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Abstract: Precision nitrogen (N) management requires an accurate and timely in-season assessment of
crop N status. The proximal fluorescence sensor Multiplex®3 is a promising tool for monitoring crop
N status. It performs a non-destructive estimation of plant chlorophyll, flavonol, and anthocyanin
contents, which are related to plant N status. The objective of this study was to evaluate the potential
of proximal fluorescence sensing for N status estimation at different growth stages for rice in cold
regions. In 2012 and 2013, paddy rice field experiments with five N supply rates and two varieties
were conducted in northeast China. Field samples and fluorescence data were collected in the leaf
scale (LS), on-the-go (OG), and above the canopy (AC) modes using Multiplex®3 at the panicle
initiation (PI), stem elongation (SE), and heading (HE) stages. The relationships between the Multiplex
indices or normalized N sufficient indices (NSI) and five N status indicators (above-ground biomass
(AGB), leaf N concentration (LNC), plant N concentration (PNC), plant N uptake (PNU), and N
nutrition index (NNI)) were evaluated. Results showed that Multiplex measurements taken using
the OG mode were more sensitive to rice N status than those made in the other two modes in this
study. Most of the measured fluorescence indices, especially the N balance index (NBI), simple
fluorescence ratios (SFR), blue–green to far-red fluorescence ratio (BRR_FRF), and flavonol (FLAV)
were highly sensitive to N status. Strong relationships between these fluorescence indices and N
indicators, especially the LNC, PNC, and NNI were revealed, with coefficients of determination (R2)
ranging from 0.40 to 0.78. The N diagnostic results indicated that the normalized N sufficiency index
based on NBI under red illumination (NBI_RNSI) and FLAV achieved the highest diagnostic accuracy
rate (90%) at the SE and HE stages, respectively, while NBI_RNSI showed the highest diagnostic
consistency across growth stages. The study concluded that the Multiplex sensor could be used to
reliably estimate N nutritional status for rice in cold regions, especially for the estimation of LNC,
PNC, and NNI. The normalized N sufficiency indices based on the Multiplex indices could further
improve the accuracy of N nutrition diagnosis by reducing the influences of inter-annual variations
and different varieties, as compared with the original Multiplex indices.
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1. Introduction

Nitrogen (N) is an essential nutrient for plant growth and development. However, excessive N
fertilizer applications have led to severe environmental impacts in China [1,2]. Therefore, there has
been a growing interest in developing precision N management strategies in agricultural research for
many years. This requires the development of efficient and timely crop N status diagnosis strategies
and technologies [3].

Plant or leaf N concentration is an indication of N nutritional status. The traditional N testing
method in the laboratory is time-consuming and impractical for characterizing spatial and temporal
variability in crop N status in precision N management. Alternatively, it is known that there is a strong
relationship between plant chlorophyll content and N content, although other stress factors, such as
water deficit, cold, heat, excess light, leaf or root pathogens, etc., can also influence chlorophyll content
directly or indirectly [4,5]. Therefore, various instruments based on measuring chlorophyll have been
developed to provide indirect, nondestructive, and real-time estimations of leaf N content [3,6]. For
example, the Soil Plant Analysis Development chlorophyll meter (SPAD) developed by Minolta Camera
Co. (Osaka, Japan) is a widely used portable instrument for measuring chlorophyll in leaves. The
SPAD meter measures the difference in absorption between the red (660 nm) and near-infrared (940 nm)
wavelengths [7,8]. Leaf chlorophyll absorbs red light but not infrared, therefore, the SPAD readings
indicate plant chlorophyll concentration and N content [9–11]. However, the reliability of SPAD results
is affected by factors such as growth stage, irradiance, water status, and leaf thickness [3,5,9].

Optical non-destructive remote sensing methods based on canopy reflectance measurements have
also been widely used [12,13]. The high measuring efficiency of reflectance spectroscopy sensors and
the strong correlation between their measurements and crop physiological and biochemical parameters
offer a high potential for N management [14,15]. Proximal active sensors, such as GreenSeeker
(NTech Industries, Inc., Ukiah, CA) and Crop Circle (Holland Scientific, NE, USA), have been used to
diagnose N nutritional status in real-time and to guide in-season precision management for rice N
fertilization [16,17]. However, the results based on the canopy reflectance are affected by various factors,
such as soil characteristics, crop growth stages, and saturation under high biomass conditions [16,18].
In addition, it is more difficult to estimate chlorophyll or N status using optical remote sensing methods
as the contribution of leaf area index and biomass to canopy reflectance is much greater than that of
chlorophyll or N concentration [19,20].

Unlike reflectance indices, the fluorescence spectra are less affected by biomass or leaf area
index [15,21]. At different N nutritional levels, the fluorescence intensities of leaves are significantly
different near the 440 nm (Blue, B), 525 nm (Green, G), 685–690 nm (Red, R), and 735–740 nm
(Near-infrared, NIR) wavelengths [22,23]. Studies have shown that the fluorescence ratio of NIR and
R bands is highly correlated with chlorophyll concentration [24,25] and leaf N concentration [26].
Because the fluorescence ratio is only related to chlorophyll concentration or photosynthetic activities,
soil background does not affect the vegetation spectra at the early growth stages. Longchamps
and Khosla [27] observed that N supply levels in corn could be differentiated as early as the V5
phenological stage using a proximal fluorescence sensor. In contrast, the test results only became
reliable starting from the V8 growth stage based on reflective sensors [28,29]. Therefore, chlorophyll
fluorescence sensing is a powerful solution to the shortcomings of proximal reflectance sensors in crop
N status monitoring.

In addition to chlorophyll content, polyphenols (mainly flavonols) can also be used to estimate
plant N status. When N is deficient, polyphenols increase significantly due to carbon and N balance
regulation mechanisms [30], although an increase in polyphenol concentration may also be related to
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their photoprotective roles [31]. These compounds are mainly concentrated in epidermal cells and
have typical absorption peaks in the ultraviolet region [31–33]. Thus, N status diagnosis is improved
by combining the polyphenol and chlorophyll fluorescence [34,35]. Lejealle et al. [36] demonstrated
that the N balance index (NBI), the ratio of chlorophyll to flavonol, had a better and more stable
correlation with leaf N concentration. Leaf fluorescence sensor Dualex (FORCE-A, Orsay, Paris, France)
and canopy fluorescence sensor Multiplex (FORCE-A, Orsay, Paris, France) can be used to estimate
plant polyphenol contents as well as chlorophyll content. Thus, in addition to N, these fluorescence
sensors can detect physiological and biochemical plant parameters such as anthocyanins [37], or plant
diseases [38]. Furthermore, Multiplex is a canopy sensor that is more efficient than a leaf sensor such
as Dualex. It allows rapid large-area measurements with simultaneous GPS data recording for field
map generation [39,40]. However, studies based on Multiplex are still limited, especially for rice N
status diagnosis and precision N management. Zhang et al. [41] identified FERARI (fluorescence
excitation ratio anthocyanin relative index), SFR_G (simple fluorescence ratio under green excitation),
SPAD/DUAD (Dualex reading), and SPAD reading as valuable indicators for monitoring corn N status
at early stages. In addition, they found leaf-scale (LS) Multiplex measurements were better related to
N treatments than the Multiplex readings made from a small distance above the canopy (AC). Li et
al. [42] reported that both leaf-based SPAD and canopy Multiplex indices could be used to predict rice
leaf N contents. The on-the-go (OG) measurement mode means placing the sensor probe in the canopy
close to the blade and continuously collecting data during the move. This mode is most efficient in
data collection. In a recent study, Diago et al. [39] confirmed the capability of the Multiplex sensor
using the OG mode to estimate key nutritional parameters in grapevine leaves in motion by calibrating
Multiplex against the leaf-clip Dualex sensor. However, further systematic and comprehensive study
is necessary to investigate the application potential of canopy fluorescence sensing for rice N status
diagnosis in motion.

Hence, the main objectives of this study were to: (1) Determine the feasibility of using canopy
multispectral fluorescence sensing system such as the Multiplex sensor to estimate N status in paddy
rice by comparing the results of three measurement modes (LS, AC, and OG); and (2) establish and
validate the estimation models for N indicators based on the optimal Multiplex indices. In addition, to
reduce the influences of varieties, years, sites, and other factors, the normalized N sufficiency index
(NSI) was calculated and included in the analysis of the fluorescence indices. Well-fertilized reference
plots were used to normalize reflectance measurements as more stable rice N diagnostic results might
be obtained when calculating the NSI [43].

2. Materials and Methods

2.1. Experimental Design

Two field trials were conducted at the Jiansanjiang Experiment Station of China Agricultural
University (47◦15′N, 132◦39′E), Sanjiang Plain, Heilongjiang Province, northeast China. The field
experiments in 2012 and 2013 included five different N rates (0, 70, 100, 130, 160 kg N ha−1) and two
Japonica rice varieties, Kongyu 131 (KY 131) and Longjing 21 (LJ 21). These two represent the main
varieties in this region: KY131 has 11 leaves, four elongation nodes and about 127 maturity days, while
LJ 21 has 12 leaves and needs 133 maturity days. Planting density was approximately 30 hills m−2 for
KY 131 and 28 hills m−2 for LJ 21, with an identical row spacing of 0.3 m. The plot size was 4.5 m × 9 m.
The N fertilizer applications were split into 40%, 30%, 30%, and applied before the transplanting, at the
active tillering stage, and at the stem elongation (SE) stage, respectively. Phosphate (50 kg P2O5 ha−1)
fertilizers were applied before transplanting, and potash (100 kg K2O ha−1) fertilizers were applied as
two splits, 50% as basal fertilizer and 50% as panicle fertilizer at the SE stage. The two experiments
were carried out in a randomized complete block design with three replicates. Table 1 lists the details
of the two experiments.
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Table 1. Details of nitrogen (N) rate experiments with two rice cultivars conducted during 2012–2013.

Experiment Year Cultivar Transplanting Date Sampling Date and Stage

1 2012 KY 131 18 May 21 June (PI), 29 June (SE), 23 July (HE)
1 2012 LJ 21 18 May 25 June (PI), 2 July (SE), 23 July (HE)
2 2013 KY 131 17 May 23 June (PI), 2 July (SE), 22 July (HE)
2 2013 LJ 21 17 May 28 June (PI), 6 July (SE), 27 July (HE)

PI: Panicle Initiation; SE: Stem Elongation; HE: Heading.

2.2. Fluorescence Measurements

The portable fluorescence sensor Multiplex®3 was used in this study. It is an active sensor
involving four emission light sources (UV_A, green, red or blue) to excite the fluorescence in plant
tissues. Generally, the UV_A (375 nm), green (530 nm), and red (630 nm) emission light sources were
used for plant monitoring while the blue (470 nm) emission light source was used for calibration. The
sensor has three filtered detectors for fluorescence recording including blue–green fluorescence (447
nm) (BGF), red fluorescence (665 nm) (RF) and far-red fluorescence (735 nm) (FRF). The fluorescence
measurements were not influenced by ambient light conditions [41].

All the variables provided by the Multiplex sensor and their explanations are listed in Table 2.
There are nine measured single fluorescence variables under three excitations and ten calculated
indices. The Simple Fluorescence Ratio (SFR) index is the ratio of the FRF and RF emission under
red (SFR_R) or green (SFR_G) illumination. SFR is related to leaf chlorophyll content. Due to the
chlorophyll absorption waveband overlapping with its fluorescence emission red band, the chlorophyll
re-absorption occurs at the shorter red wavelength rather than at the far-red wavelength. Therefore,
using the FRF as a reference, the absorption of the RF reflects the content of chlorophyll [24,44].
Accordingly, SFR increases as chlorophyll content increases. The Flavonols (FLAV) index compares the
fluorescence emission density of the far-red fluorescence under ultraviolet (FRF_UV) and red excitation
(FRF_R). It is related to the flavonoid concentration of the epidermal layer [45,46]. The N Balance Index
(NBI) is defined as the ratio of SFR and FLAV [47]. Therefore, NBI is proportional to both chlorophyll
and flavonoid concentrations. Blue–green to far-red fluorescence ratio (BRR_FRF) index is the ratio of
BGF and FRF under UV excitation. The ratio of fluorescence emission at 440 nm and 740 nm (F440/F740)
wavelength has been shown to be sensitive to environmental changes and growth conditions, and
can detect plant stress before visible symptoms occur [18,48]. The Anthocyanins (ANTH) index and
FERARI are both proven to be correlated with skin anthocyanin content [49].

Measurements were taken in motion with the sensor bottom along and just touching the crop
leaves on two representative rows in the center of each plot. The data collected from the two rows were
averaged to represent the plot [50]. This approach was named “measuring in motion” or “on-the-go”
(OG) mode. Notably, in the OG mode, the Multiplex sensor was placed right above the crop leaves
manually while walking forward as it is impractical to use a motorized vehicle or to mount the sensor
on a vehicle in paddy fields. For comparison purposes, data were also measured in the LS and AC
modes. The leaf-borne measurements in the LS mode were collected in the laboratory by taking ten
leaves in the second position from the top. In the AC mode, the measurements were collected in the
field by randomly selecting ten representative hills and placing the Multiplex sensor at a distance of
approximately 10 cm above each selected hill. The average reading was then used to represent the plot.

2.3. Plant Sampling and Measurements

At the PI, SE, and HE stages, for each plot three to six plant samples were collected in each
plot from the same rows where fluorescence sensor measurements were acquired. Various N status
indicators, including above-ground biomass (AGB), plant N concentration (PNC), leaf N concentration
(LNC), plant N uptake (PNU), and N nutrition index (NNI), were determined. The detailed sampling
dates and related information are listed in Table 1. Roots from all the plant samples were removed and
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the samples were cleaned with water and then separated into leaves, stems, and panicles (e.g., HE
stage). All samples were dried at 105 ◦C for half an hour to reduce plant metabolic activities. After
being dried in an oven at 70–80 ◦C to constant weight, the samples were weighed. N concentrations
for leaves, stems, and panicles were determined using the standard Kjeldahl method. The PNC is
the sum of the products of each organ’s N concentration and its proportional weight. The PNU was
determined by multiplying PNC by AGB. The NNI is defined as the ratio of the actual PNC (Na) and
the critical N concentration (Nc), with Nc being calculated following the equation developed for rice in
this region [51].

Table 2. Description of the variables and indices recorded by the Multiplex sensor (modified from
Table 1 by Zhang et al. [41]).

Variables Formula Explanation

BGF_UV / Blue–green Fluorescence under UV excitation
RF_UV / Red Fluorescence under UV excitation

FRF_UV / Far-Red Fluorescence under UV excitation
BGF_G / Reflected Blue–Green light under Green excitation
RF_G / Red Fluorescence under Green excitation

FRF_G / Far-Red Fluorescence under Green excitation

RF_R / Red Fluorescence under Red excitation
FRF_R / Far-Red Fluorescence under Red excitation
SFR_G FRF_G/RF_G Simple Fluorescence Ratio under Green excitation
SFR_R FRF_R/RF_R Simple Fluorescence Ratio under Red excitation

BRR_FRF BGF_UV/FRF_UV Blue–green to Far-Red Fluorescence Ratio under UV excitation
FER_RUV FRF_R/FRF_UV Flavonols under Red and UV excitation

FLAV Log (FRF_R/FRF_UV) Flavonols under Red and UV excitation
FER_RG FRF_R/FRF_G Anthocyanins under Red and Green excitation
ANTH Log (FRF_R/FRF_G) Anthocyanins under Red and Green excitation
NBI_G FRF_UV/RF_G Nitrogen Balance Index under UV and Green excitation
NBI_R FRF_UV/RF_R Nitrogen Balance Index under UV and Red excitation

FERARI# Log (5000/FRF_R) Fluorescence Excitation Ratio Anthocyanin Relative Index

# the variable is not measured in the “on-the-go” mode.

2.4. Statistical Analysis

The Multiplex data of the three measurement modes at each sampling stage, year, and cultivar
obtained under the varied N supply were subjected to analysis of variance (ANOVA) using SAS
software (SAS Institute, Cary, NC, USA). Moreover, the means for each treatment were compared using
the least significant difference (LSD) test at the 95% level of significance. Relationships between the
Multiplex indices and N status indicators were determined. All of the in-situ samples were divided
into two groups by a stratified random sampling method, with approximately 2/3 of the data used for
model calibration and the remaining for model validation. Simple linear regression analyses were
performed with SPSS 20.0 (SPSS Inc., Chicago, Illinois, USA). The coefficient of determination (R2)
was calculated for comparison. The relationships between Multiplex indices and N status indicators
established at different growth stages were validated. The root mean square error (RMSE) and the
relative error (RE), shown in Equations (1) and (2), between the predicted and observed values were
used for evaluation.

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (1)

RE(%) =
RMSE

y
× 100 (2)

where yi, ŷi, and y were the observed, predicted, and mean value, respectively.
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In order to evaluate normalized vegetation indices for improving the estimation of N nutrition
indicators, the well-fertilized plots were used as N sufficient reference to calculate the NSI index.
The NSI index equals to the ratio of Multiplex indices of the plots receiving normal N rates and the
well-fertilized plots. In this study, the treatment with the largest shoot dry matter was defined as the
well-fertilized plot, corresponding to the treatment of 130 or 160 kg N ha−1.

Finally, the NNI diagnostic results of validation data using Multiplex indices were compared
to the observed NNI by areal agreement and Kappa statistics [52]. Both used the same diagnostic
criteria: N was deficient when NNI < 0.95, N was optimal when NNI is between 0.95–1.05, and N was
in surplus when NNI > 1.05. The areal agreement (%) and Kappa statistics were used to determine
the accuracy of the diagnostic results. The areal agreement indicates the percentage of two groups
sharing a common category or diagnostic class [53]. The Kappa statistic is a more robust measure
of the agreement of two classifications by correcting the agreement that occurs by chance. When
Kappa equals 1, it indicates that the two categorization systems are identical. Kappa ≥ 0.60 indicates a
satisfactory agreement, while the Kappa < 0.4 indicates weak agreement [54].

3. Results

3.1. Comparison of the Three Measurement Modes

The three aforementioned measurement modes were applied for each treatment plot. The results
were compared to determine the best measurement mode. The abbreviation of the measurement mode
is added to the variable as a prefix. For example, AC_SFR_G represents the Multiplex index SFR_G
obtained from above the canopy.

Figure 1 shows box plots of Multiplex indices obtained from the three measuring modes at two
phenological stages. Since FLAV and ANTH are the log transformation values of FER_RUV and
FER_RG, only FLAV and ANTH were selected for the analysis to avoid duplication. During both the
PI and SE growth stages, the mean values of the Multiplex indices (except for the BRR_FRF) obtained
using the OG mode were significantly higher (P ≤ 0.05) than the leaf-borne indices measured in the LS
mode, whereas the latter were significantly higher than the measurements obtained in the AC mode.
In addition, substantial large data ranges were shown in the NBI_G and NBI_R indices measured in
motion and the leaf-borne BRR_FRF value.

The ANOVA results are listed in Table 3, indicating the sensitivities of the Multiplex indices to
five N rates (0, 70, 100, 130, and 160 kg N ha−1). N fertilization treatment effects were significant
for most of the Multiplex variables measured in the OG mode whereas the opposite was true for
the leaf-borne measurements. Comparatively, the N treatment effects were more significant for the
readings obtained in the OG mode than those collected in the AC mode, while the measurements
collected using the LS mode showed the minimum sensitivity to N rate changes. As an example,
Figure 2 further demonstrates the comparison of the selected Multiplex indices at each N application
rate for cultivar KY 131 in 2013. From Figure 2 we can also see that the indices measured using the OG
mode could better distinguish the effects of N supply compared to the other two modes. Especially,
the Multiplex indices measured in the OG mode performed consistently better than the others for
differentiating high N-application treatment (≥100 kg ha−1) effects. Similar results were achieved for
the variety LJ 21, or for the experiments conducted in 2012.

In conclusion, the ANOVA analysis results showed that most of the Multiplex variables obtained
in the OG mode were more sensitive to N supply, followed by the AC modes, while measurements
made in the LS mode were the least influenced by N supply (Table 3, Figure 2). Thus, only the results
of the OG mode were used for further analysis and discussion.
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≤ 0.05. 

 

Figure 1. Box plots of selected Multiplex index values for the above canopy, on-the-go, and leaf scale
measuring modes at the panicle initiation and stem elongation stages in 2013: Simple fluorescence
ratio under green excitation (SFR_G) (a), simple fluorescence ratio under red excitation (SFR_R) (b),
flavonol (FLAV) (c), blue–green to far-red fluorescence ratio (BRR_FRF) (d), anthocyanins (ANTH) (e),
nitrogen balance index under UV and red excitation (NBI_R) (f), and nitrogen balance index under UV
and green excitation (NBI_G) (g). Within the same growth stage, different lowercase (panicle initiation
stage) or uppercase letters (stem elongation stage) above or below the boxes indicate that the Multiplex
index values differed significantly according to the least significant difference test at P ≤ 0.05.
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Table 3. Significance test (ANOVA) of Multiplex variables measured in three modes across 5 N rates: Above canopy (AC), “on-the-go” (OG), and leaf scale (LS) at the
panicle initiation (PI), stem elongation (SE), and heading (HE) growth stages for the rice varieties Kongyu 131 (KY 131) and Longjing 21 (LJ 21) in 2013.

Variety Stage BGF_U V RF_UV FRF_UV BGF_G RF_G FRF_G RF_R FRF_R SFR_G SFR_R BRR_FRF FLAV ANTH NBI_G NBI_R FERARI

KY 131

AC measurement mode
PI NS * * NS * * * * ** ** NS NS NS NS NS **
SE NS NS NS NS NS NS NS NS NS * NS NS NS * NS NS

OG measurement mode
PI *** ** ** ** *** *** *** *** *** *** ** * * ** **
SE ** *** *** NS ** *** ** ** ** ** ** ** ** ** **
HE NS *** *** NS ** ** * ** ** ** ** ** ** *** ***

LS measurement mode
PI NS NS NS NS NS NS NS * * * NS NS NS NS NS NS
SE NS NS NS NS NS * NS * *** ** NS NS NS ** * *
HE NS NS NS ** NS * NS * ** * * NS NS * * *

LJ 21

AC measurement mode
PI NS * * NS * * * * ** ** ** * * ** * **
SE NS * * NS * * * * * * ** NS NS NS NS *

OG measurement mode
PI NS * * NS NS * NS * ** ** * * * ** **
SE NS ** ** NS NS ** NS ** *** *** * * * ** **
HE NS *** *** NS ** *** NS *** *** *** *** *** NS *** ***

LS measurement mode
PI NS NS NS NS NS NS NS NS * ** NS NS NS * NS NS
SE NS ** ** NS NS * NS NS * NS ** NS NS * * *
HE NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

*** Significant at the 0.001 level; ** Significant at the 0.01 level; * Significant at the 0.05 level; NS Not significant.
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Figure 2. Mean value comparisons for each Multiplex index at the three growth stages and each N
application rate (kg N ha−1) for variety KY 131 in 2013. Means and standard errors are shown in each
cell for N rate treatments with each measurement mode (Above Canopy, AC; On-the-go, OG; Leaf
Scale, LS). Different lowercase letters at the bottom of the plot at each growth stage indicate significant
differences according to the least significant difference test at P ≤ 0.05.

3.2. Changes in Multiplex Indices (“On-The-Go” Mode) over Growth Stages under Different N Supplies

The SFR_G, SFR_R, NBI_G, and NBI_R indices demonstrated an increasing trend as N rate
increased, while a decreasing trend was shown for FLAV (Figure 2). Comparatively, the ANTH and
BRR_FRF values were less sensitive to the changes in N rates. The values of these SFR_G, SFR_R,
NBI_G, and NBI_R indices increased from the PI to SE stage but decreased slightly from the SE to HE
stage, because the panicle formation decreased the chlorophyll/N concentration in the upper layer at
the HE stage. The opposite was true for the BRR_FRF, FLAV, and ANTH. NBI_G and NBI_R could
differentiate different N application rates the best regardless of the growth stages, followed by SFR_G,
SFR_R, BRR_FRF, and FLAV. The performance of ANTH was the worst (Figure 2).

3.3. Correlations between Multiplex Indices (“On-The-Go” Mode) and N Status Indicators

The linear regression results of the seven Multiplex indices and the five N status indicators at
three growth stages across the two rice varieties are shown in Table 4. The SFR_G, SFR_R, NBI_G, and
NBI_R indices were positively correlated with the N indicators whereas the BRR_FRF, ANTH, and
FLAV were inversely associated with them. The R2 of the regression models based on these indices
varied from 0.03 to 0.78. The best performing index varied at different stages, but NBI_G and NBI_R
showed steady high correlations with all five N status indicators. The second-best performing indices
were BRR_FRF and FLAV. The SFR_G and SFR_R indices displayed high or moderate correlations with
the N indicators during the PI or HE stage, respectively.
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Table 4. The coefficients of determination (R2) for the linear relationships between standard and normalized Multiplex indices and N status indicators (leaf N
concentration (LNC), plant N concentration (PNC), N nutrition index (NNI), aboveground biomass (AGB) and plant N uptake (PNU)) for two varieties at the panicle
initiation (PI), stem elongation (SE), and heading (HE) growth stages.

Multiplex Indices LNC (g kg−1) PNC (g kg−1) NNI AGB (t ha−1) PNU (kg ha−1)

PI SE HE PI SE HE PI SE HE PI SE HE PI SE HE

Standard indices
SFR_G 0.63 ** 0.30 ** 0.49 ** 0.64 ** 0.34 ** 0.46 ** 0.72 ** 0.31 ** 0.59 ** 0.60 ** 0.14 * 0.41 ** 0.66 ** 0.21 ** 0.58 **
SFR_R 0.59 ** 0.28 ** 0.42 ** 0.58 ** 0.34 ** 0.38 ** 0.66 ** 0.29 ** 0.54 ** 0.56 ** 0.13 * 0.45 ** 0.61 ** 0.19 ** 0.57 **

BRR_FRF 0.53 ** 0.52 ** 0.67 ** 0.47 ** 0.48 ** 0.66 ** 0.57 ** 0.48 ** 0.72 ** 0.50 ** 0.26 ** 0.33 ** 0.54 ** 0.39 ** 0.59 **
FLAV 0.40 ** 0.64 ** 0.55 ** 0.39 ** 0.64 ** 0.55 ** 0.58 ** 0.73 ** 0.67 ** 0.55 ** 0.50 ** 0.38 ** 0.59 ** 0.68 ** 0.59 **
ANTH 0.38 ** 0.12 * 0.27 ** 0.41 ** 0.14 * 0.33 ** 0.60 ** 0.10 * 0.47 ** 0.60 ** 0.03NS 0.36 ** 0.61 ** 0.06NS 0.48 **
NBI_G 0.54 ** 0.68 ** 0.62 ** 0.52 ** 0.71 ** 0.61 ** 0.69 ** 0.78 ** 0.76 ** 0.63 ** 0.50 ** 0.47 ** 0.68 ** 0.71 ** 0.71 **
NBI_R 0.52 ** 0.67 ** 0.58 ** 0.52 ** 0.71 ** 0.56 ** 0.70 ** 0.77 ** 0.74 ** 0.64 ** 0.47 ** 0.51 ** 0.69 ** 0.68 ** 0.72 **

Normalized indices
SFR_GNSI 0.58 ** 0.39 ** 0.67 ** 0.65 ** 0.42 ** 0.70 ** 0.55 ** 0.54 ** 0.69 ** 0.35 ** 0.45 ** 0.24 ** 0.43 ** 0.50 ** 0.52 **
SFR_RNSI 0.57 ** 0.42 ** 0.62 ** 0.61 ** 0.46 ** 0.67 ** 0.52 ** 0.57 ** 0.68 ** 0.33 ** 0.45 ** 0.25 ** 0.40 ** 0.52 ** 0.52 **

BRR_FRFNSI 0.49 ** 0.34 ** 0.63 ** 0.48 ** 0.41 ** 0.74 ** 0.41 ** 0.56 ** 0.76 ** 0.26 ** 0.50 ** 0.28 ** 0.33 ** 0.56 ** 0.58 **
FLAVNSI 0.42 ** 0.51 ** 0.70 ** 0.44 ** 0.60 ** 0.76 ** 0.41 ** 0.74 ** 0.82 ** 0.26 ** 0.55 ** 0.34 ** 0.33 ** 0.70 ** 0.64 **
ANTHNSI 0.51 ** 0.40 ** 0.57 ** 0.64 ** 0.40 ** 0.65 ** 0.54 ** 0.57 ** 0.56 ** 0.34 ** 0.52 ** 0.11 * 0.42 ** 0.58 ** 0.35 **
NBI_GNSI 0.59 ** 0.53 ** 0.69 ** 0.61 ** 0.63 ** 0.75 ** 0.55 ** 0.76 ** 0.78 ** 0.35 ** 0.55 ** 0.31 ** 0.43 ** 0.71 ** 0.61 **
NBI_RNSI 0.60 ** 0.55 ** 0.69 ** 0.65 ** 0.64 ** 0.75 ** 0.58 ** 0.77 ** 0.79 ** 0.36 ** 0.56 ** 0.31 ** 0.46 ** 0.72 ** 0.61 **

** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level; NS Correlation is not significant.
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Compared to the counterpart of the standard indices, the normalized sufficiency indices SFR_GNSI,
SFR_RNSI, and ANTHNSI exhibited better linear relationships with LNC, PNC, and NNI in most
of the cases, especially at the SE and HE stages. The NBI_GNSI and NBI_RNSI displayed enhanced
relationships with the LNC and PNC at the PI and HE stages, and with the NNI at the HE stage. The
BRR_FRFNSI, FLAVNSI showed improved associations with PNC at the PI and HE stages, and with
NNI at the SE and HE stages. All the standard indices showed moderate–high relationships with the
AGB and PNU during the PI and HE stages, while at the HE stage, greatly improved R2 values were
obtained using the normalized indices.

3.4. Validation of the Estimation Models for N Status Indicators

In order to diagnose rice N status, linear regression models between the Multiplex indices and N
indicators were established. The regression models varied across growth stages. Table 5 lists the best
performing models at the PI, SE, and HE stages. The best performing indices differed across the stages.
However, the relationships of NBI_G and NBI_R with N indicators were relatively more stable. After
normalization, the NBI_RNSI showed an absolute advantage for N status estimation at the PI and SE
growth stages, while the FLAVNSI demonstrated to be optimal for estimating most of the N indicators.

Table 5. Equations and coefficients of determination of linear regression models (n = 40) at different
growth stages based on the best performing Multiplex index and crop N indicators (LNC, PNC, NNI,
PNU, and AGB).

Growth Stage Standard Indices Model R2 Normalized Indices Model R2

PI SFR_G LNC = 4.468x + 5.932 0.63 NBI_RNSI LNC = 23.918x + 10.413 0.60
PI SFR_G PNC = 2.912x + 4.961 0.64 NBI_RNSI PNC = 15.323x + 8.247 0.65
PI SFR_G NNI = 0.2442x-0.5188 0.72 NBI_RNSI NNI = 1.1412x − 0.1116 0.58
PI NBI_R PNU = 88.184x-33.56 0.69 NBI_RNSI PNU = 85.908x − 43.67 0.46
PI NBI_G AGB = 1.5268x-1.1565 0.64 NBI_RNSI AGB = 2.905x − 1.1184 0.36

SE NBI_G LNC = 8.707x + 14.352 0.68 NBI_RNSI LNC = 17.96x + 16.279 0.55
SE NBI_G PNC = 5.544x + 9.082 0.71 NBI_RNSI PNC = 12.317x + 9.542 0.64
SE NBI_G NNI = 0.5003x + 0.0582 0.78 NBI_RNSI NNI = 1.1571x + 0.0601 0.77
SE NBI_G PNU = 51.494x-40.873 0.71 NBI_RNSI PNU = 120.8x − 42.157 0.72
SE NBI_G AGB = 1.7391x-0.4502 0.50 NBI_RNSI AGB = 4.1975x − 0.5961 0.56

HE BRR_FRF LNC = -210.31x + 47.452 0.67 NBI_GNSI LNC = 21.646x + 15.473 0.69
HE BRR_FRF PNC = -131.79x + 24.313 0.66 FLAVNSI PNC = -31.59x + 49.591 0.76
HE NBI_G NNI = 0.5942x-0.054 0.76 FLAVNSI NNI = -3.0631x + 4.3956 0.82
HE NBI_R PNU = 213.07x-67.623 0.72 FLAVNSI PNU = -462.81x + 612.19 0.64
HE NBI_R AGB = 8.3363x + 0.0609 0.51 FLAVNSI AGB = -15.729x + 24.131 0.34

Figure 3 shows the RE values of the validation models for six Multiplex indices (SFR_G, SFR_R,
BRR_FRF, FLAV, NBI_G, and NBI_R) and the N status indicators. The RE values for AGB and PNU
estimations based on these indices decreased steadily with advancing growth stages, while a slightly
increasing trend was observed for the LNC and PNC estimation models from the SE to HE stage. The
RE values for LNC (4.50%–10.24%) and PNC (5.87%–10.87%) models were much smaller than those
for AGB (15.49%–30.18%) and PNU (19.31%–31.25%), while the REs of NNI remained similar during
the three growth stages. At the earlier to middle growth stages, NBI_R and NBI_G presented a lower
RE than the other four indices for all the five N indicators. At the HE stage, however, the prediction
accuracies of the six indices were similar.
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nutrition index (NNI) at the panicle initiation (PI), stem elongation (SE), and heading (HE) stages.

3.5. Rice N Status Diagnosis

The best performing indices including SFR_G, BRR_FRF, NBI_G, NBI_R, NBI_GNSI, NBI_RNSI and
FLAVNSI were validated using independent data sets (Table 5). Moderate–high model performance
with R2 ranging from 0.34 to 0.82 was observed, especially for the LNC, PNC, and NNI estimations.
The areal agreement and Kappa statistics were compared at the critical N fertilizer application stages
(SE and HE) to evaluate the N diagnostic accuracies of the indices. Results confirmed that the NNI
models based on NBI_R and NBI_G performed consistently well at the SE and HE growth stages, and
their corresponding NSI indices further improved the results (Table 6). At the SE stage, the NBI_RNSI

achieved the highest diagnostic accuracy (areal agreement = 90%; Kappa = 0.84), while the best
accuracy was achieved by FLAV at the HE stage (areal agreement = 90%; Kappa = 0.76). In addition,
across the two growth stages, the NBI_RNSI showed the highest diagnostic consistency, followed by
the BRR_FRFNSI.
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Table 6. Agreement and Kappa statistics for different indices (SFR_G, SFR_R, BRR_FRF, FLAV,
ANTH, NBI_G, and NBI_R) and corresponding normalized indices (SFR_GNSI, SFR_RNSI, BRR_FRFNSI,
FLAVNSI, ANTHNSI, NBI_GNSI, and NBI_RNSI) regarding diagnostic results (Nitrogen Nutrition Index)
at different growth stages.

Comparison Agreement (%) Kappa statistics Comparison Agreement (%) Kappa statistics
SE HE SE HE SE HE SE HE

SFR_G and NNI 75 65 0.554 *** 0.310 * SFR_GNSI and NNI 70 85 0.494 ** 0.661 ***
SFR_R and NNI 70 70 0.510 *** 0.322 * SFR_RNSI and NNI 75 85 0.583 *** 0.661 ***

BRR_FRF and NNI 60 70 0.363 * 0.409 ** BRR_FRFNSI and NNI 80 80 0.655 *** 0.538 ***
FLAV and NNI 75 90 0.605 *** 0.763 *** FLAVNSI and NNI 75 80 0.558 *** 0.570 ***
ANTH and NNI 55 75 0.283NS 0.355 * ANTHNSI and NNI 80 65 0.669 *** 0.227NS
NBI_G and NNI 75 80 0.595 *** 0.590 *** NBI_GNSI and NNI 75 85 0.673 *** 0.698 ***
NBI_R and NNI 75 80 0.595 *** 0.590 *** NBI_RNSI and NNI 90 85 0.840 *** 0.698 ***

*** Significant at the 0.001 level; ** Significant at the 0.01 level; * Significant at the 0.05 level; NS Not significant.

4. Discussion

4.1. Multiplex Measurement Modes and Estimation of Crop N Indicators by Fluorescence Indices

The N treatment effects were more significant for the readings obtained in the OG mode than those
collected in the AC mode (Table 3, Figure 2), which is different from the finding by Diago et al. [39] who
reported a 20% loss of information occurred when using the Multiplex on-the-go (compared to the AC
mode) for N assessment of grapevine. This is because the OG measurements in this study were taken
manually by placing the Multiplex sensor right on the top of the rice rather than a small distance above
the rice canopy while passing through the rice paddy. In contrast, in the study by Diago et al. [39], the
Multiplex sensor was mounted onto an all-terrain vehicle and placed 1.5 m above the ground so that
the leaves on the mid-part of the canopy were automatically measured at a 20 cm distance, the same
measuring distance as their AC mode. In addition, this study revealed that measurements made using
the LS mode were the least sensitive to N supply, contrasting to the result by Zhang et al. [41] who
found Multiplex measurements made from corn leaves were more capable of distinguishing plant N
status than those made from above the plants. While the leaf scale measurements made in this study
were collected in the laboratory by taking ten leaves in the second position from the top, the leaf-borne
measurements by Zhang et al. [41] were made on 20 representative plants in the center two rows of
each plot in the field, which is more similar to the OG rather than the LS method in this study. Another
possible reason for their better results with the LS method is that the OG measurements do not give
much time to choose leaves and result in more random leaf choosing than the LS method, which may
have an unwanted tendency to choose “good” leaves. This is particularly true for maize, because
systematic use of a representative leaf is easier, as it is well known which is the most representative
leaf for each growth stage, given its determined growth. For rice, the individual leaves are quite
small and the signal obtained during the measurements taken on a leaf is relatively weak and can
be easily affected by other factors. One advantage the “measuring in motion” or OG mode has is
efficiency, especially when the sensor is mounted on a vehicle or other automatic devices, which might
make practical applications of such non-destructive technology over large areas possible. Bringing the
sensor close to or even touching the leaves of the crop in OG mode may help reduce information loss.
However, further well-designed studies are needed to confirm this finding.

Strong relationships between the Multiplex indices (SFR_G, SFR_R, BRR_FRF, FLAV, NBI_G,
and NBI_R) measured in the OG mode and the five N indicators were achieved with low RE
and high R2 values (Table 4, Figure 3). This finding conforms to previous research results in this
field [26,42,55,56]. Many studies confirmed SFR was a good fluorescence index for chlorophyll content
monitoring [24,38,57]. However, in this study, it was found that the R2 of the SFR_G, SFR_R for LNC,
PNC, and NNI estimation decreased steadily from the early-stage to later stages, while an opposite
trend was observed for FLAV. Padilla et al. [55] found that the relationships between the NNI and
SFR_G changed with the phenological stages of cucumber (Cucumis sativus L.). Firstly, the consistency
of the relationship between chlorophyll content and N concentration varied with crop development,
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leading to different performances of SFR for N concentration estimation. For example, the linear
correlation between LNC and chlorophyll meter readings of rice was weaker at the SE stage than at
other growth stages [58]. Secondly, the weaker differentiation ability of SFR under the unlimited N
conditions may also be a reason [55]. The performance of FLAV increased from the PI to HE stages,
which was confirmed by Padilla et al. [59], who found the relationship of FLAV and NNI increased at
the middle to late growth stages. The better performance of FLAV at the later stage may be attributed to
the accumulation of the flavonols content in leaves under light radiation [44,60]. The NBI_G and NBI_R
indices were shown as the best indices for estimating the N indicators (Table 5). Many studies have
proven that the NBI indices appeared to be the most efficient in estimating the N status [47,56,59,61].
This is because the NBI is a ratio of SFR and FLAV, which makes it more robust than using FLAV or
SFR alone to reduce the effects of leaf age or other factors [34,36,47]. The NBI_G and NBI_R had similar
performance in this study, as demonstrated by Longchamps and Khosla [27]. Moreover, Longchamps
and Khosl [27] found that SFR was less sensitive to N application than NBI, which conforms to our
results, as shown in Figure 2. In most cases, the SFR_G and SFR_R indices could not distinguish
between the 100 and 130 kg N ha−1 treatments, but NBI could. The BRR_FRF index was significantly
correlated with the N nutritional status and was especially sensitive to N deficiency in this research.
When there is N stress, the fluorescence ratio of blue–green/far-red will increase after exposure to
elevated UV radiation to avoid or alleviate the damage of the photosynthetic apparatus [62]. Generally,
the UV-protection response takes place before the chlorophyll damage can be seen, so the BRR_FRF can
also be considered as a potential index that can realize early N deficiency detection [63]. The BRR_FRF
was also very sensitive to environmental stresses, such as disease and drought [38,63,64]. The ANTH
index provided by Multiplex is commonly used to reflect anthocyanin content, which corresponds to
the maturation degree of fruit [49,65]. In this research, the low values of ANTH were due to the low
anthocyanin content in the rapid vegetative growth phase for rice [66]. Nevertheless, ANTH was also
found to be closely related to the leaf chlorophyll concentration in some studies [38,41]. This study
revealed that ANTH was significantly related to N status indicators in PI and HE growth stages with
moderate R2 values (Table 4).

4.2. Normalized Nitrogen Sufficiency Fluorescence Indices

Our research involved two years and two varieties of experiments. In these experiments, N
fertilization rate is the main variable, and the variation is so high that it will probably override any other
source of variation. In a commercial field, many factors can influence N availability, N and Chlorophyll
relationship, or Chlorophyll (+FLAV and ANTH) relations to fluorescence indices, including biotic
or abiotic stresses at the moment of measurement or in the history of the crop or even the field. The
normalized N sufficiency index approach has been suggested to reduce the influence of the varieties,
developmental stages, and other variables on SPAD values or spectral data [3,11,67]. From the results
of this study, in most cases, the normalized NSIs were better associated with the LNC, PNC, and
NNI (Table 4). The R2 of the ANTHNSI was improved the most, followed by the NBI_GNSI and
NBI_RNSI. However, the improvement in R2 for BRR_FRFNSI was minimal. The variance analysis of
this study showed consistent results, which demonstrated that NSI indices could reduce the influence
of inter-annual and growth stage differences. Since NNI itself is a diagnostic criterion, it represents an
optimal N status when NNI is equal to one [68]. Most of the NSI indices greatly improved the NNI
diagnostic accuracy at the critical topdressing (SE and HE) stages (Table 6). Similarly, Lu et al. [43]
observed that the NNI inversion through the normalized vegetation indices further improved the N
nutrition diagnostic results of rice.

Hussain et al. [69] proposed a critical NSI value of 0.90 for rice. However, in this study, when
the NSI indices were 0.90, different optimal NNI values, ranging from 0.85 to 2.14, were derived by
different indices at different developmental stages. Only the corresponding optimal NNI values for
the NBI_GNSI and NBI_RNSI indices were close to one (ranging from 0.91 to 1.19). Therefore, to avoid
the risk of misdiagnosis, the NSI threshold was not used as a diagnostic criterion directly. A possible
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reason for this is that the N fertilizer application rate in this study was only 1.3–1.6 times higher than
the optimal amount instead of 1.8–2.0 times higher than recommended for the well-fertilized N plot as
Hussain et al. [69] suggested. Furthermore, all of the Multiplex indices were divided by the readings
of the N rate with the largest shoot dry matter at each sampling date to obtain a sufficiency index.
However, Varvel et al. [70] suggested that the maximum readings within each cropping system, variety,
and year should be considered as the normalized criterion. Obviously, with different normalization
criteria, different sufficiency indices will be obtained, which will affect the corresponding analysis
results. Another limitation of the NSI approach is that well-fertilized reference plots need to be
established in each farmer’s field for practical application purposes, and some farmers may not be
willing to do this. More in-depth and systematic research is expected in the future.

4.3. The Application Potential of the Multiplex Sensor

The Multiplex indices presented good R2 values for LNC and PNC estimations at the earlier
growth stages (Table 4). In particular, the validation data showed that the RE values for LNC and PNC
estimations were as low as 6%–7% (Figure 3c,d). This is consistent with the results of Cerovic et al. [71]
and Agati et al. [56], who have shown a high correlation between the fluorescence index and LNC. NBI
and LNC had a fairly linear relationship. Therefore, the NBI indices can be used to more accurately
estimate a wider range of LNC. Agati et al. [56] also found the results based on reflectance imaging
(camera picture) are less sensitive to N application than fluorescence-based indices. Research by
Stroppiana et al. [72] and Yu et al. [19] on rice showed unsatisfactory results for the estimation of LNC
and PNC based on reflectance spectroscopy. This is possibly due to the fact that the effect of N on the
leaf area index and biomass is much greater than its effect on chlorophyll content. Second, near-infrared
radiation is hardly absorbed in the canopy and is highly transmissive, so its correlation with leaf
area index or biomass is extremely high; while visible light, especially the blue and red radiation, is
easily absorbed by chlorophyll and its transmittance is low, so it is highly correlated with chlorophyll
content [15,72]. On the other hand, changes in plant metabolism indicators are fast or slow due to
changes in response to the environment. However, the sensitivity of reflectance-based parameters
does not always provide satisfactory monitoring results [73]. Demotes-Mainard et al. [74] observed
that changes in N concentration took precedence over changes in biomass. Thus, fluorescence-based
techniques that are highly sensitive to plant N status information may address the limitation of
reflectance-based methods [27,73]. Similarly, the Multiplex indices, especially the NBI_G and NBI_R,
presented accurate estimation for NNI, with R2 reaching a maximum of 0.72–0.78, and the validation
results also showed a low inversion error for NNI (RMSE ≤ 0.16, RE ≤ 15%) (Table 4). Many studies
have confirmed that NBI has a strong estimation potential for NNI [47,55,59]. This is because NBI is
the ratio of SFR to FLAV. The SFR index was considered to be an important parameter for estimating
chlorophyll concentration, which was often used as an index of surface-based N [75], while the FLAV
parameter directly reflects flavonol content, which is controlled by light as well as leaf mass per area,
and has a strong correlation with leaf mass [76]. Therefore, NBI as the SFR/FLAV ratio is the best N
nutrition diagnostic index.

The fluorescence-based indices are more sensitive to chlorophyll or N content than the
reflectance-based indices and can detect the difference in N nutrition status earlier. However, the
difference of the stage-based models between the indices and the N nutrition indicators based on the
canopy reflectance instrument is smaller than that based on fluorescence [59]. The surface area of the
crop involved in each test when using the canopy reflectance spectroscopy sensors is larger than the
fluorescence sensors [59]. Therefore, canopy reflectance measurements are more representative, while
fluorescence instruments require increasing the number of tests to obtain sufficiently representative
data. Although the performance of the fluorescence sensor was quite good for estimating LNC, PNC,
and NNI, 22%–60% of their variability was still not explained. In addition, the fluorescence sensor
did not perform very well for estimating plant biomass in the middle to late stages (Table 4). It has
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been suggested to combine the fluorescence and reflectance data to improve the estimation of plant N
status [3,73]. This may be one of the important research directions in the future.

5. Conclusions

This research compared the LS, OG, and AC measurement modes of the fluorescence instrument
Multiplex®3 and determined that the OG mode was best suited for this rice N status study. Using the
OG mode, stable test results and crop growth information were derived. The results revealed that
the fluorescence indices of NBI, SFR, BRR_FRF, and FLAV were significantly correlated to all five N
status indicators from the PI through HE growth stages. Among them, NBI_G and NBI_R were the
best performing indices and highly correlated to LNC (R2 = 0.52–0.68), PNC (R2 = 0.52–0.71), NNI
(R2 = 0.69–0.78), AGB (R2 = 0.47–0.64), and PNU (R2 = 0.68–0.72) at the three growth stages. The
normalized sufficiency indices of the Multiplex parameters could greatly improve the LNC, PNC,
and NNI estimation ability, especially at the HE stage. The N diagnostic results indicated that the
NBI_RNSI and FLAV achieved the highest diagnostic accuracy rate (90%) at the SE and HE stage,
respectively, while NBI_RNSI showed the highest analytical consistency across growth stages. The
results suggest that the Multiplex sensor can be used to reliably estimate N nutritional status for rice in
cold regions, especially for the estimation of LNC, PNC, and NNI. The normalized sufficiency indices
based on Multiplex indices may further improve the accuracy of N nutrition diagnosis by reducing the
differences between years and varieties.
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