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Abstract: Plant nitrogen (N) information has widely been estimated through empirical techniques
using hyperspectral data. However, the physical model inversion approach on N spectral response
has seldom developed and remains a challenge. In this study, an N-PROSAIL model based on
the N-based PROSPECT model and the SAIL model canopy model was constructed and used for
retrieving crop N status both at leaf and canopy scales. The results show that the third parameter
(3rd-par) retrieving strategy (leaf area index (LAI) and leaf N density (LND) optimized where other
parameters in the N-PROSAIL model are set at different values at each growth stage) exhibited the
highest accuracy for LAI and LND estimation, which resulted in R2 and RMSE values of 0.80 and
0.69, and 0.46 and 21.18 µg·cm−2, respectively. It also showed good results with R2 and RMSE values
of 0.75 and 0.38% for leaf N concentration (LNC) and 0.82 and 0.95 g·m−2 for canopy N density
(CND), respectively. The N-PROSAIL model retrieving method performed better than the vegetation
index regression model (LNC: RMSE = 0.48 − 0.64%; CND: RMSE = 1.26 − 1.78 g·m−2). This study
indicates the potential of using the N-PROSAIL model for crop N diagnosis on leaf and canopy scales
in wheat.

Keywords: leaf nitrogen concentration; canopy nitrogen density; radiative transfer model; hyperspectral;
winter wheat

1. Introduction

Nitrogen (N) is a critical nutrient element for maintaining photosynthesis, enhancing production,
and improving grain quality in crops, but the excess use of N fertilizer also results in a series of plant
and environmental problems (e.g., vigorous growth, and eutrophication) [1,2]. Precision farming,
which considers the crop spatial N distribution, plays an important role in solving these problems,
whereby the accurate crop N estimation by remote sensing technology has the potential to precisely
manage N by supplying a crop’s N requirement at the right place and right time [3,4].
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Various sensitive spectral features and vegetation indices have been analyzed for crop N estimation.
Kokaly proposed that leaf N concentration (LNC, %) in rice can be estimated by two reflectance
absorptions at 2054 nm and 2172 nm [5]. Niu et al. showed that fresh LNC could be estimated using first
derivative reflectance spectrum at 2120 nm and 1120 nm [6]. Cho and Skidmore reported on extracting
two optimal red edge region equations (REP = − (c1 − c2)/(m1 − m2), where c1 and c2 are the intercepts
of a far-red line connected between 679.65 and 694.30 nm, and near-infrared line connected between
732.46 and 760.41 nm or 723.64 and 760.41 nm, respectively; m1 and m2 are the corresponding slope of
c1 and c2, respectively) with high N sensitivity [7]. Previous studies demonstrated that spectral indices
have a high correlation with crop N status [8–16], and many spectral indices centered on crop N were
proposed. Normalized Difference N Index (NDNI = [log(1/R1510) − log(1/R1680)]/[log(1/R1510) +
log(1/R1680)] was used to estimate LNC in native shrub vegetation [9]. Elshikha et al. presented the
Canopy Chlorophyll Content Index [CCCI = (NDRE − NDREmin)/(NDREmax − NDREmin), where
NDRE = (R790 − R720)/(R790 + R720)] as an effective indicator to monitor cotton N when the canopy
cover reached above 30% [17]. Yao et al. found the model for canopy N density (CND, g·m-2)
estimation based on NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD720), and RSI (FD725, FD516)
performed well in wheat [15]. Chen et al. developed a new index named Double-peak Canopy N
Index [DCNI = (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03)] to estimate plant N concentration
(PNC) in corn and wheat [13]. Feng et al. created a Water Resistance N Index [WRNI = (R735 − R720)
× R900/Rmin(930-980)/(R735 + R720)] to improve the accuracy of the LNC model by minimizing water
effects at different growth stages [16].

Moreover, the application of artificial intelligence methods in crop N estimation has been reported
in many recent studies and has been proved to be a better predictor than using only sensitive spectral
features or vegetation indices [3,4,18–24]. Among these, Hansen et al., Ecarnot et al., and Li et al.
showed that partial least square regression (PLSR) could accurately predict LNC in winter wheat and
winter oilseed rape [18–20]. Miphokasap et al. indicated that estimaing PNC by stepwise multiple
linear regression (SMLR) performed a higher estimation than the model by vegetation indices [4].
Zhang et al. demonstrated that an artificial neural network (ANN) improved the prediction of LNC
with consistently higher R2 values, and was better than that by SMLR [21]. Xu et al. proposed that
the optimal combination principle (OCP) method to monitor LNC in barley would exhibit better
performance than the vegetation indices methods [22,23]. Yao et al. and Li et al. compared the method
of SMLR, PLSR, ANN, and support vector machines regression (SVR), to monitor LNC, and showed
PLSR and SVR to be preferred choices for estimating LNC, and ANN was also recommended when
sufficient sample size was available [1,24].

Much research on crop N estimation has been reported, and some results were satisfactory.
However, a statistical relationship between spectral information and crop N status cannot be expected
everywhere and every time, even for a particular sensor [25,26]. The physical model inversion
approach on N spectral response has rarely been developed, except for an N-based PROSPECT model
(N-PROSPECT) which was extended from a PROSPECT model by replacing the specific absorption
coefficients of chlorophyll in the model with equivalent N absorption coefficients, and which could
accurately simulate and retrieve leaf N density (LND) at the leaf scale [27]. Thus, crop N status both at
leaf and canopy scales could be retrieved through integrating the N-PROSPECT model and the SAIL
canopy model [28], to be defined as the N-PROSAIL model in this study. In addition, an ill-posed
problem, also called inaccurate inversion, existed and is unavoidable in model parameters inversion,
which could be attributed to: (1) multiple solutions in the process of the inversion and (2) uncertainties
from measurements and model assumptions [25,26]. Using prior information has been demonstrated
as a very efficient solution to this problem [29,30].

To develop an N estimation model based on physical model and explore the suitable strategies for
estimating leaf and canopy N status, the objectives of this research were: (1) to develop the N-PROSAIL
model to simulate canopy reflectance responses to leaf N density (LND); (2) to assess N status both
at leaf and canopy scales, i.e., LNC and canopy N density (CND, g·m−2 soil), in winter wheat using
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the N-PROSAIL model; (3) to reduce the ill-posed inversion and improve the accuracy of related
N variables by setting prior parameters values in the N-PROSAIL model at different growth stages;
and (4) to evaluate the performance of the N-PROSAIL model method by comparing it with LNC and
CND estimated by vegetation index methods.

2. Materials and Methods

2.1. Experimental Design

The experiments were conducted over four growing seasons, 2012–2013, 2013–2014, 2014–2015,
and 2015–2016, at the Xiaotangshan National Experimental Station for Precision Agriculture, (40.17◦N,
116.43◦E) in Beijing, China (Figure 1). The test variables included various cultivars, different N
fertilization rates and irrigation amounts (Table 1). Experiment (Exp.) 1 was carried out in 2012–2013
as a completely randomized design with two replications of four wheat cultivars and four N fertilizer
applications rates. Exp. 2 and 3 were conducted in 2013–2015 with an orthogonal experimental design
with three replications of two wheat cultivars, four N fertilizer applications rates, and three irrigation
amounts. Exp. 4 was designed in 2015–2016 as a completely randomized design with three replications
of two wheat cultivars and four N fertilizer applications rates. Other management procedures such
as pest management, weed control, and phosphate and potassium fertilizer followed local standard
practices for winter wheat production.
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Table 1. Summary of cultivar, soil characteristics and treatments for the four experiments.

No. Season Cultivar Treatments Dataset

Exp. 1 2012–2013 Nongda211, Zhongmai175,
Jing9843, Zhongyou206

N rate (kg N ha−1):
0, 110, 220, 440

Calibration

Exp. 2 2013–2014 Jing9843, Zhongmai175

N rate (kg N ha−1):
0, 90, 180, 270;
Irrigation rate

(mm):
0, 146, 292

Calibration

Exp. 3 2014–2015 Jing9843, Zhongmai175

N rate (kg N ha−1):
0, 90, 180, 270;
Irrigation rate

(mm):
0, 192, 384

Validation

Exp. 4 2015–2016 Lunxuan167, Jingdong18 N rate (kg N ha−1):
18, 90, 180, 270;

Calibration
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2.2. Data Acquisition

2.2.1. Canopy Spectral Data

Canopy hyperspectral reflectances were obtained at four key growth stages (Zadoks growth stage:
31, 47, 65, 75 of winter wheat) [31] (Table 2). Canopy reflectances were measured by an ASD FieldSpec
Handheld spectrometer (Analytical Spectral Devices Inc., USA) with a spectral range of 350–2500 nm.
Under clear sky conditions between 10:00 and 14:00 Beijing time, the spectrometer was held at a height
of 1.0 m above the canopy to ensure the same corresponding at different growth stages. A 40 cm by
40 cm BaSO4 calibration panel served as a black, baseline reflectance. To reduce the possible effects of
sky and field conditions, spectral measurements were taken at four sites in each plot and then averaged
to represent the canopy reflectance of each plot. Vegetation and panel radiance measurements were
taken as the average of 20 scans at an optimized integration time, with a dark current correction for
each spectrometry measurement. A panel radiance measurement was taken before and after each
vegetation measurement by two scans. Bare soil refelectance was also acquired at each growth period
so that it could be used as the input of the N-PROSAIL model.

Table 2. List of acquired experiment data in the four wheat experiments.

Growth Stage Zadoks Date No. LAI Cm LND LNC CND Spectral

Exp. 1: 2012–2013

Stem elongation 31 23 Apr. 32 X X X X X –
Booting 47 6 May 32 X X X X X X
Anthesis 65 19 May 32 X X X X X X

Milk development 75 1 Jun. 32 X X X X X X

Exp. 2: 2013–2014

Stem elongation 33 11 Apr. 48 X X X X X X
Booting 45 20 Apr. 48 X X X X X X
Anthesis 65 7 May 48 X X X X X X

Milk development 75 20 May 48 X X X X X X

Exp. 3: 2014–2015

Stem elongation 31 14 Apr. 48 X X X X X X
Booting 47 26 Apr. 48 X X X X X X
Anthesis 65 12 May 48 X X X X X X

Milk development 75 26 May 48 X X X X X X

Exp. 4: 2015–2016

Stem elongation 31 15 Apr. 24 X X X X X X
Booting 47 29 Apr. 24 X X X X X X
Anthesis 65 11 May 24 X X X X X X

Milk development 75 26 May 24 X X X X X X

2.2.2. Plant Measurements

The aboveground vegetation at spectral measurement positions was collected immediately by
randomly cutting 0.25 m2 in each plot, and the number of tillers counted. Then, plant samples of
20 representative wheat tillers were randomly selected from the collected cut plants. All green leaves
were separated from the stems. A laser leaf area meter (CI-203, CID Bio-Science Inc., WA, USA)
was used to measure the leaf area, and electronic scales (±0.01 g) and drying oven were used to
get the leaf dry mass, wet matter weight and dry matter weight (Cm, g·m−2) [26]. Equivalent water
thickness (Cw, g·cm−2 or cm) was calculated based on wet matter weight and dry matter weight [32].
A Carlo-Erba NA 1500 dry combustion analyzer (Carlo Erba, Milan, Italy) [33] was used to measure
leaf N concentration (LNC, %). Finally, leaf N density (LND, µg·cm−2 leaves) was calculated as the
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LNC multiplied by the Cm, and canopy N density (CND, g·m−2 soil) was acquired by leaf area index
(LAI) multiplied by LND [27,34].

2.3. Model and Methods

2.3.1. Inversion Procedure of LNC and CND Estimation

The inversion procedure of LNC and CND estimation with the N-PROSAIL model is shown in
Figure 2. Specific steps were as follows:
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the N-PROSAIL model and the Shuffled Complex Evolution method developed at the University of
Arizona (SCE-UA) method.

(1) Prior parameters initialization: parameters in the N-PROSAIL model (see Section 2.3.2) were
initialized and simulated references can be simulated based on these set parameters. Three strategies
of parameter (par) setting were tested and are as follows:

(i) 1st-par: LAI, LND and Cm were optimized and the other six parameters in the N-PROSAIL
model (Table 3) were set as fixed values in the whole growth period;

(ii) 2nd-par: LAI, LND and Cm were optimized and the other six parameters in the N-PROSAIL
model (Table 3) were set as fixed values at each growth stage;

(iii) 3rd-par: LAI and LND were optimized and Cm was also set as fixed values at each growth
stage since it has low variation in specific crop cultivar at one growth stage [35,36]. The other six
parameters in the N-PROSAIL model were set as 2nd-par.

(2) Vegetation indices calculation: simulated and measured vegetation indices (see Section 2.3.3)
were computed and the optimal vegetation indices correlative with LAI, LND and Cm were chosen to
construct cost function in optimization method.

(3) SCE-UA optimization: the SCE-UA method (see Section 2.3.4) was used to optimize parameters
in the N-PROSAIL model. Parameters of the SCE-UA method were set and parameters in the
N-PROSAIL model were updated until the number of optimization iterations was more than the
maximum number of trials (maxn) allowed before optimization was terminated.

(4) Validation: the end LAI, LND and Cm were considered as optimized values and they were used
to calculate LNC and CND. Three strategies were validated by comparing measured and simulated
values. In addition, the inversion performance by the N-PROSAIL model was compared with LNC
and CND estimation modeled by vegetation indices.
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Table 3. Specific ranges and setting for input parameters in the N-PROSAIL model.

Parameters 1st-par Setting
2nd-par/3rd-par Setting

Z.S. 3.1 Z.S. 47 Z.S. 65 Z.S. 75

Leaf N density (LND, µg·cm−2) 60–230 75–230 70–200 80–200 60–200
Leaf area index (LAI, m2·m−2) 0.4–8.5 1.5–6.5 1.0–8.5 0.5–7.0 0.3–4.5

Dry matter content (Cm, g·m−2) 40 23–60 #; 40 ## 28–45 #; 36 ## 30–54 #; 39 ## 30–70 #; 46 ##

Equivalent water content (Cw, cm) 0.010 0.0138 0.0127 0.0098 0.0085
Leaf structure parameter (Ns) 1.5 1.24 1.07 1.03 1.16

Leaf inclination distribution (LID, deg) 50 50.5 47.2 45.0 43.8
Soil brightness parameter (Rsoil) 0.44 0.49 0.73 0.62 0.35

Hot spot parameter (SL) 0.15 0.24 0.10 0.12 0.21
Solar zenith angle (θs, deg) 45 30 25 22 18

# The ranges of Cm at the 2nd-par setting according to calibration dataset; ## the ranges of Cm at the 3rd-par setting
according to calibration dataset.

2.3.2. The N-PROSAIL Model

The N-PROSAIL model is a combination of the N-PROSPECT leaf model [27] and SAILH canopy
model [28]. At the leaf scale, PROSPECT uses a leaf structure parameter and leaf biochemical
contents to simulate directional-hemispherical reflectance and transmittance of various leaves [37].
The N-PROSPECT model was developed from the PROSPECT model by replacing the specific
absorption coefficients of chlorophyll in the PROSPECT model with equivalent N absorption
coefficients [27,37]. LNC can be estimated according to LND and Cm. At canopy scale, SAILH considers
canopy structures (LAI, leaf angle distribution (θs)), soil brightness, and other angle information to
generate canopy reflectance [28]. LAI can be retrieved according to the SAIL model. Then, CND
can be calculated by multiplying LAI and LND. During the inversion of the N-PROSAIL model to
retrieve crop parameters, nine parameters needed to be determined (Table 3). These parameters were
determined at different growth stages. LAI and LND were the main retrieval parameters and they were
given intervals based on calibration dataset. Cw, Cm and Soil brightness parameter (Rsoil) values were
obtained by averaging measured values at different growth stages. The solar zenith angle (θs) was
calculated for the time in the experiment when the hyperspectral data was measured. Leaf structure
parameter (Ns), hot spot parameter (SL) and leaf inclination distribution (LID) values were firstly
optimized by the SCE-UA method using the 2012–2013, 2013–2014 and 2015–2016 wheat experiment
data, where parameters of LAI, LND, Cw, Cm, Rsoil, θs were known inputs. Then the mean values of
Ns, LID at different growth stages were the final results. Finally, we got the parameter set of Cw, Cm,
Rsoil, θs, Ns, SL and LID at each growth stage, respectively (Table 3).

2.3.3. Selection of Spectral Index

Fifteen vegetation indices correlated with agronomic parameters in previous results were
calculated using the equations listed in Table 4. Using these vegetation indices has the following two
purposes. (1) Selecting the best vegetation index correlation with LAI, LND and Cm to establish the
cost function, an equation to evaluate the consistency between simulated and measured target, in the
N-PROSAIL model (see Section 2.3.4). (2) Establishing regression equations of LNC and CND, which
were used to validate the inversion performance using the N-PROSAIL model.

2.3.4. SCE-UA Algorithm for LNC and CND Estimation

The SCE-UA method (the abbreviation for the Shuffled Complex Evolution method developed
at the University of Arizona) proposed by Duan et al. is a general purpose global optimization
program [50]. The method has the advantages of search efficiency at high-parameter dimensionality,
convergence speed and computational efficiency, and global searching stability [51,52], and it has
been proved to be a useful and effective optimization method in past studies [53–55]. Duan et al. [51]
and Wang et al. [54] give a detailed description of the steps of the SCE-UA method. There are many
parameters in the SCE-UA method, but most of them were set as default in the method. The number
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of complexes in a sample population (ngs) and the maximum number of trials (maxn) were determined
by the actual condition and they are 2 and 1000 in this study, respectively [54]. The cost function used
to compare simulated with measured vegetation indices in this study was selected as follows:

J =
N

∑
i=1

√
(VImi − VIsi)

2

VImi
(1)

where J is the value of cost function and N is the determined number of vegetation indices. VIm and
VIs are the measured vegetation indices and simulated vegetation indices by the N-PROSAIL model,
respectively. In this study, three vegetation indices respectively correlated with LAI, LND, and Cm,
were selected into the cost function. In the process of iterative inversion, the minimum of J value (minJ)
was given as 5% to avoid model overfitting. Thus, the terminal condition happens when the iterative
number is larger than maxn or the J value is less than minJ.

Table 4. Summary of vegetation indices studied for the N-PROSAIL inversion and N estimation.

Vegetation Index Formulation Reference

CIred edge (R750/R720) − 1 Gitelson et al. [38]
GNDVI (R750 − R550)/(R750 + R550) Baret et al. [39]

MCARI/MTVI2

MCARI/MTVI2;
MCARI: (R700 − R670 − 0.2(R700 − R550))(R700/R670);

MTVI2: 0.5(1.2(R800−R500)-2.5(R670 − R550))/
sqrt (2(R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5)

Eitel et al. [40]

mND705 (R750 - R705)/(R750 + R705 − 2R445) Sims et al. [41]
MSR (R800/R670 − 1)/sqrt(R800/R670 + 1) Chen [42]

ND705 (R750 − R705)/(R750 + R705) Sims et al. [41]
NDVI (R890 − R670)/(R890 + R670) Pearson et al. [43]

NDLMA (R2260 − R1490)/(R2260 + R1490) Le Maire et al. [44]
DCNI (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) Chen et al. [13]

WDRVI (0.1R890 − R670)/(0.1R890 + R670) Gitelson et al. [45]
sLAIDI s(R1050 − R1250)/(R1050 + R1250), s = 5 Delalieux et al. [46]

GI R551/R677 Zarco-Tejada et al. [47]
SPVI 0.4(3.7(R800 − R670) − 1.2abs(R550 − R670)) Vincini et al. [48]

NDVIcanste (R760 − R708)/(R760 + R708) Steddom et al. [49]
NDRE (R790 − R720)/(R790 + R720) Fitzgerald et al. [12]

2.3.5. Statistical Analysis

Data collected from 2012–2013, 2013–2014, and 2015–2016 (n = 384) were mainly used for analyzing
the correlation between vegetation indices and agronomic variables, calibrating the parameters of
N-PROSAIL model, and developing the regression models by vegetation indices. Data collected from
2014–2015 (n = 192) were used to validate the estimating performance by N-PROSAIL model and
regression models.

Pearson Correlations (r) between vegetation indices and agronomic variables (LAI, LND, LNC,
and CND) were analyzed using Microsoft Office Excel (Microsoft Corporation, Washington, DC, USA).
The determination coefficient (R2) and root mean square error (RMSE) were used to test the general
performance of different models in this study. All calculations were made using the MATLAB (v2007,
MathWorks Inc., Natick, MA, USA), and all graphs were made using the R statistical software RStudio
(v1.0.44, RStudio Inc., Boston, MA, USA).

3. Results

3.1. Correlations among LAI, Cm, LND, LNC, and CND

Correlation coefficients between agronomic variables were analyzed using the calibration set
(Table 5). The results showed highly significant differences (p-value < 0.01) between agronomic
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variables, but correlation (r) values showed high differences. CND had the highest correlation with
LAI and LND, with r values of 0.90 and 0.84, respectively. LND calculated from LNC showed a
strong correlation (r = 0.73) with LNC, while LAI also demonstrated a high correlation with LNC
(r = 0.66) although the two variables were acquired separately. Cm exhibited negative correlations
with LAI, LNC, and CND and a positive correlation with LND, with r values of −0.55, −0.19, −0.30,
and 0.45, respectively.

Table 5. Correlations between agronomic variables (n = 384).

Variable LAI Cm LND LNC

Cm −0.55 **
LND 0.22 ** 0.45 **
LNC 0.66 ** -0.19 ** 0.73 **
CND 0.90 ** -0.30 ** 0.52 ** 0.84 **

** Model significance at the 0.01 probability level (p < 0.01).

3.2. Correlations between Agronomic Variables and Vegetation Indices

Fifteen vegetation indices correlated with agronomic values were analyzed (Table 6). The results
showed that all spectral indices were highly significantly related to LAI (p-value < 0.01) except NDLMA

which had a correlation significant at the 0.05 level. The fourteen spectral indices except DCNI had
correlations greater than 0.68, and MSR had the highest correlation with LAI, with r value of 0.80.
Correlation coefficients between Cm and the spectral indices showed that fifteen vegetation indices,
except DCNI, indicated highly significant differences (p-values < 0.01), but the absolute r values were
only from 0.14 to 0.35, which were lower than the r values between LAI and the corresponding spectral
indices. All spectral indices were highly significantly related to LND (p-value < 0.01). The maximum
and minimum correlations were with MCARI/MTVI2 and NDLMA, with r values of −0.56 and −0.19,
respectively. According to the correlations analysis, MSR, GI, and MCARI/MTVI2 were first used to
develop the cost function in the N-PROSAIL model.

Table 6. Correlations between agronomic variables and vegetation indices (n = 384).

Variable LAI Cm LND LNC CND

CIred edge 0.76 ** −0.22 ** 0.49 ** 0.70 ** 0.81 **
GNDVI 0.77 ** −0.21 ** 0.49 ** 0.70 ** 0.79 **

MCARI/MTVI2 −0.69 ** 0.14 ** −0.56 ** −0.71 ** −0.75 **
mND705 0.74 ** −0.21 ** 0.52 ** 0.73 ** 0.78 **

MSR 0.80 ** −0.28 ** 0.41 ** 0.67 ** 0.81 **
ND705 0.76 ** −0.23 ** 0.50 ** 0.71 ** 0.79 **
NDVI 0.74 ** −0.23 ** 0.47 ** 0.68 ** 0.75 **

NDLMA 0.12* −0.26 ** −0.19 ** 0.00 # 0.06 #

DCNI 0.40 ** −0.01 # 0.45 ** 0.48 ** 0.49 **
WDRVI 0.79 ** −0.27 ** 0.44 ** 0.68 ** 0.80 **
sLAIDI 0.68 ** −0.20 ** 0.38 ** 0.56 ** 0.69 **

GI 0.79 ** −0.35 ** 0.30 ** 0.61 ** 0.76 **
SPVI 0.79 ** −0.28 ** 0.44 ** 0.71 ** 0.82 **

NDVIcanste 0.76 ** −0.22 ** 0.51 ** 0.72 ** 0.79 **
NDRE 0.74 ** −0.19 ** 0.52 ** 0.71 ** 0.79 **

* Model significance at the 0.05 probability level (p < 0.05); ** Model significance at the 0.01 probability level
(p < 0.01); # Model with no significance.

Correlations of LNC and CND to the fifteen vegetation indices were also analyzed (Table 6).
The results showed that all vegetation indices, expect NDLMA, were identified as significantly correlated
with LNC and CND, respectively. In particular, CIred edge, GNDVI, MCARI/MTVI2, mND705, ND705,
SPVI, NDVIcanste, and NDRE showed relatively higher correlations with LNC (r ≥ 0.70) than the
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others, while CIred edge, GNDVI, MSR, ND705, WDRVI, SPVI, NDVIcanste, and NDRE exhibited higher
correlations with CND (r ≥ 0.79) than the others. Therefore, these vegetation indices could be used to
further establish regression models with the purpose of comparing and evaluating the performance of
LNC and CND estimation using the N-PROSAIL model.

3.3. LAI, LND, and Cm Estimation Using the N-PROSAIL Model Inversion

The N-PROSAIL model using the SCE-UA method was first applied to retrieve LAI, Cm, and LND
in this study. Three parameter settings, 1st-par setting, 2nd-par setting, and 3rd-par setting, were tried
in this process in order to get the best estimation of LNC and CND. The retrieved results of each
agronomic variable with each parameter setting are shown in Figure 3 and Table 7.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 19 
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Figure 3. Comparison of measured and estimated values of leaf area index (LAI) (a–c), Cm (d–f),
and LND (g–i) based on the N-PROSAIL model in winter wheat across the calibration set.

The results showed that a high consistency between the measured LAI and simulated LAI by the
N-PROSAIL model inversion with the three parameter setting (Figure 3a–c). At different growth stages,
the R2 and RMSE values between the simulated LAI and measured LAI for the 1st-par setting, the
2nd-par setting, and the 3rd-par setting ranged from 0.45–0.69 and 0.56–0.93, 0.45–0.68 and 0.61–1.46,
and 0.59–0.70 and 0.55–0.88, respectively (Table 7). The 3rd-par setting exhibited a relatively higher
R2 and lower RMSE than the other two parameter settings. The relationships between the simulated
and measured LAIs at all growth stages were analyzed together, and the results showed that LAI
estimation by the N-PROSAIL model inversion with the 3rd-par setting (R2 = 0.75 and RMSE = 0.73)
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was superior to the LAI estimation with the 1st-par setting (R2 = 0.67 and RMSE = 0.74) and the 2nd-par
setting (R2 = 0.67 and RMSE = 1.08). The independent data of 2014–2015 was used to test the estimation
performance, and LAI estimation with the 3rd-par setting (R2 = 0.80 and RMSE = 0.69) appeared stable
compared with LAI estimation with the 1st-par setting (R2 = 0.81 and RMSE = 0.64) and the 2nd-par
setting (R2 = 0.76 and RMSE = 0.93). These results indicated that the 3rd-par setting to retrieve LAI
had the best estimation accuracy.

Table 7. Comparison of different agronomic parameters estimation with different parameter setting.

Parameter
Setting

Statistical
Categories No.

LAI (m2·m−2) Cm (g·m−2) LND (µg·cm−2) LNC (%) CND (g·m−2)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1st-par

Z.S.31 72 0.45 ** 0.76 0.02 # 26.43 0.29 ** 42.24 0.00 # 1.10 0.36 ** 1.66
Z.S.47 104 0.56 ** 0.93 0.07 # 25.50 0.48 ** 70.07 0.49 ** 1.99 0.69 ** 3.19
Z.S.65 104 0.69 ** 0.66 0.00 # 21.84 0.42 ** 64.42 0.47 ** 2.32 0.74 ** 2.61
Z.S.75 104 0.67 ** 0.56 0.00 # 21.86 0.25 ** 48.33 0.11 ** 0.64 0.68 ** 1.78

Calibration 384 0.67 ** 0.74 0.00 # 23.79 0.30 ** 58.49 0.21 ** 1.69 0.66 ** 2.45
Validation 192 0.76 ** 0.93 0.00 # 27.93 0.34 ** 62.86 0.18 ** 1.23 0.76 ** 1.47

2nd-par

Z.S.31 72 0.45 ** 0.82 0.00 # 18.51 0.34 ** 18.53 0.03 # 1.24 0.20 ** 2.16
Z.S.47 104 0.50 ** 1.46 0.06 # 8.21 0.61 ** 18.60 0.38 ** 0.52 0.68 ** 2.57
Z.S.65 104 0.68 ** 1.15 0.04 # 11.85 0.51 ** 17.57 0.21 ** 0.65 0.73 ** 2.15
Z.S.75 104 0.67 ** 0.61 0.00 # 22.68 0.25 ** 26.55 0.02 # 1.00 0.68 ** 1.24

Calibration 384 0.67 ** 1.08 0.05 # 16.12 0.45 ** 20.80 0.14 ** 0.87 0.67 ** 2.08
Validation 192 0.81 ** 0.64 0.18 ** 18.50 0.39 ** 24.15 0.51 ** 0.94 0.82 ** 1.03

3rd-par

Z.S.31 72 0.59 ** 0.57 0.00 # 4.81 0.57 ** 15.16 0.34 ** 0.41 0.44 ** 1.31
Z.S.47 104 0.67 ** 0.88 0.00 # 6.35 0.65 ** 17.29 0.64 ** 0.65 0.76 ** 1.52
Z.S.65 104 0.70 ** 0.81 0.00 # 6.09 0.56 ** 16.14 0.74 ** 0.47 0.76 ** 1.40
Z.S.75 104 0.66 ** 0.55 0.00 # 6.64 0.48 ** 20.08 0.67 ** 0.30 0.69 ** 1.00

Calibration 384 0.75 ** 0.73 0.13 ** 6.10 0.59 ** 17.43 0.62 ** 0.48 0.75 ** 1.32
Validation 192 0.80 ** 0.69 0.47 ** 8.19 0.46 ** 21.18 0.75 ** 0.38 0.82 ** 0.95

* Model significance at the 0.05 probability level (p < 0.05). ** Model significance at the 0.01 probability level
(p < 0.01). # Model with no significance.

Cm estimations with the 1st-par setting and the 2nd-par setting in the N-PROSAIL model were
achieved (Table 7 and Figure 3d–f). The results showed no significant difference between measured
Cm and estimated Cm with the 2nd-par setting across the validation set and with the 3rd-par setting
across the calibration and validation set. In the 1st-par setting, the interval of Cm at different growth
period was not considered, and the limited range of Cm was set the same at all growth periods.
Many estimation results were ranged on both sides of the interval, and there were relatively high
deviations, with RMSE values of 23.79 and 27.93 g·m−2 for the calibration set and validation set,
respectively (Figure 3d). The deviation between the measured Cm and estimated Cm was decreased
to 16.12 and 18.50 g·m−2 for the calibration set and the validation set in the 2nd-par setting, where
the interval of Cm values were based on the statistical results of the calibration set at different growth
periods. However, many estimated values ranged on both sides of the interval as well (Figure 3e).
Cm estimations with the 3rd-par setting in the N-PROSAIL model showed relatively lower RMSE than
that of the 1st-par and 2nd-par setting, with RMSE values of 6.10 and 8.19 g m-2 for the calibration set
and validation set, respectively. The results showed that Cm inversion using the optimizing algorithm
of this study had a high deviation even given the limited ranges at different growth stages, and one
Cm value at each growth stage had the lowest deviation in this study.

Finally, LND estimations with the three parameters setting in the N-PROSAIL model were
compared (Table 7 and Figure 3g–i). The retrieval accuracy of LND was effectively improved after
considering the optimizing parameters (the 2nd-par and 3rd-par settings), with R2 and RMSE values
of 0.45 and 20.80 µg·cm−2 for the 2nd-par setting, and 0.59 and 17.43 µg·cm−2 for the 3rd-par
setting, respectively. However, the R2 and RMSE values for the 1st-par setting were 0.30 and
58.49 µg·cm−2, respectively. The improvements at different growth stages were also significant
compared with the 1st-par setting, with an increase in R2 by 0–0.13 and 0.14–0.28, and a decrease
in RMSE by 21.78–51.47 µg·cm−2 and 27.08–52.78 µg·cm−2 for the 2nd-par setting and the 3rd-par
setting, respectively. The phenomenon of overestimation at LND estimation by the N-PROSAIL
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model with the 1st-par setting was clear (Figure 3g). LND estimation with the optimized parameters
setting (the 2nd-par setting and the 3rd-par setting) reduced the problem of LND overestimation.
According to the above comparison, LND estimation with the 3rd-par setting had a slightly better
performance than that with the 2nd-par setting (Figure 3h,i). The validation results showed that the
best performance was produced by the 3rd-par setting (R2 = 0.46 and RMSE = 21.18 µg·cm−2), followed
by the 2nd-par setting (R2 = 0.39 and RMSE = 24.15 µg·cm−2), and finally the 1st-par setting (R2 = 0.34
and RMSE = 62.86 µg·cm−2). Therefore, the LND estimation confirmed the operational potential of
the N-PROSAIL model inversion with optimizing parameters, and the retrieval without considering
Cm inversion had the best LND estimation.

3.4. LNC and CND Estimation Based on LAI, LND, and Cm

The following estimations were to acquire LNC calculated by LND and Cm, and CND calculated
by LAI and LND, respectively. The retrieved results of each agronomic variable with default parameters
and optimized parameters were also compared in Figure 4 and Table 7.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 19 
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Relative to the N-PROSAIL model inversion by the 1st-par and the 2nd-par setting, LNC
estimation using the 3rd-par setting performed relatively better, with R2 and RMSE values of 0.62%
and 0.48% for the calibration set. The inversion of the N-PROSAIL model by the 3rd-par setting at
different growth stages was also estimated better than by the 1st-par and the 2nd-par setting (Table 7).
Many LNC estimations were overestimated, which resulted from the overestimation of LND and Cm
(Figure 3d,g and Figure 4a). The 2nd-par setting considering the parameter settings at different growth
stages mitigated the overestimation of LNC, but LNC estimation did not performed well (R2 = 0.14
and RMSE = 0.87%). The independent data of 2014–2015 was used to validate the model stability,
and the inversion of the N-PROSAIL model by the 3rd-par setting exhibited a superior result for LNC
estimation with R2 and RMSE values of 0.75 and 0.38%. This study further showed that calibrating
parameters at different growth stages is necessary, and the retrieval without considering Cm inversion
achieved a satisfactory estimation for LNC.

Together, using the N-PROSAIL model, it was able to get CND on the basis of LAI and LND
(Figure 4d–f). The R2 and RMSE values for the 1st-par setting at different growth stages ranged from
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0.36 to 0.74 and 1.66 to 3.19 g·m−2, respectively, and their values at all growth stages were 0.66 and
2.45 g·m−2 (Table 7). CND estimations for the 2nd-par setting across different growth stages ranged
from 0.20 to 0.73 and 1.24 to 2.57 g·m−2, respectively, and their values at all growth stages were 0.67
and 2.08 g·m−2 (Table 7). CND estimations for the 3rd-par setting showed a good performance, with a
higher R2 values and lower RMSE values across different stages, and the R2 and RMSE values across
different growth stages were 0.75 and 1.32 g·m−2, respectively. Then, the validation dataset was
used to validate the model stability, and the model inversion with the 3rd-par setting (R2 = 0.82 and
RMSE = 0.95 g·m−2) also performed better than the inversions with the 1st-par setting (R2 = 0.76 and
RMSE = 1.47 g·m−2) and the 2nd-par setting (R2 = 0.82 and RMSE = 1.03 g·m−2). The results of this
study suggest that the 3rd-par setting in the N-PROSAIL model inversion is the best choice.

3.5. Comparison of the N-PROSAIL Model Method with the Vegetation Index Method

To evaluate the performance of LNC and CND estimation by the N-PROSAIL method with
parameter optimization (estimations of LNC and CND with the 3rd-par setting were using in the
following comparison), the estimation results using the N-PROSAIL model method were compared
with the estimation results by the vegetation index method. Fourteen spectral indices with significant
relationships were used to fit the regression models (Linear model, Power model, Exponential model,
and logarithmic) of LNC, and the best regression model was selected as optimal regression models
(Table 8). In these regression models, ten indices with R2 values for LNC and vegetation indices were
greater than 0.50, seven were greater than 0.55, and CIred edge, mND705 and NDVIcanste had the highest
R2 values of 0.58, 0.58, and 0.57, respectively (Figure 3a–c). Compared with LNC estimation using the
N-PROSAIL model, the R2 value between the estimated LNC and measured LNC was 0.62, which
was better than all the regression models by vegetation indices. The validation set was used to test
the model accuracy, the estimated values and measured values were compared based on the RMSE
(Table 8 and Figure 4a–d). The regression model between LNC and MCARI/MTVI2 had the lowest
RMSE value of 0.48% among the fourteen regression models with the RMSE values ranging from 0.48%
to 0.65% (Figure 5). The RMSE value from measured LNC and predicted LNC by the N-PROSAIL
model was 0.38%, which was lower than the values from all regression models by vegetation index
(Tables 7 and 8). The results also showed that the consistency between the estimated values and the
measured values of the N-PROSAIL method performed better than any vegetation index methods.
The results showed that the N-PROSAIL model inversion could be a good method to estimate LNC.
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Table 8. Relationships between LNC and vegetation indices (n = 384).

Vegetation
Index LNC Model # R2 RMSE

(%) CND Model R2 RMSE
(g·m−2)

CIred edge y = 3.224x0.274 0.58 0.52 y = 3.005x1.107 0.79 1.34
GNDVI y = 4.654x0.837 0.54 0.51 y = 13.583x3.464 0.78 1.32

MCARI/MTVI2 y = 4.802e-5.938x 0.56 0.48 y = 14.41e23.28x 0.73 1.38
mND705 y = 4.320x0.589 0.58 0.49 y = 0.206e4.230 0.80 1.26

MSR y = 2.550x0.274 0.53 0.55 y = 1.121x1.134 0.78 1.34
ND705 y = 1.870e0.977x 0.57 0.52 y = 0.325e4.061x 0.80 1.26
NDVI y = 1.399e1.087x 0.52 0.55 y = 0.0925e4.518x 0.77 1.34
DCNI y = 0.935x0.411 0.27 0.52 y = 0.894e0.0604x 0.30 1.73

WDRVI y = 1.345x + 3.335 0.48 0.55 y = 3.181e1.738x 0.75 1.33
sLAIDI y = 2.648e0.415x 0.35 0.65 y = 1.226e1.827x 0.59 1.78

GI y = 2.746x0.405 0.44 0.64 y = 1.496x1.718 0.67 1.67
SPVI y = 4.954x0.426 0.57 0.62 y = 16.354x1.675 0.75 1.63

NDVIcanste y = 1.889e1.004x 0.57 0.52 y = 0.342e4.069x 0.80 1.29
NDRE y = 4.968x0.438 0.56 0.52 y = 17.04x1.758 0.77 1.42

#: Linear and nonlinear regression (power regression, exponential regression and logarithmic regression) were
conducted and listed are the optimal regression model of each vegetation indices. x: vegetation index; y: LNC
or CND.

Similar comparisons were obtained for CND estimation between the N-PROSAIL model and
vegetation indices methods. A highly significant regression relationship between measured CND
and estimated CND was demonstrated both for the N-PROSAIL model method and the vegetation
indices methods. The R2 value between the estimated CND by the N-PROSAIL model and measured
CND was 0.75. For the regression model by vegetation index, ten regression models with R2 values
for CND estimation were greater than 0.75 (Table 8), and three regression models by mND705,
ND705 and NDVIcanste were up to 0.80 (Figure 6d–f). The results of model validation from the
validation set showed that the N-PROSAIL method (RMSE = 0.95 g·m−2) performed better than
the vegetation indices methods (RMSE = 1.26 − 1.78 g·m−2) for estimation of CND (Table 8 and
Figure 6). An advantage of stability using the N-PROSAIL model inversion was demonstrated.
Furthermore, there are underestimations at high CND values using vegetation indices estimation,
but the N-PROSAIL method could mitigate the phenomenon of underestimation. Overall, our results
indicated that using the N-PROSAIL model with parameters optimizing has great potential for LNC
and CND estimation in winter wheat.
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4. Discussion

The N-PROSAIL model integrating the N-PROSPECT model and the SAILH model were
developed to retrieve N status at leaf scale (LNC) and canopy scale (CND) [27,28]. LAI, Cm, and LND
were retrieved from the N-PROSAIL model, and LNC and CND were calculated according to these
relationships. LND had more variability on LNC than Cm. LNC showed a strong correlation with LND
(r = 0.73) and relative low correlation with Cm (r = −0.19). This is because Cm is mainly determined by
the plant cultivars and growth stage, and has little change when certain other conditions change [35].
But LND composed of two compartments, high N concentration in metabolic tissues and low N
concentration in plant architecture, changes dynamically with plant growth [56]. Therefore, the results
indicated the effect of LND on LNC estimation to be more sensitive to the effect from Cm. At the
canopy scale, CND strongly reflects the variability of LAI (r = 0.90) as LND was relatively stable
(r = 0.52). At different growth stages, canopy information, e.g., LAI, varied significantly, especially the
variation between two growth stages [22,30]. This is explained by the lower coefficient of variation of
LND compared to LAI (Table 5). This conclusion is in agreement with the study of Darvishzadeh [30],
who found that canopy chlorophyll content was more related to LAI with an r value of 0.94.

According to the results of LAI, Cm, and LND estimations, the relationship between measured
LAI and its estimation reflects more consistence and accuracy than LND and Cm (Figure 3). The main
reasons are as follows: (1) LAI is the canopy characteristics and one of the variables most affected by
canopy reflectance, while Cm and LND are variables at leaf level and their variations were lower than
LAI; (2) the most correlated vegetation indices between these three variables were selected to build
the cost function. LAI showed best correlation with MSR (r = 0.80) and was also highly correlated
with MCARI/MTVI2 (r = −0.69) and GI (r = 0.79) (Table 6). The deviation was also relatively lower
than with the other two variables. The study result is in line with the findings of previous studies by
Feret et al. [57], Darvishzadeh et al. [30], and Li et al. [26].

In this study, three inversion strategies of estimating LNC and CND were tried in order to improve
the estimation accuracy. In the 1st-par setting, LAI, Cm, and LND were considered for retrieval, and the
other parameters in the N-PROSAIL model were set default values. The results showed that many
Cm values were estimated at both sides of the interval and overestimations of LND were obvious.
The estimations of these three variables were improved by prior parameters initialization, which is to
limit the interval of the three values and assigning different values to the other parameters at different
growth stages (the 2nd-par setting). The RMSE of Cm between estimated and measured values greatly
decreased from 27.93 to 18.50 g·m−2, and the overestimation of LND was eliminated (Figure 3 and
Table 7). These resulted in the improvement of LNC and CND estimation, with higher R2 values
of 0.51 and 0.82 and lower RMSE values of 0.94% and 1.03 g·m−2 for LNC and CND, respectively.
The results indicated the necessity of giving different values of non-optimizing parameters in the
N-PROSAIL model at different growth stages. As shown in this study, the statistical values of Cw

and calibrating solar zenith angle varied as plant growth progressed, and N and LID also showed
difference at different growth stages (Table 3). The uncertainties of model inversion were reduced
through giving the different values to these parameters at different growth stages. In the 3rd-par
setting, we attempted not to retrieve the Cm value and set the mean values of Cm at each growth
stage as the model input. The 3rd-par setting showed more improvement than the 2nd-par setting.
The lower RMSE, 8.19 g·m−2, for Cm between estimated and measured values demonstrated the
lower certainty than the above two parameters setting, and the inversion of LAI and LND were
also improved (Table 7). It has two explanations for this: (1) one parameter decreased can reduce
the ill-posed problem in model parameters inversion (Figure 3d–f) [29,30]; (2) Cm is an important
parameter in the crop growth model and has one initial value for specific crop cultivars and changes as
growth goes on [35,36]. Jacquemoud indicated that Cm was first assumed a constant for one plant in
the PROSPECT model construction [37]. Thus, the 3rd-par setting considered as a default value at each
growth stage is reasonable. The estimated performance for every variable with the 3rd-par setting also
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exhibits the highest accuracy. Therefore, using the 3rd-par setting in the N-PROSAIL model is a better
strategy for estimating plant N status.

CIred edge, mND705 and NDVIcanste were selected as the best three vegetation indices to estimate
LNC. They all showed overestimation at low LNC and these samples were mainly measured at Z.S. 75.
CND estimation by mND705, ND705, and NDVIcanste demonstrated the same phenomenon, with CND
estimation at a high value and at Z.S. 31 showed underestimation. Estimated LNC and CND using the
N-PROSAIL model showed a higher accuracy than using vegetation indices. Two advantages of using
the N-PROSAIL model can explain the situation. Firstly, estimating LAI and LND by the N-PROSAIL
model are interactional. The two parameters are retrieved all at once and adjusted according to changes
to each other, and are acquired relatively accurately in the end. So LNC and CND estimations were
taken into account the results of LAI and LND. Secondly, different parameters, except LAI and LND in
N-PROSAIL, were calibrated as different values at various growth stages, which greatly reduced the
deviation of model. The improvement of this step was significant according to the compared results of
1st-par setting and 3rd-par setting (Figure 4).

The results showed the potential of a priori information (setting different parameters values
at various growth stages) in using N-PROSAIL model for LNC and CND retrieval in winter wheat,
which is also suitable to apply in other crops (rice, maize, cotton, etc.) by giving corresponding
crop parameters values. However, it is still necessary to define this information as accurately as
possible. Four critical growth stages in winter wheat were selected in this study and parameters
in the N-PROSAIL model at different growth stages were set respectively. Further studies should
focus on considering more growth stages or a high temporal resolution [58], and in this situation,
the considered fixed parameters set across different growth stage will increase. The estimation accuracy
will be influenced if the growth stage was determined inaccurately. Moreover, fixed parameters were
determined in the study area. Further studies should verify whether these parameters change across
different regions. Future research should also focus on validating the model using multi-platforms,
such as unmanned aerial vehicle and satellite platform. The study should finally point that accurate
plant N estimation is an important step towards precision N management, and more studies
are needed to develop N-PROSAIL model-based in-season N recommendation algorithms and
management strategies.

5. Conclusions

In this study, the N-PROSAIL model was established to retrieve winter wheat LNC and CND at
different growth stages. The results suggested that:

(1) The 3rd-par setting retrieval strategies with LAI and LND optimized and other parameters in
the N-PROSAIL model fixed at each growth stage exhibited the highest accuracy. The retrieved LAI
(R2 = 0.80 and RMSE = 0.69) and LND (R2 = 0.46 and RMSE = 21.18 µg·cm−2) were consistent with the
measured LAI and LND, respectively.

(2) LNC and CND were accurately estimated using the N-PROSAIL model, with R2 and RMSE
values of 0.75 and 0.38%, and 0.82 and 0.95 g·m−2, respectively.

(3) Compared with vegetation indices regression model, the N-PROSAIL model results reduced
the problems of overestimation at low LNC and underestimation at high CND, and showed
better performance than any vegetation index regression model (LNC: RMSE = 0.48−0.64%;
CND: 1.26−1.78 g·m−2). The N-PROSAIL model shows a great potential to estimate canopy N status
at leaf and canopy scales in winter wheat.

Author Contributions: G.Y., Z.L. (Zhenhai Li) and C.Z. conceived and designed the experiments; Z.L. (Zhenhai Li)
and H.Y. performed the experiments; Z.L. (Zhenhai Li) and X.J. analyzed the data; Z.L. (Zhenhai Li), Z.L.
(Zhenhong Li) and C.Z. discussed and drafted the manuscript. Z.L. (Zhenhong Li), J.D. and B.C. revised the
manuscript and edited English language. All authors read and approved the final version.

Funding: This study was supported by the National Natural Science Foundation of China (Grant No. 61661136003,
41471285, 41601369), the UK Science and Technology Facilities Council through the PAFiC project (Ref:



Remote Sens. 2018, 10, 1463 16 of 18

ST/N006801/1), the Open Research Fund of Key Laboratory of Digital Earth Science, Institute of Remote Sensing
and Digital Earth, Chinese Academy of Sciences (No. 2016LDE008), and the National Key Technologies of Research
and Development Program (2016YFD0300602-04).

Acknowledgments: We are grateful to Weiguo Li, Hong Chang and Ling Kong for data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, X.; Huang, Y.; Shang, G.; Zhou, C.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of Six Algorithms to
Monitor Wheat Leaf Nitrogen Concentration. Remote Sens. 2015, 7, 14939–14966. [CrossRef]

2. Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Evaluating hyperspectral vegetation
indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric.
2010, 11, 335–357. [CrossRef]

3. Karimi, Y.; Prasher, S.O.; Patel, R.M.; Kim, S.H. Application of support vector machine technology for weed
and nitrogen stress detection in corn. Comput. Electron. Agric. 2006, 51, 99–109. [CrossRef]

4. Miphokasap, P.; Honda, K.; Vaiphasa, C.; Souris, M.; Nagai, M. Estimating Canopy Nitrogen Concentration
in Sugarcane Using Field Imaging Spectroscopy. Remote Sens. 2012, 4, 1651–1670.

5. Kokaly, R.F. Investigating a Physical Basis for Spectroscopic Estimates of Leaf Nitrogen Concentration.
Remote Sens. Environ. 2001, 75, 153–161. [CrossRef]

6. Niu, Z.; Chen, Y.; Sui, Z.; Zhang, Q.Y.; Zhao, C.J. Mechanism Analysis of Leaf Biochemical Concentration by
High Spectral Remote Sensing. J. Remote Sens. 2000, 4, 125–130.

7. Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data:
The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181–193. [CrossRef]

8. Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.;
Riley, E.; Thompson, T.; et al. Coincident Detection of crop Water Stress, Nitrogen Status and Canopy Density
Using Ground-Based Multispectral Data. Available online: https://naldc.nal.usda.gov/download/4190/
PDF (accessed on 11 September 2018).

9. Serrano, L.; Peñuelas, J.; Ustin, S.L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from
AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ. 2002, 81, 355–364.
[CrossRef]

10. Fitzgerald, G.J.; Rodriguez, D.; Christensen, L.K.; Belford, R.; Sadras, V.O.; Clarke, T.R. Spectral and thermal
sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric. 2006, 7,
233–248.

11. Feng, W.; Yao, X.; Zhu, Y.; Tian, Y.C.; Cao, W.X. Monitoring leaf nitrogen status with hyperspectral reflectance
in wheat. Eur. J. Agron. 2008, 28, 394–404. [CrossRef]

12. Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat
using a spectral index—The canopy chlorophyll content index (CCCI). Field Crop. Res. 2010, 116, 318–324.
[CrossRef]

13. Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing
the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997.
[CrossRef]

14. Tian, Y.C.; Yao, X.; Yang, J.; Cao, W.X.; Hannaway, D.B.; Zhu, Y. Assessing newly developed and published
vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral
reflectance. Fuel Energy Abstr. 2011, 120, 299–310. [CrossRef]

15. Yao, X.; Jia, W.; Si, H.; Guo, Z.; Tian, Y.; Liu, X.; Cao, W.; Zhu, Y. Exploring novel bands and key index for
evaluating leaf equivalent water thickness in wheat using hyperspectra influenced by nitrogen. PLoS ONE
2014, 9, e96352. [CrossRef] [PubMed]

16. Feng, W.; Zhang, H.Y.; Zhang, Y.S.; Qi, S.L.; Heng, Y.R.; Guo, B.B.; Ma, D.Y.; Guo, T.C. Remote detection of
canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ
hyperspectral data. Field Crop. Res. 2016, 198, 238–246. [CrossRef]

17. Elshikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Haberland, J.A.; Pinter, P.J.; Waller, P.M.;
Thompson, T.L. Remote Sensing of Cotton Nitrogen Status Using the Canopy Chlorophyll Content Index
(CCCI). Trans. Asabe 2008, 51, 73–82.

http://dx.doi.org/10.3390/rs71114939
http://dx.doi.org/10.1007/s11119-010-9165-6
http://dx.doi.org/10.1016/j.compag.2005.12.001
http://dx.doi.org/10.1016/S0034-4257(00)00163-2
http://dx.doi.org/10.1016/j.rse.2005.12.011
https://naldc.nal.usda.gov/download/4190/PDF
https://naldc.nal.usda.gov/download/4190/PDF
http://dx.doi.org/10.1016/S0034-4257(02)00011-1
http://dx.doi.org/10.1016/j.eja.2007.11.005
http://dx.doi.org/10.1016/j.fcr.2010.01.010
http://dx.doi.org/10.1016/j.rse.2010.04.006
http://dx.doi.org/10.1016/j.fcr.2010.11.002
http://dx.doi.org/10.1371/journal.pone.0096352
http://www.ncbi.nlm.nih.gov/pubmed/24914778
http://dx.doi.org/10.1016/j.fcr.2016.08.023


Remote Sens. 2018, 10, 1463 17 of 18

18. Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat
crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ.
2003, 86, 542–553. [CrossRef]

19. Ecarnot, M.; Compan, F.; Roumet, P. Assessing leaf nitrogen content and leaf mass per unit area of wheat in
the field throughout plant cycle with a portable spectrometer. Field Crop. Res. 2013, 140, 44–50. [CrossRef]

20. Li, L.; Lu, J.; Wang, S.; Ma, Y.; Wei, Q.; Li, X.; Cong, R.; Ren, T. Methods for estimating leaf nitrogen
concentration of winter oilseed rape (Brassica napus L.) using in situ, leaf spectroscopy. Ind. Crop. Prod.
2016, 91, 194–204. [CrossRef]

21. Zhang, C.; Kovacs, J.M.; Wachowiak, M.P.; Flores-Verdugo, F. Relationship between Hyperspectral
Measurements and Mangrove Leaf Nitrogen Concentrations. Remote Sens. 2013, 5, 891–908. [CrossRef]

22. Xu, X.G.; Zhao, C.J.; Wang, J.H.; Li, C.J.; Yang, X.D. Associating new spectral features from visible and
near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley.
J. Infrared Millim. Waves 2013, 32, 351. [CrossRef]

23. Xu, X.G.; Zhao, C.J.; Wang, J.H.; Zhang, J.C.; Song, X.Y. Using optimal combination method and in situ
hyperspectral measurements to estimate leaf nitrogen concentration in barley. Precis. Agric. 2014, 15, 227–240.
[CrossRef]

24. Li, Z.; Nie, C.; Wei, C.; Xu, X.; Song, X.; Wang, J. Comparison of Four Chemometric Techniques for Estimating
Leaf Nitrogen Concentrations in Winter Wheat (Triticum aestivum) Based on Hyperspectral Features. J. Appl.
Spectrosc. 2016, 83, 240–247. [CrossRef]

25. Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative
transfer models. Remote Sens. Environ. 2004, 93, 53–67. [CrossRef]

26. Li, Z.; Jin, X.; Wang, J.; Yang, G.; Nie, C.; Xu, X.; Feng, H. Estimating winter wheat (Triticum aestivum) LAI
and leaf chlorophyll content from canopy reflectance data by integrating agronomic prior knowledge with
the PROSAIL model. Int. J. Remote Sens. 2015, 36, 2634–2653. [CrossRef]

27. Yang, G.; Zhao, C.; Pu, R.; Feng, H.; Li, Z.; Li, H.; Sun, C. Leaf nitrogen spectral reflectance model of winter
wheat (Triticum aestivum) based on PROSPECT: simulation and inversion. J. Appl. Remote Sens. 2015, 9.
[CrossRef]

28. Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model.
Remote Sens. Environ. 1984, 16, 125–141. [CrossRef]

29. Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Mace, D.; Pragnere, A.; Myneni, R.; Knyazikhin, Y.; Wang, L.
Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the
ill-posed inverse problem. Remote Sens. Environ. 2002, 84, 1–15. [CrossRef]

30. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for
estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112,
2592–2604. [CrossRef]

31. Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14,
415–421. [CrossRef]

32. Liu, L.; Song, B.; Zhang, S.; Liu, X. A Novel Principal Component Analysis Method for the Reconstruction of
Leaf Reflectance Spectra and Retrieval of Leaf Biochemical Contents. Remote Sens. 2017, 9. [CrossRef]

33. Schepers, J.S.; Francis, D.D.; Thompson, M.T. Simultaneous determination of total C, total N, and 15N on
soil and plant material 1. Commun. Soil Sci. Plant Anal. 1989, 20, 949–959. [CrossRef]

34. Wang, J.; Zhao, C.; Huang, W. Quantitative Remote Sensing of Agriculture: Theory and Application; Science Press:
Beijing, China, 2008. (In Chinese)

35. Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.;
Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [CrossRef]

36. Boogaard, H.L.; Diepen, C.A.; Rotter, R.P.; Cabrera, J.A.; Laar, H.H. User’s guide for the WOFOST 7.1
Crop Growth Simulation Model and WOFOST Control Center. Available online: http://library.wur.nl/
WebQuery/wurpubs/309027 (accessed on 11 September 2018).

37. Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ.
1990, 34, 75–91. [CrossRef]

38. Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy
chlorophyll content in crops. Geophys. Res. Lett. 2005, 32. [CrossRef]

http://dx.doi.org/10.1016/S0034-4257(03)00131-7
http://dx.doi.org/10.1016/j.fcr.2012.10.013
http://dx.doi.org/10.1016/j.indcrop.2016.07.008
http://dx.doi.org/10.3390/rs5020891
http://dx.doi.org/10.3724/SP.J.1010.2013.00351
http://dx.doi.org/10.1007/s11119-013-9339-0
http://dx.doi.org/10.1007/s10812-016-0276-3
http://dx.doi.org/10.1016/j.rse.2004.06.016
http://dx.doi.org/10.1080/01431161.2015.1041176
http://dx.doi.org/10.1117/1.JRS.9.095976
http://dx.doi.org/10.1016/0034-4257(84)90057-9
http://dx.doi.org/10.1016/S0034-4257(02)00035-4
http://dx.doi.org/10.1016/j.rse.2007.12.003
http://dx.doi.org/10.1111/j.1365-3180.1974.tb01084.x
http://dx.doi.org/10.3390/rs9111113
http://dx.doi.org/10.1080/00103628909368128
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://library.wur.nl/WebQuery/wurpubs/309027
http://library.wur.nl/WebQuery/wurpubs/309027
http://dx.doi.org/10.1016/0034-4257(90)90100-Z
http://dx.doi.org/10.1029/2005GL022688


Remote Sens. 2018, 10, 1463 18 of 18

39. Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens.
Environ. 1991, 35, 161–173. [CrossRef]

40. Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Smith, A.M.S. Using in-situ measurements to evaluate the new
RapidEye™ satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens. 2007, 28, 4183–4190.
[CrossRef]

41. Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide
range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [CrossRef]

42. Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J.
Remote Sens. 1996, 22, 229–242. [CrossRef]

43. Pearson, R.L.; Miller, L.D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of
the Shortgrass Prairie. Available online: http://adsabs.harvard.edu/abs/1972rse.conf.1355P (accessed on
11 September 2018).

44. Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.Y.; Bréda, N.; Genet, H.; Davi, H.; Dufrêne, E.
Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content,
leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [CrossRef]

45. Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics
of vegetation. J. Plant Physiol. 2004, 161, 165–173. [CrossRef] [PubMed]

46. Delalieux, S.; Somers, B.; Hereijgers, S.; Verstraeten, W.W.; Keulemans, W.; Coppin, P.A. near-infrared narrow-waveband
ratio to determine Leaf Area Index in orchards. Remote Sens. Environ. 2008, 112, 3762–3772. [CrossRef]

47. Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.;
De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance
simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [CrossRef]

48. Vincini, M.; Frazzi, E.; D’Alessio, P. Angular Dependence of Maize and Sugar Beet VIs from Directional
CHRIS/Proba Data. Available online: https://www.researchgate.net/publication/228413259_Angular_
dependence_of_maize_and_sugar_beet_VIs_from_directional_CHRISProba_data (accessed on 11 September 2018).

49. Steddom, K.; Heidel, G.; Jones, D.; Rush, C.M. Remote detection of rhizomania in sugar beets. Phytopathology
2003, 93, 720–726. [CrossRef] [PubMed]

50. Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global
minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [CrossRef]

51. Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating
watershed models. J. Hydrol. 1994, 158, 265–284. [CrossRef]

52. Zhu, X.; Zhao, Y.; Feng, X. A methodology for estimating Leaf Area Index by assimilating remote sensing data
into crop model based on temporal and spatial knowledge. Chin. Geogr. Sci. 2013, 23, 550–561. [CrossRef]

53. Jin, H.; Wang, J.; Bo, Y.; Chen, G.; Xue, H. Data Assimilation of MODIS and TM Observations into
CERES-Maize Model to Estimate Regional Maize Yield. Available online: https://doi.org/10.1117/12.860315
(accessed on 11 September 2018).

54. Wang, H.; Zhu, Y.; Li, W.; Cao, W.; Tian, Y. Integrating remotely sensed leaf area index and leaf nitrogen
accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield
assessment. J. Appl. Remote Sens. 2014, 8. [CrossRef]

55. Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly assimilating MODIS LAI and
ET products into the SWAP model for winter wheat yield estimation. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 4060–4071. [CrossRef]

56. Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory
and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [CrossRef]

57. Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.;
Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic
pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [CrossRef]

58. Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models
to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0034-4257(91)90009-U
http://dx.doi.org/10.1080/01431160701422213
http://dx.doi.org/10.1016/S0034-4257(02)00010-X
http://dx.doi.org/10.1080/07038992.1996.10855178
http://adsabs.harvard.edu/abs/1972rse.conf.1355P
http://dx.doi.org/10.1016/j.rse.2008.06.005
http://dx.doi.org/10.1078/0176-1617-01176
http://www.ncbi.nlm.nih.gov/pubmed/15022830
http://dx.doi.org/10.1016/j.rse.2008.05.003
http://dx.doi.org/10.1016/j.rse.2005.09.002
https://www.researchgate.net/publication/228413259_Angular_dependence_of_maize_and_sugar_beet_VIs_from_directional_CHRISProba_data
https://www.researchgate.net/publication/228413259_Angular_dependence_of_maize_and_sugar_beet_VIs_from_directional_CHRISProba_data
http://dx.doi.org/10.1094/PHYTO.2003.93.6.720
http://www.ncbi.nlm.nih.gov/pubmed/18943059
http://dx.doi.org/10.1007/BF00939380
http://dx.doi.org/10.1016/0022-1694(94)90057-4
http://dx.doi.org/10.1007/s11769-013-0621-x
https://doi.org/10.1117/12.860315
http://dx.doi.org/10.1117/1.JRS.8.083674
http://dx.doi.org/10.1109/JSTARS.2015.2403135
http://dx.doi.org/10.1016/j.eja.2008.01.005
http://dx.doi.org/10.1016/j.rse.2008.02.012
http://dx.doi.org/10.1016/j.rse.2004.11.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Design 
	Data Acquisition 
	Canopy Spectral Data 
	Plant Measurements 

	Model and Methods 
	Inversion Procedure of LNC and CND Estimation 
	The N-PROSAIL Model 
	Selection of Spectral Index 
	SCE-UA Algorithm for LNC and CND Estimation 
	Statistical Analysis 


	Results 
	Correlations among LAI, Cm, LND, LNC, and CND 
	Correlations between Agronomic Variables and Vegetation Indices 
	LAI, LND, and Cm Estimation Using the N-PROSAIL Model Inversion 
	LNC and CND Estimation Based on LAI, LND, and Cm 
	Comparison of the N-PROSAIL Model Method with the Vegetation Index Method 

	Discussion 
	Conclusions 
	References

