracy for LNA (R2: 0.79–0.81, root mean squared error (RMSE): 1.43–1.45 g m−2) and PNA (R2: 0.81–0.84, RMSE: 2.27–2.38 g m−2). The GNDVI from CIR images yielded a moderate estimation accuracy with an all-stage model. Color indices from RGB images exhibited satisfactory performance for the pooled dataset of the tillering and jointing stages. Compared with the counterpart indices from the RGB and CIR images, the indices from the MS images performed better in most cases. These results may set strong foundations for the development of UAS-based rice growth monitoring systems, providing useful information for the real-time decision making on crop N management. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Nitrogen Management)
Show Figures

Graphical abstract

Back to TopTop