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Abstract: The analysis of chlorophyll concentration based on spectroscopy has great importance
for monitoring the growth state and guiding the precision nitrogen management of potato crops
in the field. A suitable data processing and modeling method could improve the stability and
accuracy of chlorophyll analysis. To develop such a method, we collected the modelling data by
conducting field experiments at the tillering, tuber-formation, tuber-bulking, and tuber-maturity
stages in 2018. A chlorophyll analysis model was established using the partial least-square (PLS)
algorithm based on original reflectance, standard normal variate reflectance, and wavelet features
(WFs) under different decomposition scales (21–210, Scales 1–10), which were optimized by the
competitive adaptive reweighted sampling (CARS) algorithm. The performances of various models
were compared. The WFs under Scale 3 had the strongest correlation with chlorophyll concentration
with a correlation coefficient of −0.82. In the model calibration process, the optimal model was
the Scale3-CARS-PLS, which was established based on the sensitive WFs under Scale 3 selected by
CARS, with the largest coefficient of determination of calibration set (R2

c ) of 0.93 and the smallest
R2

c −R2
cv value of 0.14. In the model validation process, the Scale3-CARS-PLS model had the largest

coefficient of determination of validation set (R2
v) of 0.85 and the smallest root–mean–square error of

cross-validation (RMSEV) value of 2.77 mg/L, demonstrating good prediction capability of chlorophyll
concentration. Finally, the analysis performance of the Scale3-CARS-PLS model was measured using
the testing data collected in 2020; the R2 and RMSE values were 0.69 and 3.36 mg/L, showing
excellent applicability. Therefore, the Scale3-CARS-PLS model could be used to analyze chlorophyll
concentration. This study indicated the best decomposition scale of continuous wavelet transform
and provided an important support method for chlorophyll analysis in the potato crops.

Keywords: standard normal variate (SNV); continuous wavelet transform (CWT); wavelet features
optimization; competitive adaptive reweighted sampling (CARS); partial least square (PLS)

1. Introduction

Potato (Solanum tuberosum) is the world’s fourth-largest food crop following rice, wheat,
and maize [1,2]. Chlorophyll, as the essential photosynthetic pigment of potato leaves, reflects growth
information about plant health [3] and photosynthetic rate [4], and its content is also significantly
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correlated with the concentration of nitrogen [5]. Therefore, the accurate analysis of the chlorophyll
concentration of potato plants is of great importance for nitrogen management in precision agriculture.

Compared with the time-consuming and laborious chemical analysis of chlorophyll
concentration [6,7], the modern spectroscopy analysis, as a non-destructive and rapid monitoring
method, has advantages in the inversion of chlorophyll concentration of crops due to the principle
of light absorption by molecular or chemical bonding [8,9]. At present, the crop analysis method
based on spectroscopy primarily includes proximal spectroscopy analysis and remote sensing [10].
The former has advantages of high resolution and accurate data sampling [11]. Thus, it is suitable
for the spectroscopy mechanism studies (e.g., the characteristic absorption bands of some material
components) and the development of analysis algorithms, thereby laying a foundation for methods
of large-scale and large-area remote sensing [12]. Thus, the motivation of this study is to accurately
analyze the chlorophyll concentration in potato crops based on proximal spectroscopy.

Three major problems of crop chlorophyll content analysis based on proximal spectroscopy
methods include spectral signal-noise reduction, characteristic variable analysis, and analysis model
establishment [13,14]. Among them, the noise reduction of spectral data is the primary step to
improve the spectral data performance. During spectral data collection, especially in the field
environment, noises such as high-frequency noises [15] and scattering effects [16] are inevitably
introduced [17]. Accordingly, previous studies have reported that the standard normal variate (SNV)
can effectively correct the scattering effect resulting from different light reflection paths to improve the
predictive capability of spectral data [18]. The Savitzky–Golay (S-G) smoothing method can reduce
the high-frequency noise of spectral data resulting from instrument vibration or electromagnetic
interference [19]. However, the main disadvantage of the S-G method is that the smoothing window
size is not fixed, which requires complex optimization according to specific spectral data to select the
optimal window size [20,21].

Regarding characteristic variable analysis, many methods have been developed to improve
accuracy of chlorophyll concentration analysis [22]. One technique is to build a spectral reflectance index;
for instance, the normalized difference vegetation index [23], chlorophyll index [24], weighted-difference
vegetation index [25], and structural independent pigment index [26] are used to estimate the leaf
chlorophyll concentration. Yu [27] reported that the reflectance ratio vegetation index could eliminate
the influence of structural difference of wheat canopy on chlorophyll analysis. Another method is to
select sensitive wavelengths; for instance, the red edge and characteristic absorption wavelengths are
used to analyze chlorophyll concentration. Sun et al. [28] analyzed the spectral migration characteristics
of winter wheat at jointing, booting, flowering, and milk-ripening stages. The wavelengths at red
edge positions were extracted to establish the chlorophyll analysis models. Five sensitive wavelengths,
namely, 680, 716, 1104, 1882, and 1920 nm, were selected to establish the model for chlorophyll and
water-content detection.

However, the above methods cannot completely remove noises and present the features of the
spectra [29]. Continuous wavelet transformation (CWT) has outstanding quality of time and frequency
domain and can decompose a spectrum into numerous wavelet features (WFs) to effectively characterize
spectral signals and eliminate high-frequency noises of spectral data [30]. Previous studies [31–33]
have reported that continuous wavelet analysis achieves good performance on crop growth-parameter
estimation. Li [32] indicated that WFs under 23, 24, and 25 (middle- and low-frequency) scales could
reduce the phenomenon of “fingerprint spectrum” with serious vibration noises to improve the analysis
accuracy for the leaf nitrogen concentration of wheat and rice crops. The analysis accuracy was higher
than the normalized difference vegetation index. Lu et al. [34] indicated that the sensitive WFs of stripe
rust and powdery mildew of wheat are distributed in the 22, 23, and 24 scales, and that the WFs could
capture the pigment and water content in wheat leaf. These studies show that WFs under middle- and
low-frequency scale factors can capture the peak and valley of an absorption feature of physical and
chemical materials [33].
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In terms of CWT application, some points remain unclear, especially chlorophyll concentration
analysis of potato crop during different stages by using spectroscopy combined with the CWT
method. Meanwhile, the partial least-square (PLS) regression model is used to explore and evaluate
the relationship between scales of WFs and chlorophyll concentration [35,36], which can solve
multicollinearity problems [37] among variables by executing a principal component analysis on
the independent and dependent variable matrices. Occasionally, the PLS regression model contains
uninformative variables, which result in poor prediction accuracy, overfitting phenomenon [38],
and further lowering of the model stability. Some studies have reported that in contrast to the
correlation analysis [39] and successive projection algorithm [40] methods, the competitive adaptive
reweighted sampling (CARS) algorithm, serving as a sensitive wavelength-selection algorithm [41],
can improve the performance of the PLS regression model by eliminating invalid variables [42,43].
Thus, we attempt herein to establish a high-performance chlorophyll content analysis model using the
CARS-PLS method.

Accordingly, the study aimed to discuss the improvement in spectral data analysis performance
by CWT. We focused on the effect of WFs under different decomposition scales on identifying valuable
spectral variables and reducing high-frequency noise to enhance the analysis accuracy of potato
chlorophyll concentration during growth periods. Combined with SNV correction, we proposed a
CWT-CARS-PLS method to establish the high-performance chlorophyll content analysis model. In this
model, CWT was used to eliminate the high-frequency noise and extract the valuable spectral variables,
and CARS was applied to select WF variables. The effectiveness of CWT in the analysis ability of
dynamic estimation of potato chlorophyll concentration was highlighted by comparing and analyzing
the model results of original reflectance (Ref) and SNV reflectance (SNV).

The objectives of this study were to (1) determine the dynamic relationships between chlorophyll
concentration and canopy spectra at different growth stages; (2) compare the chlorophyll concentration
analysis capability of the WFs under different decomposition scales, Ref, and SNV reflectance; (3) use
CARS to select sensitive variables and establish various CARS-PLS analysis models; and (4) validate
and evaluate the performance of PLS and CARS-PLS models established by Ref, SNV, and different
scale WFs.

2. Materials and Methods

2.1. Data Acquisition

2.1.1. Spectral Data Collection

Experiments were conducted in 2018 and 2020, respectively. Collected data in 2018 were used to
develop the spectral variable optimization method and propose the chlorophyll analysis model by
CWT. Measured data in 2020 were used to test the proposed method for potato chlorophyll analysis.

In 2018, field experiments were conducted at the National Precision Agriculture Experiment
Station in Xiaotangshan, Beijing, China (40◦16′25” N, 116◦44′03” E). The potato crop was planted on
10 April 2018. According to management practices by farmers, the total N rate was 400 kg N ha−1,
with 12% applied at tillering stage, 33% at tuber formation stage, 38% at 127 tuber expansion stage,
and the remaining 12% N at tuber maturation stage. Although the growth period of the Atlantic cultivar
is about 90 days in Beijing, the canopy changes greatly from the tillering to the tuber maturation stages,
after that the leaves of the crop turns to yellow. In order to establish a chlorophyll analysis model to
analyze the chlorophyll concentration of potato canopy, as shown in Table 1, spectra data were collected
at four growth stages on May 15, May 24, June 7 and June 19, respectively, which were the tillering
stage with appearing flower buds (S1), tuber formation stage with flowers (S2), tuber expansion stage
after flowers fell (S3), and tuber maturation stage during leaves turning yellow (S4). Eighty plots
with a size of 1 m × 1 m were used. Figure 1 shows the location of the field and photos of potato
crops for different growth stages. From each growth stage, 80 groups of data were collected, in which
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6 groups were invalid because of the influence of low vegetation coverage. Thus, 74 groups of data
were retained at S1. Thus, the modeling dataset had a total of 314 groups of reflectance spectra.

Table 1. Information of potato crop samples.

Growth Stage Potato-Crop Characteristics Samples
Modelling Testing

S1 Appearing flower buds, having about 12 leaves 74 40
S2 Appearing flowers 80 40
S3 Flowers falling, stems and leaves aging 80 40
S4 Stems and leaves withering, upper leaves turning yellow 80 40
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In 2020, the testing experiment was conducted at the Shang Zhuang Experiment Station of China
Agricultural University in Beijing, China (40◦08′12” N, 116◦10′44” E), as shown in Figure 1. The cultivar
of the potato crop was Dutch. Due to the epidemic influence in the spring of 2020, the potato crop
was planted on 5 June 2020, almost two months later than in 2018, and spectral data were collected on
July 11, July 21, July 30 and August 12, respectively. N application and field management practices
were similar to experiments in 2018. In addition, the sampling and data collection methods were also
the same as in 2018. Although the growth stages of experiments might not exactly match the stages
in 2018, collected data could be used to test the effectiveness of proposed methods on the analysis of
chlorophyll concentration in potato canopy. Thus, a total of 160 samples were collected from four
growth stages as a testing dataset in this paper. Details about the potato growth stages and sampling
dates are given in Table 1.

Regarding spectral measurements and leaf sampling, one potato plant was randomly selected
in each plot, for which canopy spectral data were collected three times and the average value was
calculated to represent the canopy spectrum of the sample. The reflectance spectra were measured by
using a ASD FieldSpec-HandHeld-2 spectrometer (Analytical Spectral Devices, Boulder, CO, USA),
whose measured wavelength range is 325–1075 nm with step interval of 1 nm, spectral resolution
< 3 nm, integration time ≥ 8.5 ms, and standard field-of-view of 25◦. There were 751 wavelength
variables per spectrum. During data collection, the ASD device was located directly above the
sample plant canopy, and the vertical distance from sensor to canopy was about 30 cm. According to
geometric operation, the sensor footprint on the potato plant canopy was about 0.02 m2. The spectral
reflectance was corrected by a standard calibration whiteboard (Spectralon Standard Correction Board,
Labsphere Co., Ltd., North Sutton, NH, USA) every 10 min to eliminate the interference of variation in
solar-illumination intensity spectral data.
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2.1.2. Chlorophyll Content Measurement

Three leaves in each sample plant canopy were randomly collected and were put into a freshness
protection bag, which was numbered and stored in a portable thermal insulation box. Then, the chlorophyll
concentration was determined based on the standard chemical methods in the laboratory [44]. Each potato
leaf was cut into pieces. About 0.04 g pieces of each leaf were placed in a 25 mL mixture of acetone and
anhydrous ethanol to extract chlorophyll. The volume ratio of acetone to anhydrous ethanol was 2:1.
The extraction solution was placed in darkness for 24 h. The absorbance at 645 and 663 nm of extraction
solution was then measured using a visible-infrared spectrophotometer (UV-752, Shimadzu, Kyoto, Japan)
that could measure in the wavelength range of 200–1000 nm based on single beam optical system with step
interval of 0.1 nm, optical system of a single beam, light source of a tungsten lamp and deuterium lamp,
and spectral bandwidth of 4 nm. Chlorophyll concentration was calculated by the following equations:

Ca = 12.72A663 − 2.59A645 (1)

Cb = 22.88A645 − 4.67A663 (2)

Ct = Ca + Cb (3)

where A645 and A663 are the absorbance at 645 and 663 nm, respectively; Ca and Cb are the concentrations
of chlorophyll-a and chlorophyll-b, respectively; and Ct is the total chlorophyll concentration, whose unit
is mg/L in the study.

2.2. Data Analysis

The main data-processing steps are shown in Figure 2. The first part was to convert original
reflectance spectra (Ref), which included SNV reflectance (SNV) data obtained from original reflectance
by standard normal variate correction, and the wavelet features (WFs) were obtained by continuous
wavelet transform (CWT). The second part was to establish analysis models, including PLS models
based on the full spectral wavelengths and CARS-PLS models based on the sensitive wavelength
variables selected by the CARS algorithm. The third part was to compare the chlorophyll analysis
performance of various models.
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2.2.1. SNV Correction

SNV is a certified method that can remove both additive and multiplicative effects in spectral
data [45,46]. In SNV, each spectrum was being centered and then scaled by the corresponding standard
deviation. It could be calculated with Equation (4):

zi =
xi − µ

σ
(4)
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where xi is the reflectance of the i nm, µ is the average reflectance of a spectrum, σ is the standard
deviation of a spectrum, zi is the reflectance after SNV of the i nm. In this work, the reflectance spectra
corrected by SNV were denoted as SNV reflectance (SNV).

2.2.2. CWT

Mathematically, CWT is a liner operation that performs the convolution of reflectance spectrum
with a scaled and shifted mother wavelet. The transform process is shown as Equation (5):

W f (a, b) =
1
√

a

∫ +∞

−∞

f (λ)•ψ(
λ− b

a
)•dλ (5)

whereψ(λ) is the mother wavelet function, f (λ) is the reflectance spectrum, and W f (a, b) is the wavelet
coefficient (denoted as WFa,b) for the scaling factor a and the shifting factor b. The scaling factor
indicates the width of the scaled mother wavelet. The scaling factor used in this study was at dyadic
scales 2n(n = 1, 2, · · · , 10), denoted as scale 1, scale 2, . . . , scale 10, sequentially. The shifting factor
was the central wavelength of the shifted mother wavelet. The physical and chemical components
of crops had characteristic spectral absorption. b could be used to capture the peak and valley of an
absorption feature, and the scaling factor a could be comparable with the width of an absorption feature.
A crop leaf reflectance spectrum in the 325–1075 nm range consisted of a background continuum
on which a number of absorption features attributable to pigments, water, and dry matter were
superimposed [30]. Previous research had suggested that the shape of the absorption features is similar
to that of the Gaussian function [47] or a combination of multiple Gaussian functions [48]. Thus,
the second derivative of Gaussian, also known as the Mexican Hat, was used as the mother wavelet
function in this study. All CWT operations were accomplished using the IDL 6.3 Wavelet Toolkit
(ITT Visual Information Solutions, Boulder, CO, USA).

The one-dimensional SNV spectra were transformed into two-dimensional wavelet power map
data composed of scaling (frequency scale) and shifting (spectral wavelength) factors by using the CWT.
According to previous literature, the scaling factor from 1 to 3 belongs to low frequency, the scaling
factor from 4 to 7 belongs to middle frequency, and the scaling factor from 8 to 10 belongs to high
frequency [30–34]. The sensitive spectral variables of potato chlorophyll could be selected from these
wavelet coefficients.

2.2.3. CARS

CARS, proposed by imitating the "survival of the fittest" principle of the Darwinian theory of
evolution, is an efficient strategy to select sensitive variables depending on the absolute values of
regression coefficients (|α|) [43]. The steps of CARS can be summarized as follows [49,50]. First,
|α| values are computed and used as indices to evaluate the importance of each variable. Second, the N
subsets are selected by N Monte Carlo sampling runs based on the |α| of each variable. Third, a two-step
procedure involving an exponentially decreasing function (EDF) and adaptive reweighted sampling
(ASR) is used to select sensitive variables. In this step, EDF is utilized to remove the variables whose
regression coefficients are relatively small in each sampling run. Following a decrease in EDF-based
enforced variables, ARS is used to further eliminate the variables through a competitive way. Finally,
the above three steps are repeated until the standard error of cross-validation is obtained, and then the
optimal subset of variables is selected.

2.2.4. PLS Method

The PLS regression method proposed by Geladi [51] was used to solve multicollinearity problems
among variables. PLS regression simultaneously executed principal component decomposition on the
spectral reflectance matrix and the leaf chlorophyll concentration matrix [52], which were correlated in
the decomposition process. A linear regression model was then established between them to analyze the
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chlorophyll concentration of potato leaves. To prevent model overfitting, internal interaction verification
was performed by leave-one-out cross-validation (LOOCV), and the optimal latent variation was
selected based on the largest coefficient of determination of the cross-validation set (R2

cv). The program
package of SNV, CARS, and PLS algorithms is available at the http://www.libpls.net/index.php.

2.2.5. CWT-CARS-PLS

A new spectral data analysis method named CWT-CARS-PLS was proposed in this study.
The sensitive variables selected by CARS can remove the uninformative variables and enhance the
PLS model performance. Thus, CARS combined with PLS regression (CARS-PLS) was an effective
algorithm to establish the quantitative analysis model. CWT can also transform the one-dimensional
SNV spectra into two-dimensional wavelet coefficients. Regarding decomposition, CWT can reduce the
high-frequency noises of spectral data and extract the valuable spectral variables. Then, CWT combined
with CARS-PLS (CWT-CARS-PLS) can deeply identify sensitive WFs and establish a high-performance
analysis model. The proposed CWT-CARS-PLS algorithm is briefly introduced in Figure 3. All data
calculations including SNV correction, PLS, CARS-PLS, and CWT-CARS-PLS were completed using
MATLAB R2018a software.
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2.3. Model Evaluation Indicators

To establish the analysis model, the modelling dataset was divided into a calibration and a
validation set through sample-set partitioning based on the joint X-Y distance (SPXY) algorithm.
This algorithm can comprehensively differentiate independent and dependent variables among
samples [53,54].

The calibration set (200 samples) was used to train the PLS model. The validation set (114 samples)
was used to verify the established analysis model’s performance. The performance of the PLS model
was evaluated with the determination coefficient of validation set (R2) and the root–mean–square error
(RMSE) as follows:

R2= 1−

∑n
i=1 (yi − y∗i )

2∑n
i=1 (yi − y)2 (6)

http://www.libpls.net/index.php
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RMSE =

√∑n
i=1 (yi − y∗i )

2

n
(7)

where yi and y∗i are the measured and predicted chlorophyll concentrations for sample i, respectively.
y is the average value of measured chlorophyll, and n is the number of samples applied for the
calibration or validation set. The difference value (R2

c −R2
cv) between the R2 of calibration set (R2

c ) and
R2 of cross-validation (R2

cv) can be used as an indicator to judge the model stability, and a smaller value
of R2

c −R2
cv value implies a more stable model. Furthermore, the R2 of validation set (R2

v) and the RMSE
of validation set (RMSEV) can be utilized to evaluate the PLS model accuracy, and a higher R2

v and
smaller RMSEV indicate a better model with stronger predictive capability.

3. Results

3.1. Statistics on Chlorophyll Concentration of Modeling Data

Chlorophyll concentrations were measured from S1 to S4. The average value at each stage was
calculated and used to indicate the dynamic changes of potato growth. Results are shown in Figure 4.
Chlorophyll concentration increased from 28.12 mg/L at S1 to 31.04 mg/L with the highest value at S2,
and then decreased gradually to 15.36 mg/L at the S4 stage.
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Figure 4. Statistical box line graph of chlorophyll concentration during potato growth stage for
modeling dataset collected in 2018.

The results of the dataset partitioned by the SPXY algorithm were shown in Table 2, which shows
the statistical description of the sample set for each growth stage and the combination of data from all
four stages. Samples from all growth stages were combined to represent the changes in chlorophyll
concentration. The modelling dataset for the chlorophyll concentration analysis model consisted
of calibration and validation sets with 200 and 114 samples, respectively. The maximum value
of the calibration set (41.20 mg/L) was larger than that of the validation set (37.46 mg/L), and the
minimum value of the calibration set (7.66 mg/L) was smaller than that of the validation set (8.20 mg/L).
The division result by SPXY was reasonable, and the calibration set could strongly represent the
entire dataset.
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Table 2. Chlorophyll concentration statistics of modeling dataset.

Samples Data Set Sample Number Max (mg/L) Min (mg/L) Mean (mg/L) STD (mg/L)

S1
All 74 40.77 17.64 28.12 5.05

Calibration 50 40.77 17.64 28.27 5.31
Validation 24 33.12 19.64 27.48 3.86

S2
All 80 41.20 16.30 31.04 5.81

Calibration 50 41.20 16.30 30.23 6.29
Validation 30 37.46 25.26 33.45 3.04

S3
All 80 35.63 13.70 22.00 4.18

Calibration 50 35.63 13.70 22.04 4.65
Validation 30 26.47 16.39 21.86 2.36

S4
All 80 32.25 7.66 15.36 5.45

Calibration 50 32.25 7.66 15.73 5.93
Validation 30 20.69 8.20 14.24 3.55

All stages
All 314 41.20 7.66 24.05 7.95

Calibration 200 41.20 7.66 24.07 7.95
Validation 114 37.46 8.20 24.00 8.00

3.2. Spectral Data Analysis

3.2.1. Analysis of Spectral Response during Growth

Figure 5a shows the Ref curves of the potato crop canopy. Serious scattering effects were observed
in the Ref spectra among samples because of the different collection times and light reflection paths.
After SNV correction, the noise caused by the scattering effects was significantly eliminated, and the
dispersion among spectral curves was significantly reduced, as shown in Figure 5b. Accordingly,
the SNV spectra were used for subsequent continuous wavelet transformation and modeling analysis.
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Figure 5. Reflectance spectra of potato-crop canopy of four growth stages. (a) Original reflectance (Ref)
spectra; (b) standard normal variate (SNV) reflectance spectra.

Furthermore, we examined the dynamic changes between different stages based on the average
SNV spectrum of each stage. Figure 6 shows the reflectance of each stage. Their trends were
similar in the visible (400–760 nm) and near-infrared (761–1000 nm) regions. In the visible region,
the minimum reflectance appeared near 400 and 680 nm due to a strong absorption by the pigment.
In the near-infrared region, the reflectance sharply increased from 711 nm to 760 nm because a reflective
surface cavity existed in the spongy structure of the mesophyll. Although strong reflection existed in
761–1000 nm as a horizontal platform, a weak reflectance valley appeared near 970 nm because of the
weak absorption of leaf water content.
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However, significant changes were observed in some specific bands during growth.
Within 530–640 nm, the SNV spectral reflectance increased with growth. The average SNV reflectance
at S4 was significantly lower than that at the others, whereas the average SNV reflectance of S2 and S3
were very close. Within 740–880 nm, the SNV spectral reflectance decreased gradually. Small reflectance
peaks were observed near 763 nm at S2–S4 stages. In the bands of 910–960 nm, the average value at S1
was significantly lower than those at the other stages.

3.2.2. Analysis of Wavelet Coefficient Curves under Different Decomposition Scales

The SNV spectral curves were decomposed into wavelet coefficients by CWT under
10 decomposition scales. The CWT results for some of the samples are shown in Figure 7. We observed
that with increased scale, the wavelet coefficients gradually enlarged and the high-frequency noises
were gradually reduced. Thus, the spectral curves were smoothed, and some characteristic absorption
peaks were amplified under suitable decomposition scales, as shown in Scales 1–6 (Figure 7). However,
when the decomposition scales were too large, the spectral curve became excessively smoothed and
caused the the specific characteristic absorption peaks to disappear, which was not conducive to
quantitative analysis, as shown in Scales 7–10 (Figure 7).
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3.3. Correlation of Spectra and Wavelet Features with Chlorophyll Concentration

3.3.1. Correlation Analysis between Chlorophyll Concentration and Spectra

Figure 8 shows the correlation coefficient curves between the chlorophyll concentration and Ref
and SNV. Compared with Ref, the correlation coefficient between SNV and chlorophyll concentration
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was higher overall, illustrating that SNV correction reduced the noise of the original spectra and
improved the analysis performance of spectral data. Furthermore, the correlation relationship between
the chlorophyll concentration and SNV was analyzed. Within the ranges of 387–509, 519–633,
and 744–844 nm, the absolute values of the correlation coefficient (|r|) were higher than 0.6. The peak
value of the positive correlation occurred at 678 nm, and the r was 0.411. The peak value of negative
correlation occurred at 702 nm, and the r was −0.715. Within 845–917 nm, the positive correlation
gradually decreased before becoming a negative correlation, and then |r| gradually increased.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 22 
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Figure 8. Correlation coefficient curve between chlorophyll concentration and spectra.

To further understand how the spectra changed with potato growth, correlation analysis was
conducted between SNV and chlorophyll concentration from S1 to S4. Figure 9 shows the correlation
coefficient curves. The chlorophyll concentration was correlated positively with the reflectance spectra
within the range of 400–500 and 650–700 nm. However, a negative correlation existed between them
within 510–630 and 701–750 nm. Furthermore, four band regions were highly correlated, including
400–510, 521–610, 701–740, and 761–920 nm. Overall, the correlation coefficients of S1–S4 had significant
differences within 400–600, 601–620, and 700–902 nm. Conversely, the curve trend of the correlation
coefficients of S2 and S3 was very similar.
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3.3.2. Correlation Analysis between Chlorophyll and Wavelet Features

The correlation coefficients between the chlorophyll and wavelet coefficients were calculated in the
decomposition Scales 1–10 to draw the correlation coefficient distribution map, as shown in Figure 10.
The correlation coefficient was represented by different colors and color values of each pixel in the
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map, which could help select the high correlation WFs. We observed that the correlation coefficients
varied in different decomposition scales (scaling factors) and wavelength locations (shifting factors).Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 22 

 

 

Figure 10. Correlation coefficient map between wavelet features and growth stages. 

3.3.3. Comparison of Correlation Coefficient  

The highest correlation coefficients of Ref, SNV, and WFs are shown in Table 3. We observed 

that the correlation coefficient of SNV (r = 0.75) was higher than Ref (r = 0.50), which revealed that 

SNV correction could effectively remove the noise of spectral data. For WFs, the correlation 

coefficient gradually increased form Scale 1 to Scale 3, and then the correlation coefficient gradually 

decreased. The strongest correlation was found in Scale 3 located in 524 nm (r = -0.82), and the Ref 

had the weakest correlation (r = −0.50) located in 698 nm.  

Moreover, the correlation coefficients of WFs in Scales 1–6 were higher than those of SNV, 

illustrating that CWT could enhance the correlation of chlorophyll by decomposing spectral data. 

The correlation coefficients of WFs in Scales 7–10 were also lower than those of SNV, further 

revealing that spectral data decomposing in too large scales were no longer helpful for quantitative 

analysis. 

Table 3. Correlation coefficient (r) between chlorophyll and original reflectance, SNV reflectance, 

and wavelet features. 

 
Feature Location 

Highest r 
Wavelength (nm) 

Ref 698 −0.50 

SNV 761 0.75 

Scale 1 687 −0.78 

Scale 2 739 0.81 

Scale 3 524 −0.82 

Scale 4 744 0.78 

Scale 5 755 0.79 

Scale 6 786 0.75 

Scale 7 547 −0.74 

Scale 8 515 −0.71 

Scale 9 400 0.70 

Scale 10 1038 −0.70 

3.4. Establishment and Comparison of Chlorophyll Analysis Models 

3.4.1. Sensitive Chlorophyll Variables Selected Using CARS 

For the CWT-CARS-PLS, the sensitive WFs in each decomposition scale were selected, and the 

chlorophyll analysis PLS models were established for every scale. For comparison with 

CWT-CARS-PLS, the sensitive wavelengths were selected from Ref and SNV data to establish the 
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3.3.3. Comparison of Correlation Coefficient

The highest correlation coefficients of Ref, SNV, and WFs are shown in Table 3. We observed
that the correlation coefficient of SNV (r = 0.75) was higher than Ref (r = 0.50), which revealed that
SNV correction could effectively remove the noise of spectral data. For WFs, the correlation coefficient
gradually increased form Scale 1 to Scale 3, and then the correlation coefficient gradually decreased.
The strongest correlation was found in Scale 3 located in 524 nm (r = −0.82), and the Ref had the
weakest correlation (r = −0.50) located in 698 nm.

Table 3. Correlation coefficient (r) between chlorophyll and original reflectance, SNV reflectance, and
wavelet features.

Feature Location
Highest r

Wavelength (nm)

Ref 698 −0.50
SNV 761 0.75

Scale 1 687 −0.78
Scale 2 739 0.81
Scale 3 524 −0.82
Scale 4 744 0.78
Scale 5 755 0.79
Scale 6 786 0.75
Scale 7 547 −0.74
Scale 8 515 −0.71
Scale 9 400 0.70
Scale 10 1038 −0.70

Moreover, the correlation coefficients of WFs in Scales 1–6 were higher than those of SNV,
illustrating that CWT could enhance the correlation of chlorophyll by decomposing spectral data.
The correlation coefficients of WFs in Scales 7–10 were also lower than those of SNV, further revealing
that spectral data decomposing in too large scales were no longer helpful for quantitative analysis.
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3.4. Establishment and Comparison of Chlorophyll Analysis Models

3.4.1. Sensitive Chlorophyll Variables Selected Using CARS

For the CWT-CARS-PLS, the sensitive WFs in each decomposition scale were selected, and the
chlorophyll analysis PLS models were established for every scale. For comparison with CWT-CARS-PLS,
the sensitive wavelengths were selected from Ref and SNV data to establish the Ref-CARS-PLS and
SNV-CARS-PLS, respectively. The LOOCV was always operated to obtain the optimal principle
components (PCs) in establishing the PLS models. The number of variables and PCs of various PLS
models are shown in Table 4. For the chlorophyll analysis models, the maximal number of variables
was 227 in Scale5-CARS-PLS model, and the minimal number of variables was 31 in Scale1-CARS-PLS.
However, the minimal number of PCs was three in Scale3-CARS-PLS.

Table 4. Variable information of various CARS-PLS models.

Models Variables Number PCs Models Variables Number PCs

Ref-CARS-PLS 61 21 Scale 5-CARS-PLS 227 21
SNV-CARS-PLS 64 17 Scale 6-CARS-PLS 48 17

Scale 1-CARS-PLS 31 12 Scale 7-CARS-PLS 33 15
Scale 2-CARS-PLS 61 13 Scale 8-CARS-PLS 54 18
Scale 3-CARS-PLS 57 3 Scale 9-CARS-PLS 57 17
Scale 4-CARS-PLS 178 19 Scale 10-CARS-PLS 33 28

The location of sensitive variables selected from Ref, SNV, and WFs in Scales 1–10 by using CARS
algorithm are shown in Figure 11. All sensitive wavelengths selected by CARS were distributed
in the visible and near-infrared regions. However, for the calibration model established by various
sensitive variables, the predictive accuracy of Scale3-CARS-PLS model was the optimum, as shown
in Figure 12a. Furthermore, the sensitive WFs of Scale3-CARS-PLS were analyzed through the leaf
information. The number of variables of Scale3-CARS-PLS was 57. These sensitive WFs were located at
346, 389, 419, 425, 426, 431, 435, 436, 437, 520, 523, 535, 546, 547, 563, 579, 580, 590, 591, 620, 625, 661, 662,
667, 684, 685, 688, 690, 693, 698, 716, 717, 733, 739, 742, 751, 752, 767, 781, 811, 824, 825, 848, 857, 858,
875, 890, 909, 919, 929, 939, 948, 960, 963, 968, 973, and 985 nm. Among them, the WFs located in the
visible region could reflect the leaf pigment. The WFs located in near-infrared regions could reflect the
leaf structure and other leaf substance; for instance, the WF at 929 nm reflected the leaf fat, the WF at
973 nm near 970 nm reflected the leaf water content, and the WF at 985 nm reflected leaf starch.
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3.4.2. Comparison of the Performance of PLS and CARS-PLS Models

The chlorophyll analysis models were established using the CARS-PLS method, and the modeling
results (R2

c and R2
c − R2

cv) are shown in Figure 12. To highlight the advantages of selecting sensitive
variables by CARS, the analysis models were also established using the PLS method. Figure 12a shows
that for all variable categories, the R2

c of CARS-PLS was higher than that of PLS, illustrating that CARS
could effectively eliminate uninformative variables and improve model accuracy. The R2

c − R2
cv of

CARS-PLS was lower than that of PLS, as shown in Figure 12b, which revealed that CARS could reduce
model complexity and enhance model stability.

Furthermore, the R2
c of SNV-CARS-PLS was higher than that of Ref-CARS-PLS. The R2

c of
CWT-CARS-PLS models established based on WFs was higher than those of models based on Ref and
SNV. For CWT-CARS-PLS, the R2

c gradually increased from Scale 1 to Scale 3 and then R2
c gradually

decreased. Based on the value of R2
c −R2

cv, the stability of SNV-CARS-PLS was stronger than that of
Ref-CARS-PLS. For CWT-CARS-PLS models, stability gradually strengthened from Scale 1 to Scale 3
and then gradually weakened. The stability of CARS-PLS models based on Scales 1–6 was stronger
than those of Ref-CARS-PLS and SNV-CARS-PLS, which was consistent with the correlation analysis
in Section 3.3. The above results demonstrated that the CWT could deeply identify spectral data to
improve model performance.

3.5. Validation of Chlorophyll Analysis Models

The validation results of various chlorophyll analysis models are shown in Figure 13. The same as
the calibration models, the CARS-PLS models had a higher determination coefficient of validation
set (R2

v) than the PLS models, and the CARS-PLS models had a smaller RMSEV than the PLS
models primarily because the invalid variables were removed by the CARS algorithm. Furthermore,
CWT-CARS-PLS models under Scales 2–6 had higher R2

v values (R2
v > 0.81) and smaller RESEV values

(RMSEV < 3.34 mg/L) than the Ref-CARS-PLS (R2
v = 0.65, RMSEV = 4.11 mg/L) and the SNV-CARS-PLS

(R2
v = 0.75, RMSEV = 3.55 mg/L) models. Moreover, Scale3-CARS-PLS showed the highest R2

v value
of 0.85 and the smallest root–mean–square error of cross-validation (RMSEV) value of 2.77 mg/L,
as shown in Figure 14. These chlorophyll concentration values were evenly distributed on both sides
of the 1:1 line, further illustrating that the proposed Scale3-CARS-PLS model had good stability.
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3.6. Testing of the Developed Scale3-CARS-PLS Model

The testing set data collected in 2020 were used to test the stability and applicability of the
developed Scale3-CARS-PLS model. The chlorophyll concentration of testing set data ranged from
8.81 mg/L to 39.59 mg/L, and the average content was 19.18 mg/L. The chlorophyll concentration range
of the test set was smaller than that of the modeling set, which ranged from 7.66 mg/L to 41.20 mg/L.

The canopy reflectance spectra of the testing dataset (160 samples) were corrected by standard
normal variate to obtain the SNV reflectance, then the CWT was performed on the SNV reflectance
and the CARS algorithm was used to select the sensitive WFs under scale 3, and then the WFs
were substituted into the Scale3-CARS-PLS model to predict chlorophyll concentration. In order to
highlight the performance of Scale3-CARS-PLS, the reflectance spectra of the testing dataset were
substituted into Ref-PLS and Ref-CARS-PLS models, and the SNV reflectance data were substituted
into the SNV-CARS-PLS model. The scatter plot of 1:1 was created, as shown in Figure 15, to visually
demonstrate the chlorophyll concentration prediction results. The performance of Ref-CARS-PLS was
better than Ref-PLS, which showed that CARS could eliminate the valueless variables to improve
the model analysis ability. The model performance of SNV-SCAR-PLS was further enhanced due
to the SNV pre-processing by correcting the scattering effect. Then, the Scale3-CARS-PLS model
showed the strongest R2 of 0.69 and the smallest RMSE value of 3.36 mg/L, which illustrated that the
Scale3-CARS-PLS model possessed good analysis capability, and the spectral analysis method had
good applicability. Figure 15d shows that these chlorophyll values were evenly distributed on both
sides of the 1:1 line, further illustrating that the proposed Scale3-CARS-PLS model had good stability.
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4. Discussion

Spectroscopy is a rapid and non-destructive method of gathering crop-pigment information [55,56].
In this study, the spectral characteristic response and chlorophyll concentration change at different
stages were analyzed and discussed. Results demonstrated that the average reflectance was close
in S2 and S3, and that the correlation curves between the reflectance and chlorophyll concentration
of S2 and S3 had similar change trends. According to the potato phenology, a new tuber forms by
stolons after the plant flowers at S2 and the tuber expands at S3. Consequently, nutrient availability
and balance are transferred from aboveground stems and leaves to underground tubers during these
periods. This phenomenon may explain why some of the plants have similar physiology status and
spectral responses than others [57].

4.1. Abilities of Denoising and Sensitive-Variable Mining of CWT at Different Decomposition Scales

SNV can effectively reduce scattering noise to enhance the analysis performance of spectral data [45,46].
After SNV correction, dispersion among spectral curves was significantly reduced (Figure 5), and the
correlation between spectral data and chlorophyll concentration was enhanced (as shown in Figure 8).
Accordingly, SNV spectra were used for further CWT and modeling analysis.

After CWT, the spectral reflectance was transformed into the wavelet coefficients, as shown
in Figure 7. With increased decomposition scales from 1 to 6, the wavelet coefficient curve was
smoothed, and some characteristic absorption peaks amplified. Then, the curve was excessively
smoothed, resulting in the disappearance of the characteristic absorption location. The above content
was consistent with previous literature reporting that WFs in the middle- and low-frequency scales
could capture the absorption characteristics of the physical and chemical substances of crops [33,58]
and effectively eliminate the high-frequency noise of spectral data [36,59]. High-frequency WFs could



Remote Sens. 2020, 12, 2826 17 of 22

remove the absorption features and could not efficiently analyze the physiological and biochemical
compositions [60].

The absolute value of the highest correlation coefficient between chlorophyll concentration and
WFs under Scales 1–6 was higher than SNV (0.75), illustrating that the CWT could enhance the
correlation of chlorophyll concentration by decomposing spectral data. Previous studies [30,34,59–61]
have reported the same results, such as Wang [59] who indicated that the correlation between
wavelet coefficients and pigments was significantly higher than that of vegetation index and sensitive
wavelengths. Furthermore, with increased decomposition scales from 1 to 3, the absolute value of
the highest correlation coefficient of WFs increased from 0.78 to 0.82 and then gradually decreased to
0.70, illustrating that high-frequency WFs were not conducive to quantitative analysis [32,33,60,61].
WFs under Scale 3 exhibited the strongest correlation relationship with chlorophyll concentration.

4.2. Uninformative Variable Elimination by CARS Algorithm

Given that a spectrometer collects reflectance data based on near-contiguous spectral bands,
the selection of sensitive wavelengths or variables is one of key steps in the chlorophyll analysis to
solve multiple mutual lineal problems of overfitting and redundancy [62]. Thus, wavelengths and
WFs need be selected by effective algorithms to remove the uninformative variables and to enhance
model performance [59,63]. The CARS developed based on the model population analysis strategy [64]
can be used to consider the contribution of each variable to the analysis model to select informative
spectral variables. Relative to the PLS models, the number of input variables of CARS-PLS models was
reduced significantly, and the CARS-PLS models possessed more excellent prediction ability, as shown
in Figures 12a and 13. Overfitting frequently occurred during the modeling process, caused by the
increasing number of model variables, which affected the stability and accuracy of the PLS model [65].
Accordingly, internal cross-validation was performed in this study. The difference in the determination
coefficient of calibration and cross-validation sets (R2

c −R2
cv) was used as an indicator to determine the

model stability [66]. As shown in Figure 12b, the R2
c −R2

cv values of the CARS-PLS models were lower
than those in the PLS models, further illustrating that the CARS can effectively eliminate redundant
variables and improve the analysis of the model’s stability.

4.3. Chlorophyll Content Analysis Capability of WFs under Different Decomposition Scales

We further analyzed the performance of various CARS-PLS models. From the point of view of
model stability, the R2

c −R2
cv values of the CARS-PLS models based on Scales 1–6 were smaller than

those of Ref-CARS-PLS and SNV-CARS-PLS, and the R2
c −R2

cv value of Scale3-CARS-PLS model was
the smallest, showing that Scale3-CARS-PLS model had the strongest stability. From the point of view
of prediction capability of the model, the RMSEV values of CARS-PLS models based on Scales 2–6
were smaller than those of SNV-CARS-PLS model, and Scale3-CARS-PLS showed the strongest R2

v
value of 0.85 and the smallest RMSEV value of 2.77 mg/L, as shown in Figure 14. For WFs under Scale
3, 57 sensitive WFs were selected by the CARS algorithm, whose locations were evenly distributed
in the visible (37 variables) and near-infrared (20 variables) region, as shown in Figure 11. Previous
studies have reported that the spectral data in the visible region can analyze pigment content [67].
Moreover, the spectral data in the near-infrared region can reflect other substances’ information and
crop-canopy structure, which can improve the robustness of the chlorophyll analysis model [68].

Moreover, previous studies reported the detection of chlorophyll concentration in crops based on
spectral wavelengths or/and spectral indices. Sun [28] selected 11 sensitive wavelengths for analyzing
the chlorophyll concentration of potato leaf, with the R2

v of the model of 0.77. Tao [69] screened the red
edge position using the linear extrapolation method for estimating the chlorophyll concentration of
potato with R2

c of 0.87. However, the R2
c and R2

v of the analysis model developed by coupling CWT
with CARS methods in this paper is 0.93 and 0.86, respectively. Above content demonstrated that CWT
could deeply identify spectral data to improve model performance, and that the sensitive WFs under
Scale 3 possessed the best excellent prediction capability for chlorophyll concentration of potato crops.
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4.4. Generalizability of This Study to Future Works

A comprehensive analysis of testing results showed that spectral data could be processed using
CWT. Sensitive variables were selected using CARS, which was suitable for model-variable optimization
and prediction-capability improvement. Finally, the analysis performance of the Scale3-CARS-PLS
model was tested using another variety of potato crop, the R2, and RMSE was 0.69 and 3.36 mg/L,
as shown in Figure 15, which demonstrated that the Scale3-CARS-PLS model possessed good stability
and excellent applicability. Previous studies reported that the chlorophyll concentration is significantly
correlated with the concentration of nitrogen [5,70]. Therefore, the study could provide a theoretical
support for precision nitrogen management in the potato field, and a method reference for large-scale
remote sensing analysis of potato chlorophyll concentration.

However, this method was based on specific spectral data for potato crops. The restrictions
were based on the existence of other datasets or potato varieties [22,71]. Therefore, more datasets
from wide-ranging potato varieties, planting patterns, and experimental fields should be collected to
develop a stable and accurate classification model using CWT-CARS-PLS method.

5. Conclusions

We presented an effective method for analyzing the chlorophyll concentration of potato plants
through canopy spectroscopy. The dynamic responses of canopy spectra at different growth stages
were analyzed. The spectral characteristics were found to significantly differ between S1, S2–S3, and S4.
However, the SNV spectral reflectance curves in S2 and S3 were similar. The performances of Ref, SNV,
WFs under different decomposition scales, CARS-PLS, and CWT-CARS-PLS in analyzing chlorophyll
concentration were compared based on the model results. The CARS-PLS model established by WFs
under different scales obtained by CWT exhibited the most excellent analysis ability and reliability.
Scale3-CARS-PLS model had fewer variables, smallest R2

c −R2
cv value, strongest R2

v, and weakest RMSEV
for chlorophyll analysis. The analysis performance of the Scale3-CARS-PLS model was tested using
another variety of potato crop with a satisfactory result. Based on spectral data, the WFs under Scale 3
showed excellent chlorophyll-content prediction capability. Thus, the proposed CWT-CARS-PLS was a
potentially accurate and efficient method of analyzing the chlorophyll concentration of potato crops.
This study could provide a method reference for large-scale remote sensing analysis of chlorophyll
concentration and a theoretical support for precision nitrogen management of potato crops.
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