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Abstract: RapidSCAN is a portable active canopy sensor with red, red-edge, and near infrared
spectral bands. The objective of this study is to develop and evaluate a RapidSCAN sensor-based
precision nitrogen (N) management (PNM) strategy for high-yielding rice in Northeast China. Six rice
N rate experiments were conducted from 2014 to 2016 at Jiansanjiang Experiment Station of China
Agricultural University in Northeast China. The results indicated that the sensor performed well
for estimating rice yield potential (YP0) and yield response to additional N application (RIHarvest)
at the stem elongation stage using normalized difference vegetation index (NDVI) (R2 = 0.60–0.77
and relative error (REr) = 6.2–8.0%) and at the heading stage using normalized difference red edge
(NDRE) (R2 = 0.70–0.82 and REr = 7.3–8.7%). A new RapidSCAN sensor-based PNM strategy was
developed that would make N recommendations at both stem elongation and heading growth
stages, in contrast to previously developed strategy making N recommendation only at the stem
elongation stage. This new PNM strategy could save 24% N fertilizers, and increase N use efficiencies
by 29–35% as compared to Farmer N Management, without significantly affecting the rice grain
yield and economic returns. Compared with regional optimum N management, the new PNM
strategy increased 4% grain yield, 3–10% N use efficiencies and 148 $ ha−1 economic returns across
years and varieties. It is concluded that the new RapidSCAN sensor-based PNM strategy with
two in-season N recommendations using NDVI and NDRE is suitable for guiding in-season N
management in high-yield rice management systems. Future studies are needed to evaluate this
RapidSCAN sensor-based PNM strategy under diverse on-farm conditions, as well as to integrate it
into high-yield rice management systems for food security and sustainable development.

Keywords: RapidSCAN sensor; nitrogen recommendation algorithm; in-season nitrogen management;
nitrogen use efficiency; yield potential; yield responsiveness

Remote Sens. 2020, 12, 1440; doi:10.3390/rs12091440 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8419-6511
https://orcid.org/0000-0002-6302-3707
http://dx.doi.org/10.3390/rs12091440
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/9/1440?type=check_update&version=2


Remote Sens. 2020, 12, 1440 2 of 21

1. Introduction

As one of the major cereal crops in the world, more than half of the world’s population takes rice
(Oryza sativa L.) as the staple food [1]. The area under rice cultivation in Asia accounts for 90% of the
world’s total rice area [2]. At the same time, inappropriate nitrogen (N) fertilizer application rates and
timing result in low N use efficiency (NUE) in this area [3]. Northeast China is a major rice production
region in China and the abovementioned management problems are common [4–6]. Facing these
challenges, Chinese agricultural scientists have developed regional optimum N management (RONM)
systems, aiming to obtain higher yields with less resources and N losses suitable for different
regions [4,6,7]. The RONM system using fixed N rates and timing optimum for a region may not
be optimal for a specific site, year, and variety in that region [8,9]. Precision N management (PNM)
strategies consider both spatial and temporal variability in soil N supply and crop N demand. They have
the potential to further improve NUE over the RONM strategy [8].

Active crop canopy sensors have been increasingly used to develop in-season site-specific
N management strategies, allowing non-destructive real-time diagnosis of crop N status and N
recommendations. They have their own light sources and are not affected by environmental light
conditions [8]. The GreenSeeker active canopy sensor (Trimble Navigation Limited, Sunnyvale,
CA, USA) is a commonly used sensor for guiding in-season N management [8]. It has red (R) and
near-infrared (NIR) spectral wavebands and two default vegetation indices (VI): normalized difference
vegetation index (NDVI) and ratio vegetation index (RVI) [8]. A GreenSeeker sensor-based PNM
strategy has been previously developed to improve NUE while maintaining rice yield in Northeast
China [10]. In this strategy, basal and tillering N rates were the same as RONM, while panicle fertilizer
rates at the stem elongation stage were adjusted based on N fertilizer optimization algorithm using the
GreenSeeker sensor [10]. The key components of this strategy include in-season estimation of yield
potential without additional topdressing N application (YP0) and N response index (RIHarvest) [10–12].
The potential yield with sufficient topdressing N application (YPN) can be estimated by multiplying
YP0 and RIHarvest [11] and then the N topdressing requirement is estimated by dividing the yield
increase (YPN−YP0) by the average NUE [10]. Because of the saturation problem of NDVI at moderate
to high biomass conditions, the estimation of YP0 and RIHarvest using GreenSeeker NDVI was not very
satisfactory across all stages [10] or at later growth stages (e.g., the heading stage) [13]. A previous
study using the Crop Circle ACS 470 sensor (Holland Scientific, Inc., Lincoln, NE, USA) indicated
that red edge-based VIs had the potential to overcome the NDVI saturation problem and improve the
estimation of YP0 and RIHarvest, especially at later rice growth stages [13].

The RapidSCAN CS-45 sensor (Holland Scientific Inc., Lincoln, Nebraska, USA) is a relatively
new alternative active crop canopy sensor available in the market. It is a lightweight and convenient
portable sensor with built-in global positioning system and red edge (RE) band in addition to red and
near infrared bands. Another advantage of the RapidSCAN sensor is that the sensor data collection is
not influenced by measurement height in the range of 0.3 to 3 m [14]. It provides NDVI and normalized
difference red edge (NDRE) as two default VIs, in addition to the R, RE, and NIR waveband reflectance.
Besides NDVI and NDRE, many different VIs can be calculated. This sensor was found to perform
well for estimating rice N status indicators at different growth stages [14]. Zhang et al. [15] reported
that NDRE had a better rice yield prediction accuracy than NDVI from stem elongation to booting
stage using the RapidSCAN sensor. More studies are needed to develop RapidSCAN sensor-based
PNM strategies for rice.

To ensure both food security and agricultural sustainable development, integrated precision rice
management systems have been developed to increase rice yield and NUE simultaneously [16]. In such
systems, in addition to N applications before transplanting, at the tillering and stem elongation stages,
grain N fertilizer was also applied at the heading stage to better meet the N demand of high-yielding
rice. The previously developed GreenSeeker-based PNM strategies did not perform well to guide grain
N fertilizer application at the heading stage because of the NDVI saturation [13]. The RapidSCAN
sensor has the potential to overcome the saturation problem of NDVI and research is needed to develop
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a RapidSCAN sensor-based PNM strategy for high-yielding rice management systems that will guide
topdressing N applications at both stem elongation and heading stages.

Therefore, the objectives of this study are to (i) evaluate the potential of in-season estimation of the
rice yield potential and the response to N application at different growth stages using the RapidSCAN
CS-45 sensor, (ii) develop a RapidSCAN sensor-based PNM strategy for high-yielding rice, and (iii)
evaluate the RapidSCAN sensor-based PNM strategy for different varieties, N status, and years in
Northeast China.

2. Materials and Methods

2.1. Study Site

The study was conducted in Sanjiang Plain, Heilongjiang Province, Northeast China (47.2◦N,
132.6◦E). The main soil type in this area is Albic soil, classified as Mollic Planosols in the FAO-UNESCO
system, and typical Argialbolls in the soil taxonomy [17]. The study site is located in a cool-temperate
sub-humid continental monsoon climate zone. The temperature ranges from −41 ◦C in the winter to 38
◦C in the summer, with a mean annual temperature of 1.9 ◦C. About 72% of its annual precipitation
(500–600 mm) occurs from June to September. The annual frost-free period is about 120–140 days
long [16].

2.2. Calibration and Validation Experiments

Six plot experiments (Exp.) were conducted from 2014 to 2016 at Jiansanjiang Experiment
Station of China Agricultural University, involving two different varieties, N rates and sensor-based N
management strategies (Table 1). Each experiment had the same five N rates (0, 40, 80, 120, and 160
kg N ha−1). In addition, the experiments in 2015–2016 consisted of a sensor-based PNM treatment
using the RapidSCAN sensor. The N fertilizer was applied in five N rate treatments (except the control
treatment without N application) as three splits: 40% as basal N before transplanting, 30% at tillering
stage, and the remaining 30% N at the stem elongation stage. According to previous studies [6,9],
the N rate treatment for 120 kg N ha−1 was used as RONM system in this region. The sensor-based
PNM treatments were also based on the RONM system, with the same basal (48 kg ha−1) and tillering
(36 kg ha−1) N rates. The panicle and grain fertilizer rates were determined according to active
canopy sensor-based N recommendation algorithm and applied at the stem elongation and heading
stages, respectively.

Table 1. The details about the crop growth and crop sensing within the experiments performed in
this study.

Experiment Year Variety Transplanting Date Harvest Date
Stem Elongation Stage Heading Stage

Sensing Date DAT Sensing Date DAT

Exp. 1 2014

Longjing 31

19 May 29 September 3 July 45 26 July 68

Exp. 2 2015 20 May 4 October 6 July 47 30 July 71

Exp. 3 2016 19 May 25 September 5 July 47 25 July 67

Exp. 4 2014

Longjing 21

19 May 29 September 7 July 49 26 July 68

Exp. 5 2015 20 May 4 October 7 July 48 2 August. 74

Exp. 6 2016 19 May 25 September 5 July 47 25 July 67

Note: DAT: the number of days from transplanting to sensing.

Exp. 1 to 3 used Longjing 31, which is an 11-leaf variety requiring about 130 days to reach maturity.
Exp. 4 to 6 used Longjing 21, which is a 12-leaf variety that needs about 133 days to maturity. All plot
experiments were replicated three times in a randomized complete block design. The N source was
granular urea. To evaluate the potential of the crop canopy sensors to estimate rice YP0 and RIHarvest at
the stem elongation and heading stages, each plot of all experiments (except the 0 kg N ha−1 treatment)
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was divided into two parts: 4.5 × 9 m as the main plot and 2.5 × 9 m as the subplot without receiving
the third N application. For all the treatments, 50 kg P2O5 ha−1 in the form of Ca(H2PO4)2 was applied
before transplanting and 105 kg K2O ha−1 in the form of KCl was applied as two splits: 50% before
transplanting and 50% at the stem elongation stage. Rice seedlings were prepared in a greenhouse
and transplanted into the experimental fields in mid-May. The field and crop management in these
experiments followed the regional recommendations.

2.3. Proximal Sensing Data Collection

The RapidSCAN CS-45 sensor was used to collect reflectance data in this study. The sensor
with modulated light emitting diodes irradiates the crop canopy and determines a portion of the
radiation reflected from the crop canopy, without being affected by ambient illumination. The internal
polychromatic light source includes three spectral bands centered at R (670 nm), RE (730 nm), and NIR
(780 nm) wavelengths. According to the manufacturer, the sensor has the unique feature of Pseudo Solar
Reflectance measurements that are independent of height in the range of 0.3 m to 3 m. Considering the
potential influence of viewing angle and measurement area on sensor readings, the sensor footprint
was parallel to the plant rows with the beam of light being perpendicular to rice canopy about 0.7–0.9
m above the canopy. The sensor was carried at a consistent speed to collect sensor readings from four
different rows (3 m per row) in the middle of each plot. The reflectance values were then averaged to
represent the reflectance for each plot.

Following the methodology established in the previous study on the RapidSCAN sensor [14],
fifty-one VIs were evaluated in this study for estimating YP0 and RIHarvest and the best performing VIs
for calibration and validation are listed in Table 2. NDVI and NDRE were provided as two default
indices for this sensor (see Table 2). Reflectance data were collected at stem elongation and heading
stages, which were the key stages for panicle and grain fertilizer applications.

Table 2. NDVI, NDRE, and the best performing vegetation indices for calibration and validation from
RapidSCAN used in this study.

Index Formula Reference

Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R) Rouse et al. [18]
Normalized difference red edge (NDRE) (NIR − RE)/(NIR + RE) Barnes et al. [19]

Ratio vegetation index (RVI) NIR/R Jordan [20]

Modified soil-adjusted vegetation index (MSAVI)
[
(2 × NIR + 1) −

√
(2 × NIR + 1)2

− 8(NIR − R)
]
/2 Qi et al. [21]

Modified simple ratio (MSR) (NIR/R − 1)/
√

NIR/R + 1 Chen [22]
Optimal vegetation index (VIopt) 1.45 ×

(
NIR2 +1

)
/(R + 0.45) Reyniers et al. [23]

Nonlinear index (NLI)
(
NIR2

− R
)
/
(
NIR2+R

)
Goel and Qin [24]

NDVI*RVI
(
NIR2

− R
)
/
(
NIR + R2

)
Gong et al. [25]

Red edge wide dynamic range vegetation index (REWDRVI) (0.12INIR − RE)/(0.12RNIR + RE) Cao et al. [26]
Red edge optimal soil adjusted vegetation index (REOSAVI) (1 + 0.16)(NIR − RE)/(NIR + RE + 0.16) Cao et al. [26]

Modified red edge soil adjusted vegetation index (MRESAVI)
[
(2 × NIR + 1) −

√
(2 × NIR + 1)2

− 8(NIR − RE)
]
/2 Cao et al. [26]

Optimized red edge vegetation index (REVIopt) 100 × (lnNIR − lnRE) Jasper et al. [27]
Normalized near infrared index (NNIRI) NIR/(NIR + RE + R) Lu et al. [14]

2.4. Plant Sampling and Measurements

At the stem elongation, heading, and maturity stages, 3 hills with tillers representative of each plot
were randomly selected for assessing the aboveground biomass. After cleaning with water, all roots
were removed. The plant samples were then oven dried for 30 min at 105 ◦C and then at 70 ◦C until
constant weight, and weighed to determine their biomass. They were later ground to pass a 0.5 mm
sieve. Plant N concentration was determined using the Kjeldahl-N method.

Rice was harvested at the end of September or early October. Grain yield was determined by hand
harvesting three 1 m2 areas in each plot where spectral reflectance data were collected. Grains were
separated from straw using a small grain thresher and then weighed. Grain moisture was determined
immediately after weighing. The rice grain weight was adjusted to a moisture content of 140 g kg−1.
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Agronomic efficiency of N (AEN) and partial factor productivity of N (PFPN) were calculated
using the following equations:

AEN (kg kg−1) =
Grain yield − Grain yield at control

N rate
× 100 (1)

PFPN

(
kg kg−1

)
=

Grain yield
N rate

(2)

2.5. Development and Evaluation of RapidSCAN-Based Precision Nitrogen Management Strategies

Based on Yao et al. [10], the RapidSCAN-based PNM strategy in this study was developed by first
establishing the models to estimate YP0 and RIHarvest using in-season estimate of yield (INSEY) and
in-season N response index based on VI (RI-VI), respectively. INSEY can be regarded as an estimate of
average daily biomass production from the time of transplanting to the day of sensing [11]. It was
calculated as NDVI divided by the number of growing degree days > 0 [10]. In this study, however,
the number of days from transplanting to sensing was used instead of growing degree days to calculate
INSEY, similarly to the method of Cao et al. [13]. With respect to their study, the selected RapidSCAN
VIs were used here to replace the GreenSeeker NDVI or RVI. RIHarvest indicates the actual crop yield
response to additional N within a given year [28,29] and was calculated as follows [13]:

RIHarvest =
Yield_Nrich

Yield_CK
(3)

where Yield_Nrich is the average yield of plots receiving sufficient N application (the 160 kg N ha−1

treatment in this study), and Yield_CK is the average yield of plot without receiving the third N
application at the stem elongation stage or the fourth N application at the heading stage.

RI-VI was calculated in the same way as RIHarvest, with the exception that VIs derived from
RapidSCAN sensor were used instead of yield. YPN was calculated by multiplying YP0 and RIHarvest.
Finally, the N topdressing requirement is estimated by dividing the yield gap (YPN − YP0) by the
average AE of topdressing N (AEtopdressing) [10]. The AEtopdressing should be higher than the one for
the whole season, and will be predicted during the growing season using the predicted RIHarvest [30].

To ensure sufficient N supply for grain filling and higher NUE in high-yield rice management
systems, a strategy for in-season site-specific N management of rice using RapidSCAN at stem
elongation and heading stages was developed in this study (Figure 1). First, the topdressing N
application rate (Nrate) at stem elongation stage was determined as mentioned above, and then this
rate was split in two doses, 2/3 as panicle fertilizer at stem elongation stage (SE_Nrate) and 1/3 for grain
fertilizer at the heading stage. Second, the RapidSCAN sensor was used to estimate the potential
yield with added N application at the heading stage (HD_YPN). The difference between estimated
YPN at stem elongation and heading stages (HD_YPN - SE_YPN) was used to adjust the remaining 1/3
Nrate to match the crop N demand at the heading stage. Therefore, the recommended N topdressing
application rate at the heading stage (HD_Nrate) can be determined as follows (Figure 1):

HD_Nrate =
HD_YPN − SE_YPN

AEtopdressing
+

1
3

Nrate (4)

where HD_Nrate is the topdressing N application rate at heading stage, HD_YPN is the predicted yield
potential with topdressing N application at heading stage, SE_YPN is the predicted yield potential
with topdressing N application at the stem elongation stage, and AEtopdressing is the topdressing N
agronomic efficiency.
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Figure 1. RapidSCAN sensor-based in-season N recommendation algorithm developed for determining
topdressing N rates at stem elongation stage and heading stage of high-yielding rice in this study.
VIN: vegetation index at plots with sufficient N fertilization plots; VI0: vegetation index at plots
without additional N topdressing application; RI-VI: in-season N response index based on vegetation
index; RIHarvest: N response index based on yield; DAT: the number of days from planting to the
date of sensing; INSEY: in-season estimate of yield; YP0: the potential yield without additional
topdressing N application; Nrate: recommended topdressing N application rate at stem elongation
stage; AEtopdressing: agronomic efficiency of topdressing N; SE_YPN or HD_YPN: the potential yield
with added topdressing N application at the stem elongation stage or heading stage, respectively;
SE_Nrate or HD_Nrate: recommended topdressing N application rate at the stem elongation stage or
heading stage, respectively.

In addition, two restrictions were applied after considering the rice production situation in
Northeast China:

YPN ≤ YPmax
(
12 t ha−1

)
(5)

Nmin
(
0 kg ha−1

)
≤ Nrate ≤ Nmax

(
48 kg ha−1

)
(6)

where YPmax is the maximum obtainable yield, Nmin and Nmax are the minimum and maximum
topdressing N rates.

According to the definition and the methods of Raun et al. [11] and [12], the YPmax in the study
region was set to 12 t ha−1 based on previous studies and farmer survey data in this region [10,13,16,31].
The topdressing N application rates at the stem elongation stage was set to 0 to 48 kg ha−1 based on
farmer surveys and previous studies in this region [10,16,31].

In order to determine whether the restrictions applied to the rice PNM strategies were suitable,
three N rate treatments (80, 120, and 160 kg ha−1) from Exp. 1–6 were chosen to represent three rice N
status before topdressing (deficient, optimal, and surplus, respectively). They were used to evaluate
the RONM and the developed PNM strategies by calculating the differences between economically
optimum N rate (EONR) and N rates recommended by RONM or PNM strategies. In order to evaluate
the potential of the developed PNM strategy, the RapidSCAN-based PNM treatment in Exp. 2–3 and
5–6 was compared for yield, N rate, and NUE with the control treatment (0 kg N ha−1), the 160 kg N
ha−1 treatment reflecting the farmer N management (FNM) and the 120 kg N ha−1 identical with the
RONM. For the RapidSCAN sensor-based PNM treatment, the topdressing N rate was estimated based
on the PNM strategy developed in this study using NDVI at the stem elongation stage and NDRE at
the heading stage (Exp. 2 and 5 using data up to 2015; Exp. 3 and 6 using data up to 2016).

Economic return to N (E, $ ha−1) was used to evaluate the profitability of different N management
systems, and was calculated as follows:

E =(YN−Y0)×PY − Ntotal×PN (7)



Remote Sens. 2020, 12, 1440 7 of 21

where YN (kg ha−1) is the rice grain yield with N application, Y0 (kg ha−1) is the rice grain yield of the
check treatment without any N application, PY is rice grain price (0.44 $ kg−1). Ntotal is the total N
fertilizer application rate (kg ha−1). PN is the N fertilizer price (0.54 $ kg−1).

2.6. Statistical Analysis

Data collected from the three-year experiments were pooled together and then randomly divided
into calibration dataset (67% of the observations) and validation dataset (33% of the observations)
for the estimation of YP0 and RIHarvest using RapidSCAN sensor. The coefficients of determination
(R2) for the relationships between VIs and agronomic parameters were calculated using SPSS 18.0
(SPSS Inc., Chicago, Illinois, USA), and the models with the highest R2 were selected. In addition to
R2, the performance of the models for predicting YP0 and RIHarvest was also evaluated using the root
mean square error (RMSE) and relative error (REr). Analysis of variance were conducted using the
SAS software package Version 9.0 (SAS Institute Inc., Cary, NC, USA). The means for treatments were
compared with least significant difference (LSD) test at the 0.05 probability level (at p < 0.05).

3. Results

3.1. Changes in NDVI vs. NDRE among Different N Rates, Varieties, Stages, and Years

Rice grain yield was significantly affected by the factors of N rates, varieties, and years,
and RapidSCAN-based NDVI and NDRE also showed similar results (Table 3). Except for the
variation of year, NDVI was significantly affected across different N rates, varieties, and growth
stages. NDRE was significantly affected by these factors, except for variety. The changes in NDVI
vs. NDRE were also shown in Figure 2. YP0, NDVI, and NDRE all increased with N rates (Figure 3).
The average NDVI showed significant difference between Longjing 31 (0.68) and Longjing 21 (0.72)
across years, growth stages, and N levels.Remote Sens. 2020, 1, x FOR PEER REVIEW 8 of 24 
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Table 3. Significance of mean squares in the analysis of yield without additional topdressing N
application (YP0), RapidSCAN NDVI, and NDRE under five N rates (0, 40, 80, 120, 180 kg ha−1)
combined at two stages (stem elongation and heading stage), across three years (2014-2016) for two
varieties (Longjing 31 and Longjing 21).

Source of Variation Degree of Freedom
Significance of Mean Square

NDVI NDRE YP0

N level 4 *** *** ***
Variety 1 ** ns ***
Stage 1 *** *** ***
Year 2 ns *** ***

Note: *, **, and *** indicate significance at 0.05, 0.01, and 0.001 probability levels, respectively. ns = non-significant.Remote Sens. 2020, 1, x FOR PEER REVIEW 9 of 24 
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Figure 3. Rice yield without additional topdressing N application (YP0) or NDVI (a; c; e; g) and YP0

or NDRE (b; d; f; h) obtained by RapidSCAN at the stem elongation (a–d) and heading (e–h) stages
as affected by different N rates for Longjing 31 (a; b; e; f) and Longjing 21 (c; d; g; h) in 2014–2016,
respectively. Different color bars represent the value of NDVI or NDRE in different years. Different dots
represent YP0 in different years. The red curves were the curves of rice yield potential without
additional topdressing N application (YP0). Vertical bars represent the LSD value (p = 0.05) among
different N levels.



Remote Sens. 2020, 12, 1440 9 of 21

3.2. Yield Without Additional Topdressing N Application

The performance of the INSEY calculated with NDVI, NDRE, and best performing VIs to estimate
rice YP0 varied with different growth stages across N rate treatments, sites, and years (Table 4 and
Figure 2). At the stem elongation growth stage, two varieties performed similarly. INSEY-NDVI
explained 72–76% of YP0 variability, which was better than INSEY-NDRE (60–66%). The INSEY
calculated with best performing VIs (nonlinear index (NLI) (INSEY_NLI), modified simple ratio (MSR)
(INSEY_MSR), and modified soil-adjusted vegetation index (MSAVI) (INSEY_MSAVI)) performed
similarly (R2 = 0.74–0.78) to INSEY_NDVI.

Table 4. Calibration and validation results for predicting yield without additional topdressing N
application (YP0) using the in-season estimate of yield (INSEY) calculated with the RapidSCAN’s
default indices (NDVI and NDRE) and the best performing vegetation indices for two varieties at the
stem elongation (SE) and heading (HD) stages in 2014–2016.

Variety Stage
Calibration Results Validation Results

Index Model R2 R2 RMSE REr

Longjing 31

SE
INSEY_NDVI E 0.76 0.70 0.49 7.7
INSEY_NDRE P 0.66 0.62 0.55 8.5

INSEY_NLI E 0.78 0.70 0.49 7.6

HD
INSEY_NDVI Q 0.59 0.54 0.74 9.9
INSEY_NDRE Q 0.89 0.76 0.54 7.3

INSEY_REOSAVI Q 0.89 0.76 0.55 7.3

Longjing 21

SE
INSEY_NDVI E 0.72 0.66 0.39 6.3
INSEY_NDRE P 0.62 0.34 0.54 8.7
INSEY_MSR E 0.74 0.63 0.41 6.5

HD
INSEY_NDVI Q 0.28 0.64 0.93 12.1
INSEY_NDRE Q 0.77 0.75 0.66 8.5

INSEY_ MRESAVI Q 0.78 0.72 0.69 9.0

Across varieties

SE
INSEY_NDVI E 0.73 0.66 0.47 7.4
INSEY_NDRE P 0.60 0.49 0.56 8.8
INSEY_MSAVI E 0.74 0.65 0.47 7.4

HD
INSEY_NDVI Q 0.41 0.59 0.81 10.7
INSEY_NDRE Q 0.73 0.70 0.65 8.6

INSEY_NDVI*RVI P 0.75 0.70 0.66 8.7

Note: Q, E, and P: stand for quadratic, exponential, and power models. RMSE: root mean square error. REr: relative
error (%).

At the heading stage, however, INSEY_NDVI did not perform very well, explaining only 28-59%
of the YP0 variability. Moreover, INSEY_NDRE performed consistently better than INSEY_NDVI,
explaining 73–89% of the YP0 variability (Table 4). The INSEY calculated with red edge optimal
soil adjusted vegetation index (REOSAVI) (INSEY_REOSAVI), modified red edge soil adjusted
vegetation index (MRESAVI) (INSEY_MRESAVI), and NDVI*RVI (INSEY_NDVI*RVI), did not perform
significantly better than INSEY_NDRE (Table 4). Furthermore, the YP0 was better estimated using
INSEY for Longjing 31 than for Longjing 21.

The validation results were similar to the calibration results (Table 4). At the stem elongation
stage, the INSEY_NDVI and INSEY calculated with best performing VI had similar performance for
predicting YP0, with R2, RMSE, and REr of 0.65–0.66, 0.47, and 7.4% across both varieties. At the
heading stage, INSEY_NDRE and INSEY calculated with best performing VI performed similarly for
predicting YP0, with R2, RMSE, and REr of 0.70, 0.65–0.66, and 8.6–8.7%, respectively.
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3.3. The Responsiveness to Topdressing N Application

The performance of the RI_VI calculated with NDVI (RI_NDVI), NDRE (RI_NDRE), and best
performing VIs to estimate rice RIHarvest varied with growth stages across N rate treatments, sites,
and years (Table 5 and Figure 4). At the stem elongation stage, RI_NDRE and RI calculated with
best performing VIs (optimal vegetation index (VIopt), red edge wide dynamic range vegetation
index (REWDRVI) and RVI) did not perform significantly better than RI_NDVI (R2 = 0.67–0.78).
The RIHarvest was estimated better for Longjing 31 (R2 = 0.71–0.79) than for Longjing 21 (R2 = 0.68–0.71)
or across varieties (R2 = 0.64–0.68). The validation results showed similar pattern to the calibration
results (Table 5). The prediction of RIHarvest for Longjing 31 (R2 = 0.72–0.78, RMSE = 0.08–0.09 and
REr = 6.1–6.8) was better than for Longjing 21 (R2 = 0.60–0.67, RMSE = 0.10–0.11 and REr = 7.0–7.4) or
across varieties (R2 = 0.61–0.63, RMSE = 0.11 and REr = 7.8–8.0).

Table 5. Calibration and validation results for the response index calculated with yield (RIHarvest)
predicted by response index calculated with NDVI, NDRE, and the best performing vegetation indices
for two varieties at stem elongation stage (SE) and heading stage (HD) in 2014–2016.

Variety Stage
Calibration Results Validation Results

Index Model R2 R2 RMSE REr

Longjing 31

SE
RI_NDVI Q 0.78 0.77 0.08 6.2
RI_NDRE Q 0.71 0.72 0.09 6.8
RI_VIopt Q 0.79 0.78 0.08 6.1

HD
RI_NDVI Q 0.92 0.65 0.12 10.2
RI_NDRE Q 0.92 0.75 0.10 8.4
RI_NNIRI Q 0.95 0.73 0.10 8.7

Longjing 21

SE
RI_NDVI Q 0.68 0.60 0.11 7.3
RI_NDRE Q 0.69 0.63 0.11 7.4

RI_REWDRVI Q 0.71 0.67 0.10 7.0

HD
RI_NDVI E 0.67 0.60 0.16 13.4
RI_NDRE Q 0.79 0.82 0.10 8.7

RI_REVIopt Q 0.79 0.82 0.10 8.7

Across varieties

SE
RI_NDVI Q 0.67 0.61 0.11 8.0
RI_NDRE Q 0.64 0.62 0.11 8.0

RI_RVI Q 0.68 0.63 0.11 7.8

HD
RI_NDVI Q 0.79 0.62 0.14 11.5
RI_NDRE Q 0.85 0.78 0.10 8.3

RI_REOSAVI Q 0.85 0.78 0.10 8.3

Note: Q, E, and P stand for the quadratic, exponential, and power models. RMSE: root mean square error. REr:
relative error (%).

At the heading stage, RI_NDRE and RI calculated with best performing VIs (normalized NIR index
(RI_NNIRI), red edge optimal VI (RI_REVIopt), REOSAVI (RI_REOSAVI)) performed similarly for the
prediction of RIHarvest (Table 5). They worked better than RI_NDVI (R2 = 0.79–0.85 vs. R2 = 0.67–0.79) for
Longjing 21 or across varieties based on the calibration results. However, they performed similarly for
Longjing 31 (R2 = 0.92–0.95). With validation, RI_NDRE (R2 = 0.75–0.82, RMSE = 0.10 and REr = 8.3–8.7)
and RI calculated with best performing VIs (R2 = 0.73–0.82, RMSE = 0.10 and REr = 8.3–8.7) were better
than RI_NDVI (R2 = 0.60–0.65, RMSE = 0.12–0.16 and REr = 10.2–13.4) for a specific variety or across
varieties (Table 5). The RI calculated with best performing VIs performed better at the heading stage
than the stem elongation stage for either calibration or validation.



Remote Sens. 2020, 12, 1440 11 of 21
Remote Sens. 2020, 1, x FOR PEER REVIEW 12 of 24 

 

 

Figure 4. The relationships between response index calculated with yield (RIHarvest) and response index 
calculated with NDVI, NDRE, RVI, and REOSAVI across all varieties at stem elongation stage and 
heading stage. 

3.4. In-Season Prediction of Nitrogen Use Efficiency 

AEtopdressing varied significantly between Longjing 31 (39.5 kg kg-1) and Longjing 21 (59.0 kg kg-1) 
(Figure 5a). RIHarvest had a strong positive relationship with AEtopdressing, with the correlation being 
stronger for Longjing 21 (R2 = 0.76) than for Longjing 31 (R2 = 0.61) (Figure 5b). Therefore, in-season 
predicted RIHarvest was used to predict AEtopdressing for side-dress N fertilizer recommendations in this 
study. 

 
Figure 5. The difference in AEtopdressing between Longjing 31 and Longjing 21 (a) and its relationship 
with RIHarvest (b). The red ✳ indicates the average of AEtopdressing in Figure 5a. The red lines are the 
different regression models for Longjing 31 and Longjing 21 in Figure 5b; *** indicates significance at 
the level of p < 0.001. 

3.5. Evaluating Different Precision Nitrogen Management Strategies Under Variable Nitrogen Status Using 
Scenario Analysis 

Based on the abovementioned results (Tables 4 and 5), different PNM strategies were developed, 
as explained in Methods and Figure 3. To evaluate the performance of these strategies under different 
N status, the N rate treatments (80, 120, and 160 kg ha-1) in Exp.1–6 were selected for scenario analysis 
to determine the difference between recommended N rates (ΔNrate) based on PNM strategies and 
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index calculated with NDVI, NDRE, RVI, and REOSAVI across all varieties at stem elongation stage
and heading stage.

3.4. In-Season Prediction of Nitrogen Use Efficiency

AEtopdressing varied significantly between Longjing 31 (39.5 kg kg−1) and Longjing 21 (59.0 kg kg−1)
(Figure 5a). RIHarvest had a strong positive relationship with AEtopdressing, with the correlation being
stronger for Longjing 21 (R2 = 0.76) than for Longjing 31 (R2 = 0.61) (Figure 5b). Therefore, in-season
predicted RIHarvest was used to predict AEtopdressing for side-dress N fertilizer recommendations in
this study.
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3.5. Evaluating Different Precision Nitrogen Management Strategies Under Variable Nitrogen Status Using
Scenario Analysis

Based on the abovementioned results (Tables 4 and 5), different PNM strategies were developed,
as explained in Methods and Figure 3. To evaluate the performance of these strategies under different
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N status, the N rate treatments (80, 120, and 160 kg ha−1) in Exp.1–6 were selected for scenario analysis
to determine the difference between recommended N rates (∆Nrate) based on PNM strategies and
EONR calculated using the N responses in each variety-year (Figures 6–8). The RONM strategy did
not consider the variation of years, varieties, and rice N status, and used a fixed N topdressing rate
(36 kg N ha−1). Four RapidSCAN sensor-based PNM strategies were evaluated. The tested PNM
strategies all had the same basal and tillering N application rates as RONM, but panicle fertilizer at the
stem elongation stage was recommended using NDVI or the best performing VIs or panicle and grain
fertilizer rates at the stem elongation and heading stages were recommended using NDVI and NDRE
or the best performing VIs.
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Figure 6. The difference of recommended topdressing N application rate (∆Nrate) from economically
optimal N rates (EONR) between RONM strategy and RapidSCAN sensor-based PNM strategies for the
rice varieties of Longjing 31 (a) and Longjing 21 (b) under deficient N status before topdressing (N80)
in 2014–2016. RONM: the regional optimum N management topdressing N rate (36 kg N ha−1 in this
study). SE-NDVI and SE-VItop indicated recommended topdressing N application rate calculated by
the models based on NDVI and the top performing VIs (VItop) for different varieties at stem elongation
stage, respectively. SE&HD-NDVI&NDRE and SE&HD-VItop indicated recommended topdressing N
application rates calculated by the models with NDVI (at stem elongation stage) and NDRE (at heading
stage), and VItop at stem elongation and heading stage, respectively. Vertical bars represent the LSD
value (p = 0.05). Different letters indicate significant difference at p < 0.05 level within the same year.
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Figure 7. The difference of recommended topdressing N application rate (∆Nrate) from economically
optimal N rates (EONR) between RONM strategy and RapidSCAN sensor-based PNM strategies for
the rice varieties of Longjing 31 (a) and Longjing 21 (b) under optimal N status before topdressing
(N120) in 2014–2016. RONM: the regional optimum N management topdressing N rate (36 kg N ha−1 in
this study). SE-NDVI and SE-VItop indicated recommended topdressing N application rates calculated
by the models using NDVI and the top performing VIs (VItop) for different varieties at stem elongation
stage, respectively. SE&HD-NDVI&NDRE and SE&HD-VItop indicated recommended topdressing
N application rates calculated by the models using NDVI (at stem elongation stage) and NDRE (at
heading stage), and VItop at stem elongation and heading stage, respectively. Vertical bars represent
the LSD value (p = 0.05). Different letters indicate significant difference at p < 0.05 level within the
same year.

There were significant differences between RONM and N rates recommended by different
RapidSCAN sensor-based PNM strategies under different years, varieties, and rice N status. The N
topdressing rate of RONM was consistently lower than EONR under deficient N status (Figure 6),
but higher than EONR under surplus N conditions (Figure 8). Under relatively optimum N conditions,
RONR was slightly higher than EONR for Longing 31, but lower for Longjing 21 (Figure 7).

All the four PNM strategies recommended higher N rates than RONM under deficient N conditions
and lower N rates under surplus N conditions, while under relatively optimal N conditions, the PNM
strategies would recommend slightly higher, lower or similar N rates depending on the year, variety,
and PNM strategy. In a specific year across different N conditions, the ∆Nrate for the PNM strategies
was in a range of 0–15 kg N ha−1. Among all the four PNM strategies, the PNM strategies based on
in-season N recommendations at both stem elongation and heading stages (with 3-year cumulative
∆Nrate of 40-50 kg N ha−1) performed better than the PNM strategies making N recommendation only
at the stem elongation stage for Longjing 21 under different N conditions (with 3-year cumulative
∆Nrate of 68-69 kg N ha−1). For Longjing 31, the PNM strategies making N recommendations at both
stem elongation and heading stages performed much better under deficient N conditions, with 3-year
cumulative ∆Nrate (46-48 kg N ha−1) being lower than the PNM strategies making N recommendations
only at the stem elongation stage (63-64 kg N ha−1). Irrespective of the varieties, using NDVI and
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NDRE for panicle and grain N fertilizer recommendations had better or similar performance as the
best performing VIs.
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based PNM strategy recommended different N rates for different years and varieties. For Longjing 
31, the total recommended N rates by the PNM strategy were 118–122 kg N ha-1, which were similar 
to the rates of the RONM strategy but 24–26% lower than the N rates of the FNM strategy. For 
Longjing 21, the total N rates recommended by the PNM strategy were similar to or higher than the 
rates given by the RONM strategy but 21–26% lower than the N rate of the FNM strategy (Table 6). 
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and varieties. For Longjing 31, the yield of the PNM strategy was not significantly different from 
FNM and RONM strategies in a specific year, but it was significantly higher (5%) than the RONM 

Figure 8. The difference of recommended N topdressing application rate (∆Nrate) from economically
optimal N rates (EONR) between RONM strategy and RapidSCAN sensor-based PNM strategies for
the rice varieties of Longjing 31 (a) and Longjing 21 (b) under surplus N status before topdressing
(N160) in 2014–2016. RONM: the regional optimum N management topdressing N rate (36 kg N ha−1 in
this study). SE-NDVI and SE-VItop indicated recommended topdressing N application rates calculated
by the models using NDVI and the top performing VIs (VItop) for different varieties at stem elongation
stage, respectively. SE&HD-NDVI&NDRE and SE&HD-VItop indicated recommended topdressing
N application rates calculated by the models using NDVI (at stem elongation stage) and NDRE (at
heading stage), and VItop at stem elongation and heading stage, respectively. Vertical bars represent
the LSD value (p = 0.05). Different letters indicate significant difference at p < 0.05 level within the
same year.

3.6. Evaluation Experiments

Based on the above results, we chose NDVI and NDRE for panicle and grain fertilizer
recommendation to evaluate the potential of RapidSCAN sensor-based PNM strategy in the evaluation
experiments. These experiments included the 0 kg N ha−1 treatment as control (CK), the 160 kg N ha−1

treatment as FNM treatment, the 120 kg N ha−1 treatment as RONM treatment, and RapidSCAN-based
PNM treatment in Exp. 2–3 and 5–6 (Table 6). The RapidSCAN sensor-based PNM treatment in
evaluation experiments had the same N rate as RONM (N120) before topdressing and made two
in-season adjustments at the stem elongation and heading growth stages.
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Table 6. N application rate (Nrate), grain yield, agronomy efficiency of N (AEN), partial factor
productivity of N (PFPN), and economic returns of different rice N management strategies in the
evaluation experiments conducted in 2015 and 2016.

Treatment
2015 2016 Across Two Years

Longjing 31 Longjing 21 Longjing 31 Longjing 21 Longjing 31 Longjing 21 Average

Nrate (kg ha−1)

CK 0 0 0 0 0 0 0
FNM 160 160 160 160 160 160 160

RONM 120 120 120 120 120 120 120
PNM 118 119 122 127 120 123 121

Yield (t ha−1)

CK 5.26 b 5.46 b 5.25 b 5.17 c 5.25 c 5.31 c 5.28 c
FNM 8.19 a 8.60 a 8.40 a 8.90 ab 8.30 a 8.75 ab 8.52 a

RONM 7.78 a 8.36 a 8.05 a 8.68 b 7.91 b 8.52 b 8.22 b
PNM 8.14 a 8.59 a 8.43 a 9.06 a 8.29 a 8.83 a 8.56 a

AEN (kg kg−1)

CK - - - - - - -
FNM 18.3 b 19.6 c 19.7 c 23.3 b 19.0 c 21.5 c 20.3 c

RONM 21.0 ab 24.2 b 23.3 b 29.3 a 22.2 b 26.8 b 24.5 b
PNM 24.4 a 26.4 a 26.1 a 30.8 a 25.3 a 28.6 a 26.9 a

PFPN (kg kg−1)

CK - - - - - - -
FNM 51.2 c 53.7 c 52.5 c 55.6 b 51.9 c 54.7 b 53.3 c

RONM 64.8 b 69.7 b 67.1 b 72.3 a 65.9 b 71.0 a 68.5 b
PNM 68.9 a 72.4 a 69.1 a 71.6 a 69.0 a 72.0 a 70.5 a

Economic return ($ ha−1)

CK - - - - - - -
FNM 1205 a 1297 a 1300 a 1556 a 1253 a 1426 a 1339 a

RONM 1045 a 1214 a 1166 a 1481 a 1106 b 1348 b 1227 b
PNM 1205 a 1315 a 1334 a 1647 a 1269 a 1481 a 1375 a

Note: CK: the control treatment with no N application; RONM: regional optimum N management; FNM: farmer
N management; PNM: RapidSCAN-based precision N management strategy. Within a column for parameter,
values followed by different letters are significantly different (p < 0.05).

Making two in-season N recommendations to better meet rice N requirements,
the RapidSCAN-based PNM strategy recommended different N rates for different years and varieties.
For Longjing 31, the total recommended N rates by the PNM strategy were 118–122 kg N ha−1,
which were similar to the rates of the RONM strategy but 24–26% lower than the N rates of the FNM
strategy. For Longjing 21, the total N rates recommended by the PNM strategy were similar to or
higher than the rates given by the RONM strategy but 21–26% lower than the N rate of the FNM
strategy (Table 6).

The RapidSCAN-based PNM strategy resulted in higher yield than RONM strategy across years
and varieties. For Longjing 31, the yield of the PNM strategy was not significantly different from
FNM and RONM strategies in a specific year, but it was significantly higher (5%) than the RONM
strategy across two years. For Longjing 21, the PNM strategy significantly increased grain yield by 4%
with respect to the RONM strategy in 2016 or across two years, but the increase was not significantly
different from the FNM strategy.

The PNM strategy led to the highest AEN and PFPN across years and varieties. For Longjing 31,
the PNM strategy increased AEN and PFPN by 14% and 5% over the RONM strategy and both by 33%
over the FNM strategy across two years, respectively. For Longjing 21, the PNM strategy increased
AEN by 33% and PFPN by 32% over the FNM strategy across two years. Compared with RONM,
the PNM strategy increased AEN by 7%, but did not improve PFPN significantly. Across varieties and
years, the PNM strategy increased AEN and PFPN by 32–33% over FNM and by 3–10% over RONM.

The PNM strategy consistently increased economic returns compared with RONM by 101–168
$ ha−1 for specific year-variety combination or across years and varieties. The PNM strategy
increased economic returns by 0-91 $ ha−1 over the FNM strategy, but none of the increase was
statistically significant.
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4. Discussion

4.1. Selection of Vegetation Indices for Precision N Management Strategy Development

NDVI and NDRE are two widely used VIs in precision agriculture and have good relationships
with aboveground biomass and plant N uptake [14,32]. They are the default VIs of the RapidSCAN
sensor, and increased with N application rates in this study, which was in agreement with Aranguren
et al. [33]. Besides NDVI and NDRE, many other VIs can be calculated from the three wavebands of
RapidSCAN [13,34]. It is important to know if any other VI will perform consistently better than the
default VIs and should be selected for PNM strategy development.

In this study, we found that the two default indices (NDVI and NDRE) were sufficient for
estimating key parameters to develop the PNM strategy at different key growth stages and other VIs
would not be needed.

The stem elongation stage is the key stage to apply panicle fertilizer for rice in Northeast China.
The rice canopy was not closed at this stage, and the biomass was not very high yet. The NDVI values
were not saturated and achieved similar performance for predicting YP0 (R2 = 0.66-0.70; REr = 6.3-7.7%)
and RIHarvest (R2 = 0.60–0.77; REr = 6.2–8.0%) as best performing VIs (R2 = 0.63–0.70 and 0.63–0.78; REr
= 6.5–7.6% and 6.1–7.8%, respectively). The recommended N rates using NDVI were also similar to
the best performing VIs across both varieties based on the scenario analysis results. This agreed with
many studies achieving good results with GreenSeeker NDVI-based PNM systems at early growth
stages [10,12,34–38].

The heading stage is the key stage to apply grain fertilizer for rice in Northeast China in high-yield
rice management systems [13,16]. GreenSeeker NDVI become saturated at this stage and cannot
be used to make N recommendations [10,13,16,34,39]. As a result, the PNM strategy making two
in-season N recommendations at stem elongation and heading stages only using NDVI had the worst
performance among all the PNM strategies evaluated in the scenario analysis. One approach to
overcome the NDVI saturation problem is to combine NDVI with relative plant height data [30].
Another approach is to replace NDVI with other VIs that can overcome the saturation effect [32].
The RapidSCAN sensor has a RE band in addition to the R and NIR bands, which can be used to
calculate more RE-based VIs to overcome the saturation problems of NDVI [13,14,40]. In this study,
good relationships between RE-based VIs and YP0 or RIHarvest were found at the heading stage, with R2

being 0.75–0.95 for calibration, and R2 and REr being 0.70–0.82 and 7.3–9.0% for validation, respectively.
Encouragingly, the NDRE index achieved similar performance for predicting YP0 (R2 = 0.70–0.76; REr
= 7.3–8.6%) and RIHarvest (R2 = 0.75–0.82; REr = 8.3–8.7%) as best performing VIs (R2 = 0.70–0.76 and
0.73–0.82; REr = 7.3–9.0% and 8.3–8.7%, respectively). Furthermore, the N rates recommended by the
PNM strategy using NDVI at the stem elongation stage and NDRE at heading stage were very similar
to the N rates recommended by the PNM strategy using best performing VIs at the stem elongation
and heading stages.

4.2. In-Season Prediction of Agronomic Efficiency of Topdressing Nitrogen

The NUE is an important parameter for developing crop sensing-based PNM strategies, and can
directly influence the final recommended N rates. Previous crop sensor-based PNM strategies generally
used a constant NUE value. Raun et al. [12] used the expected recovery efficiency to calculate the
N topdressing rate for wheat with the range of 0.5 to 0.7 in America. Cao et al. [34] used 0.4 as the
expected recovery efficiency in developing PNM strategy for winter wheat in North China Plain.
According to the multi-site-year data in N plot experiments, Yao et al. [10] used fixed AEtopdressing

(26.79 kg kg−1) for the development of rice PNM strategy.
Studies indicated that NUE is influenced by environmental factors (e.g., soil fertility, water supply,

sunshine, accumulated temperature, etc.) and the plant genotypes (e.g., ability to absorb N,
photosynthetic rate, stress resistance, root system structure, etc.) [41–44]. Wang et al. [30] considered
the influence of early N application and soil types on AEN and used in-season predicted RIHarvest
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with GreenSeeker sensor to predict AEN for developing crop sensor-based PNM strategy for spring
maize in Northeast China. Following their idea, this study found that early N application and rice
variety were two key factors influencing the AEtopdressing of rice in the study region. If early season N
application rate is low, N deficiency will lead to a higher efficiency of N use, while a high N application
rate during the early growth stage will result in N surplus conditions before topdressing, which will
lead to a lower use efficiency of the topdressing N fertilizer. RIHarvest is an indicator of crop N response
to additional N application. If early season N status is deficient, the crop will be more responsive to
additional topdressing or side-dressing N application. On the other hand, if the early season N status
is surplus, the crop will not be responsive to additional N application, and the NUE for the topdressing
or side-dressing N application will be lower. Therefore, the RIHarvest and AEtopdressing should be
positively correlated, as found in this study (R2 = 0.61 ~ 0.76). This finding was consistent with the
results of Wang et al. [30] for spring maize (R2 = 0.72 ~ 0.74). On the other hand, the big difference of
AEtopdressing between Longjing 31 (39.5 kg kg−1) and Longjing 21 (59.0 kg kg−1) is shown in Figure 5a.
The variety with longer growing period will require more N supply and the photosynthetic utilization
will be higher. Therefore, in-season prediction of AEtopdressing can be based on crop N status using
in-season active sensor predicted response index and variety- or variety group-specific models should
be developed.

4.3. Evaluation of Different Precision N Management Strategies

In scenario analysis, the four PNM strategies for N rate recommendations performed much better
than the RONM strategy, especially under deficient or surplus N status. The PNM strategies making
two in-season N recommendations at both stem elongation and heading stages performed better
than PNM strategies making only one in-season N recommendation at the stem elongation stage,
and their recommended N rates were 15-28 kg N ha−1 closer to EONR under deficient N status across
years and varieties. For the longer-growing variety (Longjing 21), the PNM strategy making two N
recommendations performed consistently better under different N conditions, being 2-28 kg N ha−1

closer to EONR across years. However, no significant difference was found under optimal or surplus
N status for Longjing 31, the shorter-growing variety. One of the reasons might be that Longjing 21
typically required a higher N rate and more time (3-7 days) to booting and grain filling than Longjing
31 [9]. The PNM strategy with two in-season N recommendations can give us two opportunities to
adjust N application rates according to in-season crop growth and weather conditions, and can better
meet rice N needs to increase grain yield. This is more important for the long-season variety Longjing
21 than the shorter-season variety of Longjing 31 [45].

In the evaluation experiments, the RapidSCAN-based PNM strategy could achieve similar rice
yield as the FNM strategy, save 24% N fertilizers, and increase NUE by an average of 32–33% across
years and varieties (Table 6). Because of the low N fertilizer prices under agricultural subsidies by the
government in China, the difference of economic return between PNM and FNM was small (average 36
$ ha−1 annually) across varieties. These results agreed with the results of Yao et al. [10], who reported
that PNM strategies based on GreenSeeker or chlorophyll meter increased PFPN by 48-65% without
significantly increasing the yield in comparison to FNM.

Although the total N rates of PNM and RONM strategies in the evaluation experiments were
not significantly different, the PNM strategy allowed us to better adjust N distribution for different
varieties and plant N status, resulting in the increased grain yield, AEN, PFPN, and economic return
by an average of 4%, 10%, 3%, and 148 $ ha−1,respectively (Table 6). Zhao et al. [16] found that a
chlorophyll meter-based PNM with two in-season N recommendations at the same growth stages as
the PNM strategy developed in this study had higher N accumulation at later growth stages to achieve
higher yield, and larger panicle size and grain fill percentage. Wang et al. [45] integrated a GreenSeeker
sensor-based PNM strategy making one in-season N recommendation at stem elongation stage into
a high-yield management system (with optimized transplanting density and water management)
increased rice grain yield and NUE by 10% and 1–33% over regional optimum rice management,
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respectively. Future studies are needed to integrate the RapidSCAN sensor-based PNM strategy
developed in this study into similar high-yield management systems to further evaluate its potential to
simultaneously improve rice yield, NUE, and economic returns over the regional optimum management
system under diverse on-farm conditions.

5. Conclusions

The RapidSCAN sensor has the potential to predict rice grain yield and response to additional
N application in Northeast China at the stem elongation and heading stages during the growing
season, with R2 and REr being 0.63–0.82 and 6.1–9.0%, respectively. At the stem elongation stage,
NDVI could be used to predict YP0 and RIHarvest (R2 = 0.66–0.70 and 0.60–0.77; REr = 6.3–7.7% and
6.2–8.0%) with similar performance as the best performing indices (R2 = 0.63–0.70 and 0.63–0.78; REr =

6.5–7.6% and 6.1–7.8%, respectively). At the heading stage, NDRE could be used to predict YP0 and
RIHarvest (R2 = 0.70–0.76 and 0.75–0.82; REr = 7.3–8.6% and 8.3–8.7%, respectively) as accurately as
the best performing indices (R2 = 0.70–0.76 and 0.73–0.82; REr = 7.3–9.0% and 8.3–8.7%, respectively).
The combination of the two default indices (NDVI and NDRE) of the RapdiSCAN sensor was sufficient
for rice PNM strategy development without the need of incorporating other indices. Across the two
tested varieties under deficient N conditions or for Longjing 21 under different N conditions, the PNM
strategy making two in-season N recommendations performed better than the PNM strategies making
only one in-season N recommendation at the stem elongation stage. The RapidSCAN sensor-based
PNM strategy with panicle and grain fertilizer recommendations could lead to similar yield as FNM,
save 24% N application rate, and increase AEN and PFPN by an average of 33% and 32% across years
and varieties, respectively. Compared with RONM, the PNM strategy increased grain yield, AEN,
PFPN, and economic return by an average of 4%, 10%, 3%, and 148 $ ha−1 across years and varieties,
respectively. Future studies are needed to further evaluate the RapidSCAN sensor-based PNM strategy
under diverse on-farm conditions, and integrate it into high-yield rice management systems.
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Abbreviations

Abbreviation English Full Name Unit

AEtopdressing The topdressing nitrogen agronomic efficiency %
AEN Agronomic efficiency of nitrogen %

EONR Economically optimum nitrogen rate kg N ha−1

FNM Farmer nitrogen management -
HD_Nrate The recommended nitrogen topdressing application rate at the heading stage kg N ha−1

HD_YPN The potential yield with added nitrogen topdressing application at the heading stage kg ha−1

INSEY In-season estimate of yield -
N Nitrogen -

NDRE Normalized difference red edge -
NDVI Normalized difference vegetation index -
NIR Near infrared -
Nrate The recommended N topdressing application rate kg N ha−1

NUE Nitrogen use efficiency -
PFPN Partial factor productivity of nitrogen kg kg−1

PNM Precision nitrogen management -
Q, E or P The quadratic, exponential, or power fit -

R Red -
R2 The coefficients of determination -
RE Red edge -
REr Relative error %

RIHarvest Yield responsiveness to additional nitrogen fertilizer applications -
RI-VI In-season nitrogen response index based on vegetation index -

RMSE The root mean square error
Same units as

statistical data used
RONM Regional optimum nitrogen management -

RVI Ratio vegetation index -
SE_Nrate The recommended nitrogen topdressing application rate at the stem elongation stage kg N ha−1

SE_YPN The potential yield with added nitrogen topdressing application at the stem elongation stage kg ha−1

SE-NDVI
The recommended nitrogen rate using normalized difference vegetation index at the stem

elongation stage
kg N ha−1

VI0 Vegetation index at plots without additional nitrogen topdressing application -
VIN Vegetation index at plots with sufficient nitrogen fertilization plots -
VIs Vegetation indices -
YP0 The yield potential without additional nitrogen application kg ha−1

YPmax The maximum obtainable yield kg ha−1

YPN The potential yield with added nitrogen fertilization kg ha−1

∆Nrate The difference between recommended nitrogen rate and economically optimum nitrogen rate kg N ha−1
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